ІІ ТЕХНОЛОГІЇ ОТРИМАННЯ ТА ОБРОБКИ КОНСТРУКЦІЙНИХ МАТЕРІАЛІВ

УДК 669.245.018.044:620.193.53

Канд. техн. наук С. В. Гайдук

Запорожский национальный технический университет, г. Запорожье

ПРОЕКТИРОВАНИЕ ТЕХНОЛОГИЧЕСКИ СВАРИВАЕМОГО ЛИТЕЙНОГО ЖАРОПРОЧНОГО КОРРОЗИОННОСТОЙКОГО НИКЕЛЕВОГО СПЛАВА ДЛЯ ИЗГОТОВЛЕНИЯ ЦЕЛЬНОЛИТЫХ СОПЛОВЫХ АППАРАТОВ

По алгоритму разработанной комплексной расчетно-аналитической методики (КРАМ) спроектирован новый литейный жаропрочный коррозионностойкий никелевый сплав ЖСЗЛС-М для изготовления цельнолитых сопловых аппаратов (СА), обладающий жаропрочностью $\sigma_{40}^{975} = 180-200$ МПа на уровне промышленного жаропрочного некоррозионностойкого сплава ВЖЛ12Э, а также технологической свариваемостью и коррозионной стойкостью на уровне промышленного свариваемого коррозионностойкого сплава ЖСЗЛС.

Ключевые слова: литейные жаропрочные никелевые сплавы (ЖНС), параметры работоспособности, методика (КРАМ), регрессионная модель (РМ), регрессионное уравнение (РУ), служебные свойства, технологическая свариваемость.

Введение

В настоящее время без применения новых жаропрочных материалов и технологий производства из них деталей газотурбинных двигателей (ГТД) невозможно обеспечение повышенного уровня требований к перспективным ГТД. Поэтому одним из перспективных направлений повышения эксплуатационных характеристик ответственных деталей ГТД является получение цельнолитых сопловых аппаратов (СА) из новых литейных коррозионностойких жаропрочных никелевых сплавов (ЖНС), обладающих одновременно технологической свариваемостью и повышенными прочностными характеристиками [1–6].

К наиболее известным литейным ЖНС, широко применяемых для изготовления цельнолитых сопловых аппаратов (СА) различного типа, относятся промышленные сплавы ЖСЗЛС и ВЖЛ12Э. Так, например, сплав ВЖЛ12Э, легированный алюминием в количестве 5,0-5,7 % (по массе), в котором объемная доля γ' - фазы достигает 58-62 %, обладает более высокой термической стабильностью структурно-фазовых характеристик. Это обеспечивает более высокую жаропрочность и лучшее сопротивление высокотемпературной ползучести материала до 1000 °C, по сравнению со сплавом ЖСЗЛС, легированного алюминием в количестве 2,4-3,0 % (по массе), в котором объемная доля у' - фазы составляет 38-42 %. Однако, сплав ВЖЛ12Э не обладает технологической свариваемостью и необходимой коррозионной стойкостью, что делает дальнейшее его применение неперспективным. Указанными характеристиками обладает промышленный сплав ЖСЗЛС. Однако, данный сплав не обладает требуемым уровнем прочностных характеристик, что также ограничивает его применение для перспективных ГТД [6–11].

В связи с вышеизложенным, проектирование и внедрение в промышленность новых литейных коррозионностойких ЖНС, обладающих технологической свариваемостью и повышенным уровнем жаропрочности для изготовления цельнолитых сопловых аппаратов перспективных ГТУ с помощью разработанного экспрессного метода компьютерного проектирования, заменившего малоэффективный эмпирический метод «проб и ошибок», является для Украины актуальным, конкурентным и экономически выгодным направлением.

Постановка задачи

Целью настоящей работы является проектирование с помощью разработанного экспрессного комплексного расчетно-аналитического метода (КРАМ) [12] нового литейного коррозионностойкого ЖНС для изготовления цельнолитых сопловых аппаратов (СА) разных типов, обладающего технологической свариваемостью на уровне промышленного сплава ЖСЗЛС и повышенными прочностными характеристиками на уровне несвариваемого и некоррозионностойкого промышленного сплава ВЖЛ12Э.

Поиск перспективных композиций разрабатываемого сплава проводился по алгоритму компьютерного моделирования методом КРАМ на основе системы легирования промышленного литейного жаропрочного коррозионностойкого никелевого сплава ЖСЗЛС, взятого за прототип, химический состав которого приведен в таблице 1, вместе с составом промышленного жаропрочного сплава ВЖЛ12Э, взятого за аналог.

В выбранную базовую систему легирования сплава ЖСЗЛС (Ni-Co-Cr-Al-Ti-Mo-W-Zr-B-C) вводились новые элементы гафний (Hf) и тантал (Ta), что было обусловлено следующими обстоятельствами:

 во-первых, тантал и гафний способствуют увеличению объемной доли основной упрочняющей ү' - фазы и повышению ее термодинамической стабильности;

- во-вторых, добавки тантала и гафния положительно влияют на морфологию карбидной фазы типа MeC, при этом заметно подавляется механизм образования менее термодинамически устойчивых и неблагоприятных по морфологии карбидов типа Me₂₃C₆, что способствует повышению общего запаса пластичности материала;

- в-третьих, добавки тантала и гафния способствуют значительному повышению температуры полного растворения основной упрочняющей γ' - фазы, а следовательно, увеличению ее остаточного количества при высоких температурах, что способствует повышению характеристик жаропрочности, особенно длительной прочности.

Опираясь на вышеизложенное, были сформулированы исходные условия для проектирования сплава в новой системе многокомпонентного легирования Ni-Co-Cr-Al-Ti-Mo-W-Ta-Hf-Zr-B-C. В таблице 2 приведены основные контролируемые параметры, закладываемые в расчет для многокритериальной оптимизации состава разрабатываемого сплава.

Анализ результатов

В данной работе представлены результаты компьютерного проектирования и экспериментальных исследований нового литейного коррозионностойкого никелевого сплава, предназначенного для изготовления цельнолитых сопловых аппаратов (СА) типа ТВЗ-117 в условиях промышленного предприятия ЗМЗ им. В. И. Омельченко, обладающего повышенными прочностными характеристиками и технологической свариваемостью.

Следует отметить, что в отличие от более жаропрочного промышленного сплава ВЖЛ12Э, содержащего (Cr = 9 %) и не обладающего коррозионной стойкостью, промышленный свариваемый коррозионностойкий сплав ЖС3ЛС содержит в составе большее количество

Таблица 1 – Химический состав промышленных литейных никелевых сплавов ЖСЗЛС и ВЖЛ12Э среднего уровня легирования [6, 10]

Марка		Среднее содержание элементов, % (по массе)										
сплава	С	Cr	Со	Мо	W	Al	Ti	Nb	V	Zr	В	Ni
ЖСЗЛС	0,09	16,0	5,0	4,0	4,0	2,7	2,7	-	-	0,015	0,015	Осн.
ВЖЛ12Э	0,16	9,25	9,0	3,1	1,4	5,4	4,5	0,75	0,75	0,020	0,015	Осн.

Контролируемые	Единица	Уровень
параметры	измерения	параметра
Параметр стабильности, $\Pi_{THV} = Cr / (Cr+Mo+W)$	-	$0,825 \pm 0,025$
Суммарное к-во электронных вакансий в γ - тв. p-pe, $\overline{N}v \gamma$	-	≤ 2,45
Суммарное к-во валентных электронов в γ - тв. p-pe, $Md\gamma$	-	≤ 0,93
Суммарное к-во валентных электронов в сплаве, Md _C	-	$0,980 \pm 0,008$
Параметр дисбаланса системы легирования, ΔE	-	$\pm 0,04$
Суммарное содержание $\sum_{\gamma} = (Mo+W+Ta+Re+Ru)$	%, масс.	\geq 10,0
Суммарное содержание $\sum_{\gamma'} = (Al+Ti+Nb+Ta+Hf)$	%, масс.	$8,0 \le \sum_{\gamma'} \le 9,0$
Температура солидус, <i>t</i> _S	⁰ C	≥ 1280 °C
Температурный интервал гомогенизации, Δt_{FOM}	⁰ C	\geq 20 °C
Количество упрочняющей γ' - фазы (20 °C), $V_{\gamma'}^{20}$	%, масс.	$43 < V_{\gamma'}^{20} < 50$
Размерное несоответствие решеток γ - и γ' - (мисфит), δ	%	0,15–0,45
Предел кратковременной прочности (20 °C), о в 20	МПа	≥ 850
Относительное удлинение (20 °С), δ^{20}	%	\geq 5,0
Длительная прочность $\tau_{PA3P.}$, σ_{180}^{975}	час.	\geq 40
Параметр коррозии, $\Pi_{KC} = \sqrt{Cr}$ (Ti/Al)	-	\geq 3,0
Устранение литейных дефектов на цельнолитых СА методом аргонодуговой сварки (АДС)	Технологичеся уровне сплава	кая свариваемость на ЖСЗЛС

Таблица 2 - Основные параметры для многокритериальной оптимизации состава проектируемого сплава

(Сг = 16%). При этом, сплав ЖСЗЛС не обладает требуемым уровнем жаропрочности, так как количество основной упрочняющей γ' - фазы составляет (38–42)%, что на 20% меньше, чем у сплава ВЖЛ12Э (58–62)%. Поэтому, для многокритериальной оптимизации состава разрабатываемого сплава были сформулированы следующие требования и выбраны основные контролируемые параметры, закладываемые в комплексный расчет:

- выполнение условий структурной стабильности по параметрам: $\Pi_{TITV} = \text{Cr} / (\text{Cr+Mo+W}) = 0,825 \pm 0,025;$ $\overline{N}_{V_{\gamma}} \le 2,45, \ \overline{M}d_{\gamma} \le 0,93, \Delta E = \pm 0,04, \ \overline{M}d_{c} = 0,980 \pm 0,008;$

- обеспечение технологической свариваемости на уровне сплава ЖСЗЛС, взятого за прототип, а также прочностных характеристик, близких к уровню промышленного литейного жаропрочного сплава ВЖЛ12Э, взятого за аналог: контролируемое количество основной упрочняющей γ' - фазы в пределах $43 < V_{\gamma'}^{20} < 50 \%$ (по массе); кратковременная прочность $\sigma_B^{20} \ge 850$ МПа; $\delta^{20} \ge 5,0 \%$ и длительная прочность $\sigma_{180}^{975} \ge 40$ часов;

- обеспечение коррозионной стойкости на уровне промышленного литейного коррозионностойкого сплава ЖСЗЛС, взятого за прототип: параметр коррозии

$$\Pi_{KC} = \sqrt{Cr} (\text{Ti/Al}) \ge 3,0.$$

Указанные в таблице 2 значения характеристик для разрабатываемого сплава, достигались путем многокритериальной оптимизации состава, легированного гафнием и танталом на основе промышленного сплава ЖСЗЛС, взятого за прототип, с помощью алгоритма, разработанного экспресс-метода КРАМ (рис. 1). К концептуально новому подходу в сбалансированности легирования литейных ЖНС можно отнести следующие положения:

- для обеспечения работоспособности разрабаты-

ваемого сплава необходимо сбалансировать общий химический состав сплава: по γ' - образующим элементам в пределах $\sum_{\gamma'} = (Al+Ti+Nb+Ta+Hf) = 8-9\%$ по массе; по элементам упрочняющим γ - твердый раствор $\sum_{\gamma} = (Mo+W+Ta+Re+Ru) \ge 10\%$ по массе; - для обеспечения требуемого уровня прочностных

характеристик необходимо повышение величины мисфит-фактора δ , за счет увеличения размерного несоответствия периодов кристаллических решеток γ' - фазы и γ - твердого раствора, что достигается введением в новую систему легирования разрабатываемого сплава оптимального количества Hf и Ta, которые положительно влияют на величину мисфит-фактора (δ);

- введение в систему легирования проектируемого сплава оптимального количества Hf (0,3 %) и Ta (2,5 %) при снижении Cr с 16 % до 14,5 %, а также повышении в базовой системе легирования сплава ЖСЗЛС нижней границы легирования по Al с 2,5 % до 3,2 % и по W с 3,5 % до 6,2 %, а также снижение верхней границы легирования по Mo с 4,5 % до 2,5 % по массе, обеспечит требуемый уровень технологических и коррозионных характеристик, при повышении температурного уровня прочностных характеристик.

В качестве переменных факторов для исследуемых расчетных составов были выбраны следующие варьируемые легирующие элементы (ЛЭ) – новые вводимые элементы гафний (Hf) и тантал (Та), а также элементы, входящие в состав базового сплава ЖСЗЛС – хром (Cr), вольфрам (W) и молибден (Мо). Диапазон варьирования концентраций исследуемых легирующих элементов в выбранной новой системе легирования Ni-Co-Cr-Al-Ti-Mo-W-Ta-Hf-Zr-B-C задавался в следующих пределах (% по массе): Hf(0,0–0,5) %; Ta (0,0–3,5) %; W (4,0–7,5) %; Mo(1,0–4,0) %; Cr(13,5–16,0) %.

Рис. 1. Алгоритм компьютерного расчета проектируемого сплава ЖСЗЛС-М по разработанной методике КРАМ [12]

Изначально в компьютерном эксперименте проводилась оценка структурной стабильности расчетных составов в заданном диапазоне варьирования указанными элементами по параметрам $\overline{N}_{V_{\gamma}}$, $\overline{M}d_{\gamma}$, $\overline{M}d_c$ и ΔE , как традиционными методами по известным регрессионным уравнениям (РУ) [1–4, 6, 7, 13–20], так и по математическим регрессионным моделям (РМ) в соответствии с алгоритмом (рис. 1) разработанной методики КРАМ [12, 21–24].

Известно [1, 2, 14–18], что величина и знак параметра дисбаланса легирования ДЕ определяет направление реакций в γ - твердом растворе, определяющих склонность жаропрочных никелевых сплавов к выделению того или иного типа ТПУ - фаз. Так, в сплавах с большим отрицательным дисбалансом легирования ($\Delta E < -0.04$) велика вероятность образования гетеротипных соединений: карбидов типа M_6C , α - фаз на основе W и Mo, а также топологически плотноупакованных фаз типа σ -, μ -. Сплавы с большим положительным дисбалансом легирования ($\Delta E > +0.04$) склонны к образованию гомеотипных соединений типа η - фазы на основе Ni₃Ti, Ni₃Nb, Ni₃Ta, а также эвтектических (перитектических) фаз на основе Ni₃Al. Если величина $\Delta E = 0$, то состав сплава считается идеально сбалансированным.

В таблице 3 представлены опытные варианты составов 1–5 проектируемого сплава, вместе с составами промышленных сплавов ЖСЗЛС и ВЖЛ12Э среднего уровня легирования. Композиции составов, которые удовлетворяли условиям: $\Pi_{THY} = 0,80-0,85$; $\overline{N}_{V_{\gamma}} \leq 2,45$ и $\overline{M}d_{\gamma} \leq 0,93$; -0,04 $\leq \Delta E \leq +0,04$ и

 $0,972 \leq \overline{M}d_c \leq 0,988,$ считались фазово-стабильными.

Расчеты параметров структурной стабильности $\overline{N}_{V_{\gamma}}$, $\overline{M}d_{\gamma}$, ΔE , $\overline{M}d_c$ проводились путем перевода химических составов γ - твердых растворов и общих составов в ат. %.

Из таблицы 3 следует, что опытные составы 1–5, а также промышленный сплав ВЖЛ12Э сбалансированы с точки зрения условий дисбаланса легирования $\Delta E = \pm 0,04$. Величина дисбаланса системы легирования ΔE в опытных составах 1–5 находится в пределах от + 0,0111 до +0,0289, что удовлетворяет условиям сба-

лансированного легирования. Следует отметить, что величина дисбаланса системы легирования базового промышленного сплава ЖСЗЛС, взятого за прототип, не удовлетворяет условиям сбалансированного легирования химического состава ($\Delta E = +0,1372$). При этом, сплав ЖСЗЛС технологически свариваемый, так как количество основной упрочняющей γ' - фазы соответствует условию ($V_{\gamma'}^{20} = 40,6 < 50\%$), в отличие от более жаропрочного сплава ВЖЛ12Э ($V_{\gamma'}^{20} = 60,8\%$), не обладающего технологической свариваемостью. Вместе с тем, сплав ЖСЗЛС не обладает требуемым уровнем жаропрочности, так как количество основной упрочняющей γ' - фазы не соответствует условиям (43 < $V_{\gamma'}^{20} < 50\%$).

Далее в соответствии с алгоритмом методики КРАМ (рис. 1) для фазово-стабильных композиций 1–4 рассчитывались группы параметров: структурно-фазовые, физические, температурные, коррозионные и прочностные.

При выборе оптимальной композиции проектируемого сплава для изготовления цельнолитых сопловых аппаратов, обладающего технологической свариваемостью показано, что структурная стабильность является необходимым, но не достаточным условием для достижения требуемых показателей жаропрочности. Необходимыми структурными и физическими факторами, обеспечивающими требуемый уровень жаропрочности в температурном интервале 800–1000 °С, является величина объемной доли γ' - фазы, которая должна находиться в контролируемых пределах (43 < $V_{\gamma'}$ ²⁰ < 50 %) по массе, а также мисфит-фактор, величина которого должна находиться в пределах (0,15 < $\delta \leq 0,45$ %).

С учетом сравнительного анализа полученных данных по группам расчетных характеристик для опытных композиций, путем многокритериальной оптимизации состава по контролируемым параметрам (см. табл. 2), для дальнейших экспериментальных исследований был выбран опытный состав 3 (см. табл. 3), с присвоенным обозначением марки ЖСЗЛС-М.

Экспериментальные исследования осуществлялись на опытных образцах тестовых плавок по заданным параметрам в соответствии с таблицей 2. Химический состав оптимального уровня легирования спроектированного сплава ЖСЗЛС-М приведен в таблице 4.

Таблица 3 – Влияние варьирования легирующими элементами в базовом составе промышленного сплава ЖСЗЛС на параметры структурной стабильности

№ состава	Варьирование элементами %, по массе			варьирование элементами %, К-во, Мисфит, Параметры с по массе % (масс.) %					аметры ст	груктурной стабильности			
0001aba	Hf	Та	Cr	W/Mo	$V_{\gamma'}^{20}$	δ	$\Pi_{T\Pi Y}$	$\overline{N}_{V_{\gamma}}$	$\overline{M}d_{\gamma}$	$\overline{M}d_c$	ΔE		
ЖСЗЛС	-	-	16,0	1,00	40,6	0,171	0,8290	2,2141	0,9100	1,0061	+0,1372		
1	0,1	1,5	15,5	1,83	45,9	0,290	0,8297	2,2597	0,9144	0,9857	+0,0289		
2	0,2	2,0	15,0	2,40	47,2	0,338	0,8309	2,2593	0,9143	0,9850	+0,0250		
3	0,3	2,5	14,5	3,25	48,6	0,377	0,8322	2,2566	0,9141	0,9840	+0,0200		
4	0,4	3,0	14,0	4,67	50,0	0,404	0,8337	2,2510	0,9134	0,9832	+0,0156		
5	0,5	3,5	13,5	7,50	51,3	0,412	0,8352	2,2489	0,9134	0,9824	+0,0111		
ВЖЛ12Э	-	-	9,25	0,45	60,8	0,151	0,8172	2,2287	0,9114	0,9847	+0,0235		

Таблица 4 – Оптимизированный состав спроектированного сплава ЖСЗЛС-М

Сплав		Содержание основных легирующих элементов %, по массе										
ЖСЗЛС-М	С	C Cr Co Al Ti W Mo Ta Hf Zr B Ni										
	0,10	14,5	4,5	3,0	3,0	6,5	2,0	2,5	0,3	0,015	0,015	Осн.

Таблица 5 – Параметры структурной стабильности сплава ЖСЗЛС-М [21]

Сплав	Параметры структурной стабильности									
ЖСЗЛС-М	$\Pi_{T\Pi Y} = 0,825 \pm 0,025$	$\overline{N}v_{\gamma} \leq 2,45$	$Md_{\gamma} \leq 0,93$	$\Delta E = \pm 0.04$	$Md_C = 0,980 \pm 0,008$					
Расчет по РУ	-	2,1945	0,9049	+0,0200	0,9692					
Расчет по РМ	0,8323	2,2566	0,9141	+0,0200	0,9840					

Таблица 6 – Значения структурно-фазовых параметров сплава ЖСЗЛС-М [24]

Тип	Тип Количество фазы, % фазы по массе						CAL	PHAD	-метод	[25]				
фазы	по мас	ce	Расчетный химический состав фаз при 20 °C, % по массе											
	Эксперимент	Расчет	С	Co	Cr	Al	Ti	Mo	W	Та	Hf	Zr	В	Ni
γ-	49,3–48,15	48,94	-	7,95	25,3	0,38	0,06	1,4	5,67	0,14	-	-	-	59,1
γ'-	48,5–49,5	48,6	-	1,67	1,88	5,83	6,12	0,13	4,11	5,01	0,62	0,03	-	74,6
MC	0,95-1,05	1,03	10,1	-	0,63	-	25,8	0,49	9,75	37,9	15,1	0,23	-	-
$M_{23}C_{6}$	1,25-1,30	1,25	5,16	-	71,7	-	-	18,1	1,43	-	-	-	-	-
M_3B_2	Не выявлено	0,18	_	_	20,7	_	_	69,5	1,65	_	_	_	8,15	-

Таблица 7 – Значения физических параметров сплава ЖСЗЛС-М

Сплав	Физические параметры при 20 °С [25]										
ЖСЗЛС-М	ρ	Ε	$\alpha \cdot 10^{6}$	Cp	$r \cdot 10^6$	λ	$a \gamma'$	a _Y	δ		
Ед. измер.	г/см ³	ГПа	1/K	Дж/г•К	Ом·м	Вт/м·К	A°	A°	%		
CALPHAD	8,47	213,25	11,46	0,42	0,71	10,29	3,589	3,575	0,377		

Примечание. ρ – удельная плотность; E – модуль упругости Юнга; α – коэффициент термического расширения; C_P – удельная теплоемкость; r – удельное электросопротивление; λ – теплопроводность; $a_{\gamma'}$ – параметр кристаллической ре-

шетки γ' - фазы; a_{γ} – параметр кристаллической решетки γ - твердого раствора; δ – (мисфит) размерное несоответствие параметров решеток.

Таблица 8 – Температурные параметры сплава ЖСЗЛС-М [12, 22, 28]

Сплав	Температурные параметры, °С										
ЖСЗЛС-М	$\sum \gamma$	t_L	t_S	$\sum_{\gamma'}$	$t_{\Im BT.}$	$t_{H.P.}^{\gamma'}$	$t_{\Pi.P.} \gamma'$	Δt_{KP}	$\Delta t_{\Gamma OM}$	$t_{\Gamma OM}$	
Расчет по РМ	11,0	1370	1286	8,8	1243	845	1176	84	67		
Эксперимент	_	1355	1290	_	1220	-	1160	65	60	1190	

Примечание. t_L – температура ликвидус; t_S – температура солидус; $t_{ЭВТ.}$ – температура локального плавления эвтектической (перитектической) $\gamma - \gamma' - \phi$ азы; $t_{H.P.}^{\gamma'}$, $t_{\Pi.P.}$ – температуры начала и полного (конца) растворения $\gamma' - \phi$ азы; Δt_{KP} – интервал кристаллизации сплава; $t_{\Gamma OM}$ – температурный интервал для проведения гомогенизации; $t_{\Gamma OM}$ – оптимальная температура гомогенизации для сплава.

Для сравнительной оценки склонности к структурной и фазовой нестабильности оптимизированного состава спроектированного сплава ЖСЗЛС-М использовались как традиционные расчетные методы PHACOMP (Nv) [7, 11], New PHACOMP (Md) [13], ΔE -метод [14–18] с их известными регрессионными уравнениями (РУ), так и полученные математические регрессионные модели (РМ) [12, 21–24].

На основе критериев (параметров) работоспособности литейных ЖНС, обоснованных в работах [12, 21–24] были проведены расчеты методом CALPHAD [25] по структурно-фазовым и физическим параметрам [24, 26]. Компьютерное моделирование процесса кристаллизации сплава осуществлялось от температуры жидкого состояния (1400 °C) до комнатной температуры (20 °C) с температурным шагом 10 °C по всему диапазону, что позволило спрогнозировать наиболее вероятный тип, количество и состав выделившихся фаз в процессе кристаллизации.

В таблицах 6 и 7 представлены расчетные значения структурно-фазовых и физических параметров для спроектированного сплава ЖСЗЛС-М оптимального уровня легирования.

В таблице 8 представлены расчетные и экспериментальные значения, которые были получены методом дифференциального термического анализа (ДТА) на установке ВДТА-8М в среде гелия при постоянной скорости нагрева (охлаждения), равной 80 °С/мин [27, 28]. В качестве эталона использовался термически инертный образец чистого вольфрама (W-эталон). Технология калибровки по температурам плавления чистых металлов позволила получить хорошо воспроизводимые результаты, независимо от скорости нагрева.

Комплекс сравнительных экспериментальных исследований проводился на опытных образцах тестовых плавок из разработанного сплава ЖСЗЛС-М, в сравнении с аналогичными образцами промышленных сплавов ЖСЗЛС и ВЖЛ12Э. Опытные образцы из спроектированного сплава ЖСЗЛС-М получали вакуумноиндукционной плавкой на установке марки УППФ-ЗМ по серийной технологии.

Расчетные исследования ВТК – стойкости проводились для состава спроектированного сплава ЖСЗЛС-М (табл. 4) для синтетической золы при температурах испытаний 800, 850, 900 и 950 °С на базе 100 часов по полученным математическим РМ для данной группы параметров [12, 21].

Экспериментальные исследования ВТК- стойкости образцов тестовой плавки сплава ЖСЗЛС-М структурой проводились в синтетической золе при температурах испытаний 800, 850, 900 и 950 °C, в сравнении со сплавами ЖСЗЛС и ВЖЛ12Э по методике, разработанной Никитиным В.И. (ЦКТИ им. И. И. Ползунова), широко применяемой в отрасли [8–10].

Для коррозионных испытаний использовались стандартные цилиндрические образцы диаметром 10 мм и длиной 12 мм, на которые после предварительного обезжиривания, измерения и взвешивания на аналитических весах с точностью ($\pm 0,0005$ г), наносилась синтетическая зола в количестве 15 мг/см², имитирующей продукты сгорания газотурбинного топлива следующего состава: Na₂SO₄ – 66,2 %; Fe₂O₃ – 20,4 %; NiO – 8,3 %; $CaO - 3,3 \%; V_2O_5 - 1,8 \%$ (по массе). Затем исследуемые образцы помещались и выдерживались в печи на платформе из огнеупорного материала в воздушной атмосфере. Испытания при всех температурах проводились в течение 100 часов.

После проведения экспериментов продукты коррозии удалялись по методике водородного восстановления окалины. После проведения коррозионных испытаний образцы исследовались методами весового, металлографического и рентгеноструктурного фазового анализов. Стойкость образцов опытных составов к ВТК оценивалась по средней скорости коррозии \overline{V}_q г/м²с. В таблице 9 представлены расчетные и экспериментальные значения коррозионных параметров спроектированного сплава ЖСЗЛС-М.

Механические испытания проводились на стандартных цилиндрических образцах из разработанного сплава ЖСЗЛС-М на кратковременную и длительную прочность стандартными методами. Испытания на кратковременную прочность проводились при температурах 20, 800, 900 и 1000 °C на разрывных машинах УМЭ-10ТМ и ГСМ-20 (ГОСТ 1497-61, ГОСТ 9651-73, ГОСТ 1497-84). Испытания на длительную прочность проводились при температурах 800, 900, 975 и 1000 °C на машинах АИМА-5-2 и ZTZ 3/3 (ГОСТ 10145-81).

В таблицах 10–12 представлены расчетные и экспериментальные значения объемной доли $V\gamma'$ - фазы и пределов кратковременной и длительной прочности образцов тестовых плавок спроектированного сплава ЖСЗЛС-М.

В таблице 13 представлены сравнительные результаты расчетных и экспериментальных значений характеристик разработанного сплава ЖСЗЛС-М по группам параметров: структурная стабильность, структурно-фазовые, физические, температурные, коррозионные и прочностные характеристики, в сравнении со значениями аналогичных характеристик для промышленных сплавов ЖСЗЛС и ВЖЛ12Э.

Таблица 9 – Средняя скорость коррозии сплава ЖСЗЛС-М [12, 21]

Сплав	Средняя скорость коррозии V_q^{t} , г / м ² с										
MC5/IC-M	$\Pi_{KC} \geq 3,0$	$V_q^{800} \cdot 10^{-3}$	$V_q^{850} \cdot 10^3$	$V_q^{900} \cdot 10^3$	$V_q^{950} \cdot 10^3$	<i>t_{КРИТ}.</i> ,°С					
Расчет по РМ	3,81	0,0483	0,9719	3,5846	6,0234	817					
Эксперимент	_	0,04	0,90	3,50	5,90	~820					

Таблица 10 – Количество у' - фазы в сплаве ЖСЗЛС-М при разных температурах [12, 24]

Сплав	Количество упрочняющей ү' - фазы, % по массе								
жезле-м	$V\gamma'^{20}$	<i>V</i> γ′ ⁸⁰⁰	Vγ′ ⁹⁰⁰	$V\gamma'$ ¹⁰⁰⁰					
Расчет по РМ	48,6	47,5	44,6	33,9					
Эксперимент	48,9	-	-	_					

Таблица 11 – Предел кратковременной прочности сплава ЖСЗЛС-М [12,	24	1]
---	----	------------

Сплав	Предел кратковременной прочности $\sigma_{B}{}^{t}$, МПа								
ЖСЗЛС-М	σ_B^{20}	$\sigma_{\scriptscriptstyle B}^{ 800}$	σ_B^{900}	σ_B^{1000}	δ^{20}	δ^{800}	δ^{900}	δ^{1000}	
Расчет по РМ	979	835	860	502	-	_	-	-	
Эксперимент	930–975	811-836	849-854	500-563	8,8–13,2	3,8–5,3	2,9–5,9	5,0-11,8	

Сплав ЖСЗЛС-М	100- и 1000- часовой предел длительной прочности $\sigma_{ au}^{t}$, МПа					
Messie M	$\sigma_{100}^{\ \ 800}$	σ_{1000}^{800}	σ_{100}^{900}	σ_{1000}^{900}	σ_{100}^{1000}	$\sigma_{1000}{}^{1000}$
Расчет по РМ	480	370	280	180	120	70
Эксперимент	480-500	350-370	280-300	170-190	110-130	70-80

Таблица 12 – Предел длительной прочности сплава ЖСЗЛС-М [12, 24]

Таблица 13 - Сравнительные значения характеристик сплавов

Характеристики параметров по	Значения характеристик сплавов				
группам	Сплав-прототип ЖСЗЛС	Спроектированный сплав ЖСЗЛС-М	Сплав-аналог ВЖЛ12Э		
Структурная стабильность:					
$\Pi_{T\Pi V} = 0,825 \pm 0,025$	0,8290	0,8323	0,8175		
$\overline{N}v\gamma \leq 2,45$	2,2141	2,2566	2,2287		
$\overline{M}d_{\gamma} \leq 0.93$	0,9100	0,9141	0,9114		
$\overline{M}d_C = 0,980 \pm 0,008$	1,0061	0,9840	0,9847		
$\Delta E = \pm 0.04$	+0,1372	+0,0200	+0,0235		
Структурно-фазовые:					
$43 < V \gamma'^{20} < 50 \%$ (по массе)	38,0-42,0	43,5–49,5	58,0-64,0		
Физические:					
ρ, г/см ³	8,33	8,47	7,93		
мисфит 0,15 ≤ δ ≤ 0,45 %	0,171	0,377	0,151		
Температурные:					
t_L ,°C	1354	1355	1334		
$t_{S} \ge 1280, ^{\circ}\mathrm{C}$	1260	1290	1273		
Δt_{KP} , °C	94	65	61		
$t_{\text{ЭВТ.}}, ^{\circ}\text{C}$	1188	1220	1229		
$t_{H.P.}^{\gamma'}, \circ C$	835	850	851		
$t_{\Pi.P.}^{\gamma'}, \circ C$	1090	1160	1222		
$\Delta t_{\Gamma OM}$, °C	98	60	7		
$t_{\Gamma OM}$, °C	$1150^{\circ} \pm 10^{\circ}$	$1190^{\circ} \pm 10^{\circ}$	без ТО или		
			$*10 - (1210^{\circ} \pm 10^{\circ})$		
Коррозионные:	1.00	2.01	2.52		
$\Pi_{KC} \ge 3,0$	4,00	3,81	2,53		
$V_q \times 10^{-3}$, r/m ² ·c	0,04	0,05	0,10		
$V_{q}^{330} \times 10^{-3}$, r/M ² ·C	0,82	0,97	2,98		
$V_{q_{050}}^{900} \times 10^{-3}$, r/m ² ·c	5.0	5,58	9,97		
$V_q^{950} \times 10^{-5}$, $r/m^2 \cdot c$	5,24	5,92	13,12		
$t_{KPMT.}, ^{\circ}\mathrm{C}$	~825°	~820°	~770°		
Кратковременная прочность:	7.10, 770	020 075	010 075		
$\sigma_B^{20} \ge 850 \text{ MHa}$	/40-//0	930-975	910-975		
$\sigma_{B_{000}}$, MIIa	620-630 520, 600	911-950	880-1000		
$σ_{B}$, ΜΠa	520-000	500 5(2	500 590		
$σ_B^{1000}$, ΜΠα	-	500-563	500-580		
Длительная прочность:		480-500	180 520		
$σ_{100}$, ΜΠa	380-400	350-370	480-330		
σ ₁₀₀₀ , ΜΠa	-	280-300	270-305		
$σ_{100}^{900}$, ΜΠα	180-200	170–190	180_205		
σ ₁₀₀₀ ⁹⁰⁰ , МПа	-	110-130	120–145		
σ ₁₀₀ ¹⁰⁰⁰ , МПа	-	70-80	75-90		
σ ₁₀₀₀ ¹⁰⁰⁰ , ΜΠa	-	14 69	68-127		
σ ₁₈₀ ⁹⁷⁵ ≥ 40 часов	-	44-08	00-127		

Для сравнительной оценки свариваемости спроектированного сплава ЖСЗЛС-М с промышленными сплавами ЖСЗЛС и ВЖЛ12Э на рисунке 2 приведена диаграмма, которая предусматривает разделение сплавов на три группы: хорошо, удовлетворительно и плохо свариваемые. Поскольку главную роль в упрочнении жаропрочных никелевых сплавах (ЖНС) играет γ' - фаза, содержание которой в современных сплавах превышает 50 % по массе, то это и определяет сложности при их сварке плавлением, т. е. методом аргонодуговой сварки (АДС) [29].

Рис. 2. Диаграмма для оценки склонности жаропрочных никелевых сплавов к образованию термических трещин (зона I-III соответственно, сплав не склонный, с умеренной склонностью, с высокой склонностью к образованию трещин) [29]

К первой группе относится промышленный литейный свариваемый коррозионностойкий никелевый сплав ЖСЗЛС с содержанием алюминия 2,5–3,0 % при граничном условии 2,7 %, титана 2,5–3,0 % при граничном условии 3,6 %, что соответствует количеству γ' - фазы 38–42 %. Сплав не склонен к образованию термических трещин (рис. 2, зона I).

К первой и второй группам одновременно относится спроектированный на основе промышленного сплава ЖСЗЛС литейный коррозионностойкий сплав ЖСЗЛС-М с повышенной жаропрочностью, обладающий технологической свариваемостью, в котором содержание алюминия 2,5–3,5 % при граничном условии 2,7 %, титана 2,5–3,5 % при граничном условии 3,6 %, что соответствует 43–49 % γ' - фазы, но не более 50 %. Сплав не склонен к образованию термических трещин (рис. 2, зоны I и II).

К третьей группе относится литейный жаропрочный не коррозионностойкий никелевый сплав ВЖЛ12Э с высокой склонностью к образованию термических трещин с содержанием алюминия (5,0–5,7%) при граничном условии 2,7%, титана – (4,2–4,7%), при граничном условии 3,6%, что соответствует количеству γ' - фазы 58–62%, что значительно превышает граничные условия 50% (рис. 2, зона III).

Исследование свариваемости проводилось методом аргонодуговой сварки (АДС) на образцах-темплетах сплавов ВЖЛ12Э, ЖСЗЛС-М и ЖСЗЛС в литом состоянии двумя видами присадочных материалов: опытным сплавом ЖСЗЛС-М (электроды Ø 1,8мм) и серийной присадочной проволокой марки ЭП367.

При внешнем осмотре сварных образцов-темплетов сплава ВЖЛ12Э в ультрафиолетовом свете в зоне сварного шва выявлены поперечные и продольные трещины (рис. 3 *a*), а также групповые точечные свечения пенетранта (рис. 3 *б*).

Рис. 3. Внешний вид сварных швов на образцах-темплетах после сварки литейных жаропрочных сплавов ВЖЛ12Э, ЖСЗЛС-М и ЖСЗЛС: *а* – трещины в сварном шве (сплав ВЖЛ12Э, присадка ЭП367); *б* – групповое свечение в сварном шве (сплав ВЖЛ12Э, присадка ЖСЗЛС-М); *в* – единичные точечные свечения в сварном шве (сплав ЖСЗЛС-М присадка ЭП367); *г* – единичные точечные свечения в сварном шве (сплав ЖСЗЛС-М, присадка ЖСЗЛС-М); *д* – единичные точечные сплав ЖСЗЛС-М, присадка ЖСЗЛС-М, присадка ЭП367); *г* – единичные точечные свечения в сварном шве (сплав ЖСЗЛС-М, присадка ЖСЗЛС-М); *д* – единичные точечные свечения в сварном шве (сплав ЖСЗЛС, присадка ЭП367); *е* – единичные точечные свечения в сварном шве (сплав ЖСЗЛС, присадка ЭП367); *е* – единичные точечные свечения в сварном шве (сплав ЖСЗЛС, присадка ЭП367); *е* – единичные точечные свечения в сварном шве (сплав ЖСЗЛС, присадка ЭП367); *е* – единичные точечные свечения в сварном шве (сплав ЖСЗЛС, присадка ЭП367); *е* – единичные точечные свечения в сварном шве (сплав ЖСЗЛС, присадка ЭП367); *е* – единичные точечные свечения в сварном шве (сплав ЖСЗЛС, присадка ЭП367); *е* – единичные точечные свечения в сварном шве (сплав ЖСЗЛС, присадка ЭП367); *е* – единичные точечные свечения в сварном шве (сплав ЖСЗЛС, присадка ЖСЗЛС-М)

Рис. 4. Технологический процесс изготовления цельнолитого СА ТВЗ-117 аппарата из спроектированного сплава ЖСЗЛС-М в условиях промышленного производства ЗМЗ им. В. И. Омельченко: *a* – внешний вид модельного блока; *δ* – устранение литейных точечных дефектов методом АДС; *в* – устранение микротрещин методом АДС; *г* – цельнолитой СА ТВЗ-117 после устранения дефектов, ТО и ЛЮМконтроля

На образцах разработанного сплава ЖСЗЛС-М и промышленного ЖСЗЛС наблюдались только единичные свечения (рис. 3 *в*, *г* и рис. 3 *д*, *е*).

На образце-темплете из сплава ВЖЛ12Э (рис. 3 *a*) сварной шов сформирован серийным присадочным материалом ЭП367. Ширина сварного шва – составляет ~ 4...6 мм. По сварному шву выявлено две сварочные трещины. Трещины извилистые и окисленные, протяженностью ~ 4...6 мм. На рис. 3 δ представлен внешний вид сварного шва на образце-темплете из сплава ВЖЛ12Э, который сформирован опытным присадочным материалом ЖС3ЛС-М. Ширина сварного шва – составляет ~ 4...6 мм. Видно, что на поверхности образца-темплете из сплава ВЖЛ12Э на поверхности в зоне сварного шва ВЖЛ12Э на поверхности в зоне сварного шва ВЖЛ12Э на поверхности в зоне сварного шва выявлены скопления пор диаметром ~ 0,1...0,5 мм.

Металлографические исследования показали, после литья образцы и отливки цельнолитых СА из разработанного сплава ЖСЗЛС-М имели типичную для литейных ЖНС структуру дендритного строения, в которой первично кристаллизуемой фазой является γ - твердый раствор в виде дендритов (рис. 5). Вследствие микроликвации легирующих элементов в процессе кристаллизации разработанного сплава ЖСЗЛС-М в микроструктуре образцов и отливок СА наблюдается химическая и структурная неоднородность, которая в большей степени устраняется последующей термической обработкой.

Тонкие исследования структуры, показали, что размер и форма частиц основной упрочняющей γ' - фазы значительно различаются в осях дендритов (рис. 6 *a*) и междендритных областях (см. рис. 6 *б*), в последних частицы γ' - фазы в 3–5 раз крупнее, чем в осях дендритов.

После термообработки, проведенной по оптимальному режиму: гомогенизация при 1190 °C \pm 10 °C в течение 4 часов с последующим охлаждением на воздухе, размер и форма частиц γ' - фазы практически не различаются в осях дендритов (рис. 6 *в*) и междендритных областях (рис. 6 *г*).

Путем многокритериальной оптимизации состава на основе расчетных и экспериментальных исследований для заданных условий проектирования, разработанный сплав ЖСЗЛС-М обеспечивает необходимый уровень требуемых параметров и характеристик. Сбалансированный состав с указанными пределами легирования содержит оптимальное количество:

Габлица 14 – Сравнительные технологические характеристики спла

Технологические характеристики	Значения характеристик сплавов				
	Сплав-прототип ЖСЗЛС	Спроектированный сплав	Сплав-аналогВЖЛ12Э		
		ЖСЗЛС-М			
Жидкотекучесть	Аналогичная сплаву ЖС6К	Аналогичная сплаву ЖС6К	Аналогичная сплаву		
			ЖС6К		
Линейная усадка	1,8–2,0	1,9–2,3	2,1–2,5		
Устранение литейных дефектов	Обладает технологической	Обладает технологической	Не обладает		
на цельнолитых СА методом	свариваемостью	свариваемостью	технологической		
АДС			свариваемостью		

Рис. 5. Микроструктура спроектированного сплава ЖСЗЛС-М при разных увеличениях в литом (*a*, *б*) и термообработанном (*в*, *г*) состояниях

Рис. 6. Морфология γ' - фазы в литом (*a*, δ) и термообработанном (*b*, *c*) состояниях сплава: × 10000

Та = $(2,5\pm0,3)$ %; болеенизкое содержание Cr = $(14,5\pm0,3)$ %, Mo = $(2,0\pm0,5)$ % и более высокое содержание W = $(6,5\pm0,3)$ % по массе, чем у промышленного сплава ЖСЗЛС, взятого за прототип; более низкое содержание Al= $(3,3\pm0,3)$ %, чем у сплава ВЖЛ12Э, взятого за аналог.

В условиях промышленного производства АО «Мотор Сич» по прочностным характеристикам аттестованы 5 плавок общим весом 500 кг из разработанного сплава ЖСЗЛС-М. В промышленных условиях предприятия ЗМЗ им. В. И. Омельченко изготовлены опытные цельнолитые сопловые аппараты СА ТВЗ-117. Опытный СА ТВЗ-117 отработал необходимый ресурс на технологическом двигателе с положительным результатом и до настоящего времени продолжает нарабатывать ресурс с целью его увеличения.

Выводы

 Путем многокритериальной оптимизации состава по алгоритму разработанной методики КРАМ спроектирован новый литейный свариваемый коррозионностойкий сплав ЖСЗЛС-М для изготовления цельнолитых СА разных типов, обладающий повышенными прочностными характеристиками на уровне жаропрочного несвариваемого и некоррозионностойкого сплава ВЖЛ12Э, а также обладающего коррозионной стойкостью и технологической свариваемостью на уровне промышленного литейного свариваемого жаропрочного коррозионностойкого никелевого сплава ЖСЗЛС.

2. Разработанный новый сплав ЖСЗЛС-М внедрен в промышленное производство АО «Мотор Сич» для изготовления цельнолитых сопловых аппаратов типа ТВЗ-117 разных ступеней, взамен широко применяемых промышленных сплавов ЖСЗЛС и ВЖЛ12Э.

Список литературы

 Каблов Е. Н. Литейные жаропрочные сплавы. Эффект С.Т. Кишкина : науч.-техн. сб. к 100-летию со дня рождения С. Т. Кишкина / Каблов Е. Н. ; под общ. ред. Е. Н. Каблова. – М. : Наука, 2006. – 272 с.

- Каблов Е. Н. 75 лет. Авиационные материалы. Избранные труды «ВИАМ» 1932-2007 / Каблов Е. Н. // Юбилейный научно-технический сборник под общ. ред. Е. Н. Каблова. – М. : «ВИАМ», 2007. – 439 с.
- Монокристаллы никелевых жаропрочных сплавов / [Р. Е. Шалин, И. Л. Светлов, Е. Б. Качанов и др.]. – М. : Машиностроение, 1997. – 336 с.
- Кишкин С. Т. Литейные жаропрочные сплавы на никелевой основе / Кишкин С. Т., Строганов Г. Б., Логунов А. В. – М. : Машиностроение, 1987. – 116 с.
- Патон Б. Е. Жаропрочность литейных никелевых сплавов и защита их от окисления / [Б. Е. Патон, Г. Б. Строганов, С. Т. Кишкин и др.]. К. : Наук. думка, 1987. 256 с.
- Каблов Е. Н. Литые лопатки газотурбинных двигателей (сплавы, технология, покрытия) / Е. Н. Каблов // Всеросийский научно-исследовательский институт авиационных материалов, Государственный научный центр Российской Федерации. – М. : МИСИС, 2001. – 632 с.
- Симс Ч. Т. Суперсплавы II. Жаропрочные материалы для аэрокосмических и промышленных энергоустановок / Ч. Т. Симс, Н. С. Столофф, У. К. Хагель ; пер. с англ. : в 2-х кн. : под ред. Р. Е. Шалина. – М. : Металлургия, 1995. – 384 с.
- Научные основы легирования жаропрочных никелевых сплавов, стойких против высокотемпературной коррозии (ВТК) / [А. Д. Коваль, С. Б. Беликов, Е. Л. Санчугов, А. Г. Андриенко]. – Запорож. машиностр. ин-т, 1990. – 56 с. – (Препринт / КИЕВ УМК ВО; ЗМИ 1990).
- Никитин В. И. Коррозия и защита лопаток газовых турбин / Никитин В. И. – Л. : Машиностроение, 1987. – 272 с.
- Химушин Ф. Ф. Жаропрочные сплавы / Ф. Ф. Химушин. – М. : Металлургия, 1969. – 749 с.
- Жаропрочные сплавы для газовых турбин. Материалы международной конференции / [Д. Котсорадис, П. Феликс, Х. Фишмайстер и др.]; пер. с англ. под ред. Р. Е. Шалина. – М.: Металлургия, 1981. – 480 с.

- Гайдук С. В. Комплексная расчетно-аналитическая методика для проектирования литейных жаропрочных никелевых сплавов / С. В. Гайдук // Нові матеріали і технології в металургії та машинобудуванні. 2015. № 2. С. 92–103.
- Morinaga M. New PHACOMP and its application to alloy designe / M. Morinaga, N. Yukawa, H. Adachi, H. Ezaki // Supearalloys 1984 (eds. M. Gell et al.), AIME, 1984. – P. 523–532.
- Морозова Г. И. Компенсация дисбаланса легирования жаропрочных никелевых сплавов / Г. И. Морозова // Металловедение и термическая обработка металлов. – 2012. – № 12 (690). – С. 52–56.
- Морозова Г. И. Сбалансированное легирование жаропрочных никелевых сплавов / Г. И. Морозова // Металлы. – 1993. – № 1. – С. 38–41.
- Логунов А. В. Методологические основы автоматизированного проектирования жаропрочных сплавов на никелевой основе Часть – І/ А. В. Логунов, Ю. Н. Шмотин, Д. В. Данилов // Технология металлов. – 2014. – № 5. – С. 3–9.
- Логунов А. В. Методологические основы автоматизированного проектирования жаропрочных сплавов на никелевой основе Часть II / А. В. Логунов, Ю. Н. Шмотин, Д. В. Данилов // Технология металлов. – 2014. – № 6. – С. 3–10.
- Логунов А. В. Методологические основы автоматизированного проектирования жаропрочных сплавов на никелевой основе. Часть III / А. В. Логунов, Ю. Н. Шмотин, Д. В. Данилов // Технология металлов. – 2014. – № 7. – С. 3–11.
- Гайдук С. В. Применение аналитических методов для расчета химического состава γ -, γ' - фаз и параметров фазовой стабильности литейных жаропрочных никелевых сплавов / С. В. Гайдук, Т. В. Тихомирова // Авиационно-космическая техника и технология. – 2015. – № 9 (126). – С. 33–37.
- 20. Гайдук С. В. Получение прогнозирующих математических моделей для расчета термодинамических пара-

метров литейных жаропрочных никелевых сплавов / С. В. Гайдук, В. В. Кононов, В. В. Куренкова // Современная электрометаллургия. – 2015. – № 4. – С. 31–37.

- Гайдук С. В. Математические регрессионные модели для прогнозирующих расчетов коррозионных параметров литейных жаропрочных никелевых сплавов / С. В. Гайдук, В. В. Кононов, В. В. Куренкова // Современная электрометаллургия. – 2016. – № 3. – С. 51–56.
- Гайдук С.В. Применение CALPHAD-метода для расчета количества γ' фазы и прогнозирования длительной прочности литейных жаропрочных никелевых сплавов / С. В. Гайдук, Т. В. Тихомирова // Металлургическая и горнорудная промышленность. 2015. № 6. С. 64–68.
- Saunders N. The Application of CALPHAD Calculations to Ni-Based Superalloys / N. Saunders, M. Fahrmann, C. J. Small // In «Superalloys 2000» eds. K. A. Green, T. M. Pollock and R.D. Kissinger. – TMS. – Warrendale. – 2000. – 803 p.
- Гайдук С. В. Расчет фазового состава литейного жаропрочного коррозионно-стойкого никелевого сплава методом CALPHAD / С. В. Гайдук, В. В. Кононов, В. В. Куренкова // Современная электрометаллургия. – 2015. – № 3. – С. 35–40.
- Вертоградский В. А. Исследование фазовых превращений в сплавах типа ЖС методом ДТА/ В. А. Вертоградский, Т. П. Рыкова // Жаропрочные и жаростойкие стали и сплавы на никелевой основе. – М. : Наука, 1984. – С. 223–227.
- 26. Гайдук С. В. О влиянии тантала на характеристические точки жаропрочных никелевых сплавов / С. Б. Беликов, С. В. Гайдук, В. В. Кононов // Вестник двигателестроения. – 2004. – № 3. – С. 99–102.
- Гайдук С. В. Сравнительные исследования свариваемости литейных жаропрочных никелевых сплавов / С. В. Гайдук, И. А. Петрик, В. В. Кононов // Нові матеріали і технології в металургії та машинобудуванні. – 2015. – № 1. – С. 82–88.

Одержано 21.11.2016

Гайдук С.В. Проектування технологічно зварюваного ливарного жароміцного корозійностійкого нікелевого сплаву для виготовлення цільнолитих соплових апаратів

За алгоритмом розробленої комплексної розрахунково-аналітичної методики (КРАМ) спроектований новий ливарний жароміцний корозійностійкий нікелевий сплав ЖСЗЛС-М для виготовлення цільнолитих соплових апаратів (СА), що має жароміцність $\sigma_{40}^{975} = 180-200$ МПа на рівні промислового жароміцного некорозійностійкого сплаву ВЖЛ12Е, а також технологічною зварюваністю і корозійною стійкістю на рівні промислового зварюваного корозійностійкого сплаву ЖСЗЛС.

Ключові слова: ливарні жароміцні нікелеві сплави (ЖНС), параметри працездатності, методика (КРАМ), регресійна модель (РМ), регресійне рівняння (РУ), службові властивості, технологічна зварюваність.

Gayduk S. High-temperature operative-weldable corrosion-resistant nickel-base cast alloy engineering applied for cast in block nozzle units production

In accordance with the developed algorithm of a comprehensive analytical solution method (CASM), a modern high-temperature corrosion-resistant nickel-base cast alloy $\mathcal{KC3JIC}$ -M has been designed for the cast in block nozzle units (NU) production, exhibiting high-temperature strength $\sigma_{40}^{975} = 180-200$ MPa at the same level as the industrial high-temperature noncorrosion-resistant alloy B $\mathcal{KJ112}$, as well as its operative weldability and corrosion-resistance are equal to the industrial corrosion-resistant weldable alloy $\mathcal{KC3JIC}$ values.

Key words: high-temperature nickel-base cast alloys (HTNA), performance parameters, CASM-technique, regression model (RM), regression equation (RE), service properties, operative weldability.