Д. В. Акимов¹, д-р техн. наук В. З. Грищак², д-р техн. наук С. И. Гоменюк², Д. В. Клименко¹, И. Ф. Ларионов¹, В. Н. Сиренко¹

> ¹ Государственное предприятие «Конструкторское бюро «Южное», г. Днепр ² Запорожский национальный университет, г. Запорожье

ЭКСПЕРИМЕНТАЛЬНОЕ ИССЛЕДОВАНИЕ ДЕФОРМИРОВАННОГО СОСТОЯНИЯ И ПРОЧНОСТИ МЕЖСТУПЕНЧАТОГО ОТСЕКА РАКЕТОНОСИТЕЛЯ ПРИ СТАТИЧЕСКОМ ВНЕШНЕМ НАГРУЖЕНИИ

Представлены результаты экспериментального исследования деформирования и прочности конструкции межступенчатого отсека (второй и третьей ступени) ракетоносителя при комбинированном внешнем статическом нагружении в ряде расчетных случаев. Результаты эксперимента сопоставлены с теоретическими данными расчета по методу конечных элементов, применительно к исследуемому классу механических систем.

Ключевые слова: межступенчатый отсек, испытания, деформация, прочность, комбинированное нагружение, технологические обечайки, расчетный случай, метод конечных элементов.

Введение

Конкурентоспособные изделия ракетно-космической техники (РКТ) в связи с новыми представлениями развития данной отрасли и решаемых задач требуют постоянного совершенствования процесса проектирования конструкций на базе современного математического обеспечения с учетом опыта использования отечественных и зарубежных систем автоматизированного проектирования (САПР) или САD (Computer-Aided Design) и систем автоматизации инженерных расчетов и анализа (САЕ) [1], позволяющих моделировать, в частности, процессы деформации, исчерпания несущей способности и разрушения конструкций сложной конфигурации, работающих в экстремальных условиях эксплуатации. К наиболее распространенным широко специализированным системам САЕ можно отнести такие программные продукты, как ANSYS (ANSYS, Inc.), Nastran (MSC.Software Corporation), Abacus (Abacus, Inc.) и другие. Следует отметить, что, например, программные комплексы MSC.Patran и MSC.Nastran достаточно широко используются в ракетно-космической технике.

Одним из основополагающих звеньев при проектировании конкретного вида ракетно-космической техники является прочностной расчет с выбором конструкционных материалов, определением основных расчетных случаев нагружения и отвечающего за весовое совершенство проектируемого изделия. Необходимость специализированного математического обеспечения возникает при использовании в конструкции ракеты-носителя и космических аппаратов композиционных материалов, в частности углепластиков, которые формируются в процессе изготовления конструкции. Именно для них надежное математическое обеспечение, особенно предиспытательное математическое моделирование, имеет высокий статус в связи с возможностью значительного облегчения корпусных силовых элементов ракеты-носителя, в частности между баковых отсеков, головного обтекателя (ГО) и разгонного блока, а также снижением, в ряде случаев, натурных повторных испытаний при условии обеспечения углубленного прочностного анализа. Например, качественное усложнение задач прочности конструкций из высокопрочных алюминиевых сплавов, решаемых с помощью компьютерных технологий, приводит к необходимости конечно-элементных моделей расчетов с учетом реальных диаграмм нелинейного деформирования материала. Естественно, принципиальным вопросом для пользователя является выбор программного продукта и совершенствование математического обеспечения для решения конкретных задач. Отметим, что аналитический обзор программных комплексов, включающий математическое моделирование в нелинейных проблемах механики, до 2009 года содержится в работе [1]. К последним работам этого направления следует отнести публикации [2-10].

Естественно, используемое математическое обеспечение для прогнозирования несущей способности силовых элементов конструкций ракетоносителей и используемый на практике конструкторских бюро программный продукт нуждаются в тщательной экспертной оценке по результатам тестовых испытаний конструкций для основных расчетных случаев. Целью настоящего исследования является описание постановки, методики проведения и анализ результатов экспериментальных исследований натурных испытаний при заданных жесткостных характеристиках исследуемой конструкции межбакового отсека и параметрах внешнего нагружения.

Испытания межступенного отсека 2-3 ступеней (МСО 2-3)

Основными задачами испытаний явились:

подтверждение правильности выбранных конструктивных решений для элементов конструкции МСО
2-3 ступеней в обеспечение его прочности;

 подтверждение прочности корпуса MCO 2-3 ступеней при нагружении осевыми, перерезывающими силами и изгибающим моментом на активном участке траектории полета РКН (полет 1 и 2 ступени) и при наземной эксплуатации полностью собранной РКН;

- определение фактической несущей способности корпуса MCO 2-3 ступеней (испытания до разрушения).

Испытаниям подвергалась опытная конструкция (ОК), состоящая из:

- третьей ступени;
- цилиндрического отсека;
- корпуса переходника.
- Третья ступень включает:
- топливный отсек третьей ступени;
- магистральный и расходный трубопровод;
- корпус крепления двигателя;
- имитатор двигателя;
- корпус МСО 2-3 ступеней;
- элементы крепления приборов;
- комплект крепежа для крепления отсеков.

Испытания сборки на расчетный случай «Полет РКН на АУТ, работа 1 ступени»

Сборка, состоящая из нижнего отсека цилиндрической секции ГО, корпуса переходника, корпуса МСО 2-3 ступеней, топливного отсека третьей ступени, магистрального трубопровода «О», расходного трубопровода «Г», корпуса (рамы МДУ) и клепаной части ТО третьей ступени, входящего в топливный отсек в сборе, устанавливалась вертикально и нижним шпангоутом корпуса МСО 2-3 ступеней, через технологическую обечайку, крепилась к силовому полу. Крепление нижнего шпангоута корпуса МСО 2-3 ступеней к технологической обечайке осуществлялось технологическим крепежом, по геометрии и прочности соответствующим штатному.

Схема испытаний сборки приведена на рисунках 1 и 2. На шпангоуты отсека ГО, корпуса переходника ГБ и бака «О» устанавливались технологические обечайки для приложения осевых, перерезывающих сил и изгибающих моментов. К шпангоуту бака «Г» третьей ступени были пристыкованы технологические сегменты для приложения осевых и перерезывающих сил. К корпусу (рамы МДУ) был пристыкован имитатор МДУ для приложения осевой силы.

Общий вид испытательной установки представлен на рисунке 3. При нагружении в значениях усилий учитывался вес технологической оснастки, пристыкованной к верхнему торцу цилиндрической секции ГО, к верхнему торцу переходника ГБ, к шпангоуту бака «О». При проведении испытания нагружение проводилось этапами №№1–6. На этапе №4 производилось нагружение эксплуатационными нагрузками с выдержкой 5 минут, на этапах № 5 и № 6 – расчетными (максимальное растяжение и максимальное сжатие соответственно). Далее проводился сброс нагрузок. Измерение параметров и визуальный осмотр конструкции производились на каждом этапе нагружения.

Схема расположения датчиков перемещений представлена на рисунке 4. Программные и реализованные значения нагрузок приведены в таблице 1.

Испытание MCO 2-3 ступеней максимальным осевым сжатием до разрушения

Корпус МСО 2-3 ступеней устанавливался вертикально и нижним шпангоутом с помощью технологической обечайки закреплялся на силовом полу. Крепление нижнего шпангоута корпуса МСО 2-3 ступеней к технологической обечайке осуществлялось технологическим крепежом, по геометрии и прочности соответствующим штатному.

Схема испытаний сборки приведена на рисунке 5.

На верхний торцевой шпангоут корпуса MCO 2-3 ступеней, через технологическое кольцо, устанавливалась технологическая обечайка для приложения осевой силы. Результаты статических испытаний приведены в таблице 2.

На рисунках 6–9 приведены изображения деформации обшивки на разных этапах нагружения. На рис. 9 хорошо видно разрушение межступенного отсека 2-3 ступеней при достижении критического значения нагрузки.

Расчет устойчивости МСО 2-3 ступеней при осевом сжатии

Исходными данными для проведения расчета на устойчивость конструкции МСО 2-3 являлись:

- конструкторская документация (КД) на корпус MCO2-3;

- физико-механические характеристики материалов и предельные значения напряжений.

Для расчета устойчивости была построена конечно-элементная модель MCO2-3, приведенная на рисунке 10.

Конечно-элементная модель МСО 2-3 нагружалась единичной осевой сжимающей силой по верхнему сечению, с учетом жесткости оснастки. Результаты расчета общей устойчивости корпуса МСО 2-3 приведены на рисунках 10–12.

Рис. 1. Схема нагружения сборки СТАТ X «Полет РКН на АУТ. работа 1 ступени»: 1 – технологические обечайки

Рис. 2. Схема нагружения сборки «Полет РКН на АУТ, работа 1 ступени»

Рис. 3. Общий вид испытательной установки

Рис. 4. Схема расположения датчиков перемещений на сборке

Этап	0	1	2	3	4	5	6
Р ^о прог.	0,15	1,15	2,30	3,45	4,65	7,00	7,00
Р ^о реал.	0,152	1,152	2,313	3,458	4,666	7,015	7,007
P ^r _{прог}	0,10	0,75	1,50	2,25	3,10	4,65	4,65
Р ^г _{реал}	0,101	0,751	1,503	2,254	3,102	4,652	4,651
Т _{1 прогр.}	0	5,64	11,28	16,92	22,54	29,30	36,10
Т _{1 реал.}	0	11,503	11,533	16,964	22,560	29,330	36,170
Т _{2 прогр.}	0	-2,54	-5,08	-7,62	-10,15	-13,20	-4,50
T _{2 реал.}	0	-2,615	-5,107	-7,633	-10,255	-13,235	-4,530
Т _{3 прогр.}	0	3,84	7,68	11,52	15,36	19,96	22,36
T _{3 реал.}	0	4,912	7,694	11,604	15,430	20,070	22,360
Т _{4 прогр.}	0	1,61	3,22	4,83	6,42	8,34	9,34
Т _{4 реал.}	0	1,722	3,343	4,995	6,622	8,694	9,567
Q _{1 прогр.}	0	2,64	5,28	7,92	10,54	13,70	16,70
Q1 реал.	0	2,669	5,335	7,974	10,620	13,840	16,840
Q3 прогр.	0	-0,3	-0,6	-0,9	-1,2	-1,56	-2,61
Q3 реал.	0	-0,334	-0,613	-0,922	-1,221	-1,586	-2,636
Q4 прогр.	0	-0,260	-0,520	-0,780	-1,030	-1,335	-2,220
Q4 реал.	0	-0,262	-0,521	-0,780	-1,040	-1,339	-2,233
М _{1 прогр.}	0	11,74	23,48	35,22	46,93	61,00	57,62
M _{1 реал.}	0	11,971	23,724	35,521	47,200	61,387	57,836

Таблица 1 – Нагружение сборки расчетный случай «Полет РКН на АУТ работа 1 ступени» (программные и испытательные значения)

Примечание. Р^о_{прог.}, Р²_{прог.}, Т_{1 прогр.}, Т_{2 прогр.}, Т_{3 прогр.}, Т_{4 прогр.}, Q_{1 прогр.}, Q_{3 прогр.}, Q_{4 прогр.}, M_{1 прогр.}, M_{2 прогр.}, - программные значения внутреннего избыточного давления, осевых, перерезывающих сил и моментов;

Р^о_{реал.}, Р²_{реал.}, Т_{1 реал.}, Т_{2 реал.}, Т_{3 реал.}, Т_{4 реал.}, Q_{1 реал.}, Q_{3 реал.}, Q_{4 реал.}, M_{1 реал.}, M_{2 реал.} – реализованные значения внутреннего избыточного давления, осевых сил, перерезывающих сил и моментов при испытаниях.

Таблица 2 – Результаты статических испытаний МСО 2-3 ступеней при нагружении максимальным ос	евым
сжатием	

Наименование отсека	L	Т ^Р экв.сж.	Т ^Р доп	Т ^{исп.} разр	η ^{исп.}
Участок между шпангоутами 8–7	63,0	167,41	212,0		1,76
Участок между шпангоутами 7-6	63,0	178,16	237,0		1,66
Участок между шпангоутами 6-5	63,0	189,88	232,4	295,9	1,55
Участок между шпангоутами 5-4	52,4	200,48	324,0		*
Участок между шпангоутами 4–3	50,0	210,89	351,3		*

Примечание. L – длина секции между шпангоутами; T^P _{экв. сж.} – расчетная эквивалентная осевая сжимающая сила; T_{доп.} – расчетная допускаемая осевая сила; T^{ucn.} _{разр.} – испытательная разрушающая сила; h^{ucn.} – коэффициент запаса прочности (устойчивости) реализованный при испытаниях; * – нижнее сечение корпуса MCO 2.

Рис. 5. Схема расчетных сечений сборки: 1 – технологические обечайки; 2 – 1', I, II', II, III', III, 1, 2, 3, 4, 5, 6, 7, в', г, 0III – расчетные сечения

Рис. 6. Деформация обшивки после 3 этапа нагружения МСО 2-3 ступеней

Рис. 7. Деформация обшивки на 5 этапе нагружения МСО 2-3 ступеней

Рис. 8. Начало процесса разрушения корпуса МСО 2-3 ступеней на 6 этапе нагружения

Рис. 9. Разрушение МСО 2-3 ступеней

Рис. 10. Форма общей потери устойчивости корпуса МСО 2-3, характерная для нагружения осевой сжимающей силой (критическая расчетная сила потери устойчивости $T_{\kappa p.} = 287,493$).

Рис. 11. Расчетные касательные напряжения в общивке корпуса МСО 2-3 в момент потери несущей способности (критические касательные напряжения общивки 257–290)

Рис. 12. Сравнение формы разрушения корпуса МСО 2-3 при проведении испытаний с формой потери устойчивости, полученной расчетным путем

Выводы

Представленные результаты экспериментального исследования деформированного состояния и прочности конструкции межступенного отсека ракетоносителя подтверждают правильность и эффективность выбранной математической модели и метода анализа при простом и комбинированном нагружении.

Список литературы

- Чумаченко Е. Н. Математическое моделирование в нелинейной механике (Обзор программных комплексов для решения задач моделирования сложных систем) / [Чумаченко Е. Н., Полякова Т. В., Аксенов А. С. и др.]. – М., 2009. (Препринт / Институт космических исследований (Москва) ; Пр-2155)– 42 с.
- Опыт и новые технологии инженерного анализа в интересах космоса. Государственный космический научнопроизводственный центр имени М. В. Хруничева. 15.08.2011.

- Полиновский В. П. Применение программных продуктов фирмы MSC.Software для расчета новых изделий из композиционных материалов в ГЛНПЦ им. М. В. Хруничева [Электрон. текстовые и граф. дан.] / Полиновский В. П. // Тр. Рос. Конф. Пользователей системы MSC 2003 года. М. : MSC.Software Corporation. 5 с.
- Ильин А. М. Использование технологии компьютерного моделирования на базе конечно-элементного анализа в расчетах динамической нагруженности и температурных режимов ракетно-космической техники Хруничева [Электрон. текстовые и граф. дан.] / А. М. Ильин, Е. А. Кожевников, В. И. Хлыбов // Тр. Рос. Конф. пользователей системы MSC 2003 года. – М. : MSC.Software Corporation.
- Зиновьев А. М. Конструктивно-технологическое решение и несущая способность межступенного отсека ракеты-носителя «Циклон-4» из полимерных композиционных материалов / [Зиновьев А. М., Кушнарев А. П., Кондратьев А. В. И др.] // Авиационно-космическая техника и технология. 2013. 33(100). С. 46–52.

Одержано 20.04.2016

Акімов Д.В., Грищак В.З., Гоменюк С.І., Клименко Д.В., Ларіонов І.Ф., Сіренко В.М. Експериментальне дослідження деформованого стану і міцності міжступеневого відсіку ракетоносія при статичних зовнішньому навантажений

Представлено результати експериментального дослідження деформування і міцності конструкції міжступеневого відсіку (другого і третього ступеня) ракетоносія при комбінованому зовнішньому статичному навантаженні в низці розрахункових випадків. Результати експерименту зіставлені з теоретичними даними розрахунку із застосуванням методу скінченних елементів відповідного класу механічних систем.

Ключові слова: міжступеневий відсік, випробування, деформація, міцність, комбіноване навантаження, технологічні обечайки, розрахунковий випадок, метод скінченних елементів.

Akimov D., Gristchak V., Gomenyuk S., Klimenko D., Larionov I., Sirenko V. Experimental analysis of strength and strain state interstage section of carrier rocket at a static external loading

An experimental study of deformation and strength interstage compartment structure (the second and third section) rocket with combined external static load in a number of cases are presented. The experimental results are compared with theoretical calculations based on the finite element method, in relation to the test class of mechanical systems.

Key words: interstage section, testing, deformation, strength, combined loading, the shell process, settlement case, the finite element method.