Канд. техн. наук В. В. Нетребко

Запорожский национальный технический университет, г. Запорожье

ОСОБЕННОСТИ ГИДРОАБРАЗИВНОГО ИЗНАШИВАНИЯ ВЫСОКОХРОМИСТЫХ ЧУГУНОВ

Целью работы являлся анализ процессов гидроабразивного изнашивания высокохромистых чугунов в нейтральной среде. Установлено, что в условиях низкоэнергетического воздействия абразива на поверхность изделий эффект Ребиндера является определяющим фактором. Наиболее сильные разрушения происходили на границах зерен, дендритов и зонах раздела фаз, выходящих на поверхность. Проведение отжига при 690...720 °C значительно увеличивало изнашивание. Нормализация от 1050 °C незначительно повышала стойкость чугуна при гидроабразивном изнашивании.

Ключевые слова: чугун, гидроабразивное изнашивание, термообработка, структура.

Высокохромистые чугуны применяются для получения литых корпусов грунтовых насосов, шнеков, лопастей смесителей и других деталей, эксплуатируемых в условиях гидроабразивного изнашивания [1–4]. Повышение срока службы быстроизнашиваемых деталей является важной и актуальной задачей.

Характер и интенсивность износа при гидроабразивном изнашивании определяется физико-химическими процессами, протекающими на поверхности изнашивания. Любая трибосистема имеет конкретные особенности контактирования, которые определяются природой контактирующих материалов, состоянием поверхности контакта и условиями взаимодействия [5]. Наличие жидкой среды вызывает появление эффекта Ребиндера [6, 7], заключающегося в облегчении пластического деформирования, а также возникновении гидродинамического клина на границах зерен и поверхностных дефектах. В работе [8] было установлено, что скорость изнашивания не зависит от макротвердости и концентрации конкретного химического элемента, а определяется, в большей степени, микроструктурой и синергизмом компонентов сплава.

Материал и методики исследований

Исследовали чугуны, содержащие Cr, Mn, Ni и % Si (см. табл. 1). Выплавку опытных составов производили в индукционной печи с основной футеровкой. В сухие песчано-глинистые формы отливали образцы диаметром 30 мм, длиной 400 мм из которых были изготовлены образцы диаметром 25 мм и высотой 10 мм.

Отполированные образцы испытывали в литом и термически обработанном состоянии: после отжига при 690 и 720 °C с выдержкой в течение 9 часов и нормализации от 1050 °C с выдержкой 1,5 и 4,5 часа. Микротвердость структурных составляющих измеряли на приборе ПМТ-3 и Duramin-1, макротвердость сплава – на твердомере Роквелла. Анализ структуры выполняли на оптических микроскопах Sigeta MM-700 МИМ-8 и микроскопе РЕМ 106И.

No	Химический состав, масс. %				
• .=	С	Cr	Mn	Ni	Si
1	1,09	18,33	1,99	1,28	0,90
2	3,54	21,07	1,35	0,13	0,96
3	3,01	29,68	0,72	1,95	0,92
4	2,55	11,91	3,80	2,76	1,08
5	2,93	18,39	0,77	1,39	1,31
6	2,94	18,51	1,64	1,29	1,02
7	2,12	22,06	4,82	0,16	0,98
8	3,26	18,44	5,71	0,14	1,23
9	3,33	20,23	5,53	2,69	1,12
10	2,48	23,41	1,51	1,88	0,99

Таблица 1 - Составы исследуемых чугунов

С целью снижения методологической погрешности все образцы испытывали одновременно. Абразивное изнашивание проводили в среде, состоящей из электрокорунда нормального марки 14А, зернистость F12 по ТУ У 26.80-00222226-016:2006 (25 кг) и питьевой воды (6л) при постоянном перемешивании в бетономешалке в течение 124,5 часов. Износ оценивали по потере массы, отнесенной к площади и времени (г/м²ч).

Анализ полученных результатов

Микроструктура чугунов состояла из карбидов (9...36%) и различной металлической основы (ферритной, аустенитной и мартенситной). Образцы в исходном состоянии представлены на рис. 1*а* после изнашивания на рис. 2.

Рис. 1. Образцы чугунов в исходном состоянии с различной маркировкой

© В. В. Нетребко, 2017

Рис. 2. Образцы чугунов состава 3 (вверху) и состав 4 (внизу) после изнашивания:

- а-исходное состояние;
- б после отжига при 690 °С с выдержкой 9 часов;
- *в* после отжига при 720 °С с выдержкой 9 часов;
- г после нормализации от 1050 °С с выдержкой 1,5 часа;
- *∂* после нормализации от 1050 °С с выдержкой 4,5 часа

Удельные потери массы образцов после гидроабразивного изнашивания представлены в таблице 2. Анализ таблицы 2 показал, что в литом состоянии наименьшие потери массы имели чугуны составов 1 и 3, а наибольшие – состава 9.

Отжиг при 690 °С ухудшил износостойкость у всех марок чугунов. У чугунов составов 3 и 7 отжиг способствовал увеличению износа более чем в два раза.

Отжиг при 720 °С не повлиял на износостойкость чугунов составов 1 и 7, а у остальных чугунов ухудшение было менее значимым, чем после отжига при 690 °С. Наихудшей износостойкостью обладал чугун состава 9 с максимальным количеством марганца и никеля.

Таблица 2 – Удельная величина потерь массы после изнашивания, г/м²ч

	Вид термической обработки				
N⁰	Без ТО	Отжиг		Нормализация	
		690 °C	720 °C	1,5 ч	4,5 ч
1	3,18	3,93	3,15	2,80	2,73
2	4,43	5,92	5,5	3,82	3,65
3	3,02	6,84	3,48	2,8	2,75
4	3,86	7,01	4,65	3,93	3,58
5	3,98	7,79	5,74	3,08	2,98
6	4,11	6,75	5,14	3,27	3,05
7	3,49	7,09	3,51	3,28	2,73
8	4,52	6,34	4,81	4,18	4,52
9	5,36	9,25	5,52	5,61	5,69
10	3,41	5,60	3,76	2,83	2,80

Нормализация при выдержке в исследуемом диапазоне повысила износостойкость практически у всех марок чугунов, за исключением составов 8 и 9. Увеличение времени выдержки при нормализации с 1,5 до 4,5 часов незначительно улучшило показатели износостойкости. Наименьшие потери массы имели чугуны составов 1, 3, 7, 10. У чугунов этих составов нормализация повысила износостойкость по сравнению с исходным состоянием на 9...22 %. Для высокохромистых чугунов составов 1 и 3 (с ферритной основой) проведение нормализации малоэффективно.

Анализ показателей макротвердости чугунов и микротвердости фаз, приведенный в таблицах 3, 4 и 5, не выявил однозначных зависимостей между твердостью и гидроабразивной стойкостью.

Чугун состава 1 имеет гидроабразивную износостойкость на уровне состава 3 при значительно меньшей макротвердости и микротвердости фаз и меньшей концентрации хрома. Анализ взаимосвязи между химическим составом чугунов и их гидроабразивной стойкостью также не дал однозначного ответа.

Очевидно, что такое поведение чугунов в условиях гидроабразивного изнашивания можно объяснить поверхностными явлениями и эффектом Ребиндера, а также другими факторами [6–8]. Изучение поверхности изнашивания показало, что имеются характерные повреждения, похожие по своему виду на коррозионное разрушение (см. рис. 3).

№	Вид термической обработки					
	Без ТО	Отжиг		Нормализация		
		690 °C	720 °C	1,5 ч	4,5 ч	
1	34,1	43,2	51,3	36,7	44,5	
2	51,5	44,0	38,7	61,7	62,5	
3	57,7	50,1	48,5	58,8	60,7	
4	38,9	44,0	55,7	37,2	38,0	
5	51,2	43,5	37,7	58,2	61,0	
6	50,8	46,0	46,5	53,2	58,0	
7	43,5	47,0	50,0	45,0	43,2	
8	50,5	50,2	53,1	46,8	49,3	
9	47,0	56,1	55,0	43,8	43,3	
10	44,7	42,7	48,0	43,2	45,0	

Таблица 3 – Твердость чугунов, HRC

Таблица 4 – Микротвердость основы чугунов, HV₅₀

№	Без ТО	Отжиг		Нормализация от 1050 °C.
		690 °C	720 °C	выдержка 4,5 ч
1	433	668	435	539
2	473	484	420	998
3	517	587	538	1032
4	330	509	588	658
5	449	455	368	896
6	519	504	445	774
7	423	498	523	479
8	480	710	740	600
9	458	693	657	617
10	449	581	514	397

Поверхность образцов со значительным износом имела ручьевые канавки, возникшие в результате перемещения абразива (см. рис. 3*a*). Поверхность образцов с минимальным износом была ровной, со следами точечных повреждений, в которых накапливался мелкодисперсный абразив (см. рис. 3*б*). Кроме этих видов разрушения, наблюдали фрагментарные выкрашивания в области столбчатых дендритов и центральных областях образцов (см. рис. 3*в*). Поверхностная зона мелких кристаллов имела меньшие повреждения (см. рис. 2 и рис. 3*в*).

Nº	Без ТО	Отжиг		Нормализация от 1050 °C,
		690 °C	720 °C	выдержка 4,5 ч
1	1190	1140	1130	1081
2	1297	1188	1385	1343
3	1492	1402	1519	2046
4	1440	1440	987	903
5	1004	1039	1104	1407
6	1082	901	1037	1246
7	1247	1141	1161	921
8	1262	1265	1442	1040
9	1382	1814	1576	1410
10	1185	1128	915	1270

Таблица 5 – Микротвердость карбидной фазы, HV₅₀

Рис. 3. Поверхность образцов после гидроабразивного изнашивания:

- а с радиальными канавками;
- б-с точечными и язвенными повреждениями;
- в с фрагментарными разрушениями

При сопоставлении микроструктуры образцов и характера разрушений (рис. 4) видно, что разрушения начинались на границах зерен и границе раздела фаз карбид – основа, а также вдоль дендритной структуры. Разрушенные границы зерен и дендритов являлись направляющими (желобами), по которым двигался мелкодисперсный абразив, образуя канавки.

Рис. 4. Микроструктура чугунов (сверху) и поверхность после изнашивания (снизу), × 100

Общим для всех мест разрушения является наличие химической неоднородности, возникшее во время кристаллизации или термической обработки (образование дендритов, формирование карбидной фазы и перераспределение элементов), а также наличие большого количества дефектов кристаллического строения (границы зерен, дендритов и когерентность связей карбидов с основой).

Исходя из этого, можно объяснить негативное влияние отжига при 690 °C, вызывающего стабилизацию карбидной фазы (обеднение хромом границ раздела фаз), увеличивающего химическую неоднородность и уменьшающего когерентность связи карбида с основой.

Возникновение участков металлической основы, содержащей хром менее 11 % (отрицательный потенциал) и более 12 % (положительный потенциал), вызывало возникновение электрохимической коррозии в среде электролита (pH = 8,0), которая усиливалась разветвленной поверхностью резания.

Повышение температуры отжига до 720 °C увеличило скорость диффузионных процессов, способствовало выравниванию химического состава, что привело к повышению гидроабразивной стойкости.

Нормализация гомогенизировала чугуны и снизила поверхностную энергию системы, что препятствовало появлению электрохимической коррозии, у большинства исследуемых чугунов и значительно повысила их гидроабразивную стойкость.

Минимальный износ имели чугуны с однородной ферритной основой, легированной хромом, никелем и кремнием (составы 1 и 3) в литом и нормализованном состоянии, а также хромомарганцевые чугуны (составы 7 и 10) с мартенситной основой после нормализации.

Выводы

 Физико-химические процессы, протекающие на поверхности изнашивания, а также эффект Ребиндера являются определяющими факторами разрушения в условиях низкоэнергетического воздействия абразива в жидкой среде. Наиболее сильному воздействию подвергаются границы зерен, дендритов и зоны раздела фаз, выходящие на поверхность.

 Отжиг при 690...720 °С ухудшил гидроабразивную стойкость чугунов.

Высокохромистые чугуны, дополнительно легированные Mn, Ni и Si, имели наилучшую гидроабразивную стойкость после нормализации от 1050 °C с выдержкой в течение 1,5...4,5 часа. Проведение нормализации чугунов с ферритной основой нецелесообразно.

Список литературы

- Гарбер М. Е. Износостойкие белые чугуны / М. Е. Гарбер. – М. : Машиностроение, 2010. – 280 с.
- 2. Брыков М. Н. Износостойкость сталей и чугунов при абразивном изнашивании : Научное издание /

М. Н. Брыков, В. Г. Ефременко, А. В. Ефременко. – Херсон : Гринь Д. С., 2014. – 364 с.

- Структурно и неструктурно чувствительные свойства хромистых чугунов / А. А. Кириллов, В. Д. Белов, Е. В. Рожкова и др. // Черные металлы. – 2007. – Сентябрь. – С. 7–10.
- Analysis of the Structure and Abrasive Wear Resistance of White Cast Iron With Precipitates of Carbides / D. Kopycicski, M. Kawalec, A. Szczĸsny and etc. // Archives of Metallurgy and Materials. Institute of metallurgy and materials science of Polish academy of sciences. - 2013. - Vol. 58, Issue 3. - P. 973-976.
- Марчук В. Є. Зносостійкість дискретних поверхонь в умовах гідроабразивного зношування / В. Є. Марчук // Проблеми тертя та зношування : наук.-техн. рб. – К. :

Вид-во НАУ «НАУ-друк», 2011. –Вип. 55. – С. 182– 188.

- Ребиндер П. А. Поверхностные явления в твердых телах в процессах их деформации и разрушения / П. А. Ребиндер, Е. Д. Щукин // Успехи физических наук. – 1972. – Т. 108, № 9. – С. 3–42.
- Лихтман В. И. Влияние поверхностно-активной на процессы деформации металлов / В. И. Лихтман, П. А. Ребиндер, Г. В. Карпенко. – М. : Изд. Академии наук СССР, 1954. – 224 с.
- Scholl, Milton R. Development of intermetallic-hardened abrasion-resistant weld hardfacing alloys (1986) / Milton R. Scholl // Scholar Archive, 1991. – 267p. <u>http:// digitalcommons.ohsu.edu/etd/91</u>

Одержано 16.12.2018

Нетребко В.В. Особливості гідроабразивного зношування високохромистих чавунів

Метою роботи був аналіз процесів гідроабразивного зношування високохромистих чавунів у нейтральному середовищі. Виявлено, що в умовах низькоенергетичного впливу абразиву на поверхню виробів ефект Ребіндера має вирішальне значення. Найбільших руйнувань зазнали межі зерен, дендритів та зони розділу фаз, які виходили на поверхню. Відпал при 690...720 °C значно збільшував зношування. Нормалізація від 1050 °C незначно підвищила стійкість чавунів при гідроабразивному зношуванні.

Ключові слова: чавун, гідроабразивне зношування, термообробка, структура.

Netrebko V. Peculiarities of hydroabrasive wearing of high-chromium cast irons

The purpose of the work was to analyze the processes of hydroabrasive wear of high-chromium cast iron in a neutral environment. It was found that in the conditions of low-energy impact of abrasive on the surface of details, the Rebinder's effect is a determining factor. The greatest destructions have been on the boundaries of grains, dendrites and zones of phase separation, which were on the surface. Annealing at 690...720 ° C significantly increased wear. Normalization from 1050 ° C slightly increased the resistance of cast iron to hydroabrasive wear.

Keywords: cast iron, hydroabrasive wear, heat treatment, structure.