УДК 669.187.26

Канд. техн. наук Билоник И. М.<sup>1</sup>, Давидченко С. В.<sup>2</sup>, Билоник Д. И.<sup>1</sup>, канд. техн. наук Шумикин С. А.<sup>1</sup>, Кононенко А. В.<sup>1</sup>,

<sup>1</sup> Запорожский национальный технический университет <sup>2</sup>ЧАО «Днепроспецсталь»; г. Запорожье

# ПОЛУЧЕНИЕ ЗАГОТОВОК ЗАПОРНОГО КЛАПАНА ИЗ СТАЛИ 08X18H10T МЕТОДОМ ЭЛЕКТРОШЛАКОВОЙ ВЫПЛАВКИ С ДОПОЛНИТЕЛЬНЫМ ПОДОГРЕВОМ РАСХОДУЕМОГО ЭЛЕКТРОДА (ЭШВ+ДП)

**Цель работы.** Получить методом электрошлаковой выплавки с дополнительным плазменно-дуговым подогревом расходуемого электрода (ЭШВ+ДП) заготовку клапана из стали 08X18H10T. Определить параметры процесса и исследовать качество литого металла заготовки клапана.

**Методы исследования.** Электронная фиксация технологических параметров плавки (ток, напряжение, скорость подачи электрода, расход электроэнергии). Макро- и микроанализ структуры отливки. Металлографический метод определения объемной доли неметаллических включений. Механические испытания.

**Полученные результаты.** Установлено, что дополнительный плазменно-дуговой подогрев расходуемого электрода во время электрошлаковой выплавки позволяет увеличить допустимую скорость наплавления слитка до 20%, снизить при этом удельный расход электроэнергии на 15–17%. Качество металла полученной заготовки клапана полнстью отвечает требованиям ГОСТ 5632-72, ГОСТ 25054-81.

**Научная новизна.** Впервые показана возможность повышения технико-экономических показателей электрошлакового процесса при сохранении свойств качества металла. Способ ЭШВ+ДП защищен авторским свидетельством.

**Практическое значение.** На основании приведенных в статье данных можно значительно расширить сферу применения технологии ЭШВ+ДП для получения широкой номенклатуры деталей.

**Ключевые слова:** электрошлаковая выплавка, плазменно-дуговой нагрев, макроструктура, микроструктура, механические свойства.

#### Введение

Электрошлаковое литье нашло широкое применение в машиностроении для изготовления ответственных деталей. В частности, литые заготовки коленчатых валов судовых дизелей [1], бандажи цементных печей [2], валки станов горячей и холодной прокатки [3]. Особенно следует отметить применение электрошлакового литья для получения из нержавеющих сталей деталей запорной арматуры для атомных станций [4]. Это свидетельствует о высокой технологичности электрошлакового процесса и высоком качестве литого металла.

Процесс электрошлакового литья или же электрошлаковой выплавки постоянно совершенствуется. Появляются новые технологические решения, обеспечивающие повышение как технико-экономической эффективности данного процесса, так и улучшение качества литого металла. Одним из таких решений является подогрев расходуемого электрода во время плавки дополнительным источником тепла [5, 6]. Как показано в работе [6], при помощи дополнительного подогрева расходуемого электрода можно изменять характер

оплавления электродного торца. В частности, формировать зоны дополнительного каплеобразования.

### Постановка задачи

Опробовать технологию ЭШВ+ДП для получения заготовок запорного клапана из стали 08X18H10T. Исследовать возможность повышения скорости наплавления слитка и снижения удельного расхода электроэнергии.

Основная часть исследований.

Объектом исследования выбрали заготовку запорного клапана из стали 08X16H10T, представляющую по форме фасонную отливку. Высота заготовки переходника — 290 мм, диаметр верхней части — 150 мм, нижней — 225 мм, высота конусообразной части — 100 мм, масса заготовки — 48 кг. Для выплавки заготовок по опытной технологии электрошлаковую установку ЭШП-0,25 дополнительно оборудовали плазменно-дуговым нагревателем. Мощность подогрева определяли по методике работы [6]. Плавки проводили с использованием флюса АНФ-6. Расходуемым электродом служили штан-

© Билоник И. М., Давидченко С. В., Билоник Д. И., Шумикин С. А., Кононенко А. В., 2018 DOI 10.15588/1607-6885-2018-2-5

ги диаметром 10 см из стали 08X18H10Т следующего химического состава: углерод -0.08%; кремний -0.70%; марганец -1.35%; никель -10.40%; хром -17.66%; титан -0.53%; сера -0.009%; фосфор -0.0028%.

Параметры плавок ЭШВ с дополнительным плазменно-дуговым подогревом расходуемого электрода и ЭШВ по серийной технологии приведены в таблице 1. Установлено, что при мощности дополнительного подогрева 16 кВА скорость наплавления отливки увеличилась на (15–17) % по сравнению с серийной технологией.

**Таблица 1**— Параметры плавок ЭШВ + ДП по серийной технологии при выплавке заготовок запорного клапана

| Вариант технологии | Мощность<br>на шлаковой<br>ванне, кВА | Мощность<br>подогрева,<br>кВА | Скорость наплавления слитка, 10 <sup>-2</sup> кг/с |
|--------------------|---------------------------------------|-------------------------------|----------------------------------------------------|
| ЭШВ + ДП           | 90                                    | 16                            | 1,80                                               |
| ЭШВ                | 90                                    | _                             | 1,55                                               |

Заготовки, полученные методом ЭШВ + ДП, показаны на рис. 1. Состояние поверхности опытных отливок удовлетворительное. Поверхность достаточно гладкая, пережимы, гофры, наплывы или же какие-либо другие поверхностные дефекты отсутствовали.

Химический состав заготовок, полученных методом ЭШВ + ДП, полностью соответствует требованиям ТУ 108-668-77 (табл. 2).

Макроструктуру заготовок изучали на продольных темплетах, вырезанных в плоскости, проходящей через центр отливок. На рис. 2 представлена типичная макроструктура отливки, полученной методом ЭШВ + ДП. Как видно, по всему сечению темплета литой металл плотный и однородный, дефекты ликвационного и усадочного происхождения отсутствуют.

Столбчатые кристаллы имеют радиально-осевую направленность с углом наклона (0,61–0,69) рад. В результате сравнительных исследований неоднородности было установлено, что изменение твердости по радиусу опытных заготовок не превышает (4–7) %. В отливках серийной технологии твердость снижается от края к центру более значительно по сравнению с опытным металлом (табл. 3).



Рис. 1. Заготовки запорного клапана из стали 08X18H10T, полученные методом ЭШВ+ДП



Рис. 2. Макроструктура заготовки запорного клапана из стали 08X18H10T, полученного методом ЭШВ + ДП

**Таблица 2** – Химический состав заготовок запорного клапана из стали 08X18H10T, полученных методом ЭШВ+ДП

| Объект<br>исследования      | Место<br>отбора проб | Содержание химических элементов, % |      |      |       |             |            |       |             |
|-----------------------------|----------------------|------------------------------------|------|------|-------|-------------|------------|-------|-------------|
|                             |                      | С                                  | Si   | Mn   | Ni    | Cr          | Ti         | S     | P           |
| Заготовка<br>клапана        | Верх<br>отливки      | 0,06                               | 0,62 | 1,32 | 10,42 | 17,33       | 0,44       | 0,006 | 0,023       |
|                             | Середина<br>отливки  | 0,07                               | 0,60 | 1,30 | 10,38 | 17,28       | 0,45       | 0,005 | 0,023       |
|                             | Низ отливки          | 0,07                               | 0,63 | 1,35 | 10,40 | 17,30       | 0,48       | 0,005 | 0,023       |
| Требования<br>ТУ 108-668-77 | _                    | н.б.                               | н.б. | 1,0  | 9,0   | <u>17,0</u> | <u>5·C</u> | н.б.  | <u>н.б.</u> |
|                             |                      | 0,08                               | 0,8  | 2,0  | 11,0  | 19,0        | 0,60       | 0,02  | 0,035       |

**Таблица 3** – Твердость литых заготовок клапанов из стали 08X18H10T, полученных методом ЭШВ + ДП и ЭШВ

| Вариант    | Твердость (НВ) литой стали |                  |               |  |  |
|------------|----------------------------|------------------|---------------|--|--|
| технологии | Край отливки               | Половина радиуса | Центр отливки |  |  |
| ЭШВ + ДП   | 150                        | 147              | 141           |  |  |
| ЭШВ        | 150                        | 143              | 135           |  |  |

Величина первичного зерна в опытных отливках на (12–15) % меньше, чем в серийных. Серные отпечатки, снятые с продольных темплетов опытных заготовок, свидетельствуют о низком содержании серы и её равномерном распределении по объему полученных заготовок запорных клапанов.

Микронеоднородность заготовок клапанов оценивали по количеству и характеру распределения  $\delta$  - феррита в литой стали. Установлено, что в серийных отливках количество  $\delta$  - феррита возрастает от края к центру слитка в 2,5–2,6 раза и, соответственно, составляет: на краю отливки – (0,9–1,1) %, на половине радиуса – (1,5–1,7) %, на оси слитка – (2,3–2,9) %. В опытных заготовках в краевой зоне количество  $\delta$  - феррита было практически таким же. Однако на половине радиуса и в центре заготовки содержание  $\delta$  - феррита уменьшилось, соответственно, на (12–15) % и (14–18) %.

Таким образом применение дополнительного плазменно-дугового подогрева расходуемого электрода при ЭШВ заготовок деталей из стали 08X18H10T обеспечивает снижение микронеоднородности литого металла.

Результаты сравнительного исследования загрязненности неметаллическими включениями заготовок клапанов приведены в таблице 4.

Из представленных данных следует, что в опытных отливках несколько снижается содержание оксидных включений, а объемная доля сульфидов не превышает уровня серийного металла. Содержание нитридных включений в заготовках клапанов, полученных методом ЭШВ + ДП, было на (15-18)% выше, чем в серийных отливках.

Проведенные испытания показали, что механические свойства стали 08X16H10T отливок клапанов, полученных методом ЭШВ + ДП, полностью отвечают требованиям ТУ 108-668-77 (табл. 5).

Предел прочности и предел текучести опытных заготовок клапанов увеличился на (20–40) МПа по сравнению с серийным металлом. Характеристики пластичности (  $\delta$  и  $\psi$  ) соответствовали уровню серийного металла.

#### Выводы

Таким образом по сравнению с серийными отливками, заготовки запорных клапанов из стали 08X18H10T, полученные методом ЭШВ + ДП, обладают более высокой однородностью и прочностью, что в конечном итоге способствует повышению надежности и долговечности конкретного изделия. При этом, дополнительный плазменно-дуговой подогрев расходуемого электрода увеличивает производительность плавки на (14–16) %.

**Таблица 4** – Содержание неметаллических включений в заготовках клапанов из стали 08X18H10T, полученных методом ЭШВ + ДП и ЭШВ

| Вариант    | Содержание неметаллических включений, объёмный процент |               |               |               |  |
|------------|--------------------------------------------------------|---------------|---------------|---------------|--|
| технологии | Оксиды                                                 | Сульфиды      | Нитриды       | Всего         |  |
| ЭШВ + ДП   | 0,0050-0,0061                                          | 0,0018-0,0023 | 0,0238-0,0246 | 0,0306-0,0339 |  |
| ЭШВ        | 0,0062-0,0069                                          | 0,0018-0,0020 | 0,0202-0,0219 | 0,0282-0,0308 |  |

**Таблица 5** – Механические свойства металла заготовок клапанов из стали 08X18H10T, полученных ЭШВ + ДП и ЭШВ

| Вариант технологии | Механические свойства  |                               |       |       |  |
|--------------------|------------------------|-------------------------------|-------|-------|--|
|                    | $\sigma_m$ , M $\Pi$ A | $\sigma_{_{\it g}}$ M $\Pi$ A | δ,%   | ψ,%   |  |
| ЭШВ + ДП           | 280–310                | 490–520                       | 52-60 | 56–67 |  |
| ЭШВ                | 270–290                | 460–480                       | 54–60 | 52–65 |  |
| ТУ 108-668-77      | 195                    | 450                           | 40    | 55    |  |

#### Списоклитературы

- 1. Электрошлаковое литье в производстве коленчатых валов крупных судовых дизелей / Б. И. Медовар, Г. А. Бойко, Л. В. Попов и др. // Проблемы специальной металлургии. 1979. Вып. 11. С. 41—43.
- Электрошлаковый металл / Под ред. Б. Е. Патона,
  Б. И. Медовара К.: Наукова думка, 1981. 680 с.
- Электрошлаковая технология в тяжелом и металлургическом машиностроении / Б. Е. Патон, Б. И. Медовар, В. Н. Саенко и др. // Электрошлакоавя технология. – К.,1983. – С. 61–69.
- Рабинович В. И. Электрошлаковая выплавка заготовок энергетической арматуры для АЭС / В. И. Рабинович,

- Ю. Н. Кригер, О. С. Карпов // Энергомашиностроение.  $1984. N_{\!\! D}\, 9. C.\, 25$ —26.
- А. с. № 1028075 СССР, МКИ<sup>3</sup> В22Д 15/00. Способ электрошлакового переплава / В. С. Попов, Б. С. Сперанский, В. Н. Гордиенко, И. М. Билоник, Н. В. Стеценко.
- Билоник И. М. Влияние дополнительного плазменнодугового подогрева расходуемого электрода на характер каплеобразования на электродном торце при элетрошлаковом переплаве / И. М. Билоник, Н. А. Калинин, П. К. Штанько // Вісник СевНТУ : сб. наук. праць. – Вип. 137/2013. – Серія «Механіка, енергетіка, екологія». – Севастополь, 2013.

Одержано 08.02.2019

Білоник І.М., Давидченко С. В., Білоник Д. І., Шумикін С. О., Кононенко А. В. Отримання заготовок запірного клапана зі сталі 08Х18Н10Т методом електрошлакової виплавки з додатковим підігрівом електрода, що витрачається (ЕШВ + ДП)

**Мета роботи.** Отримати методом електрошлакової виплавки з додатковим плазмово-дуговим підігрівом електрода, що витрачається, (ЕШВ + ДП) заготовку клапана зі сталі 08Х18Н10Т. Визначити параметри процесу і дослідити якість литого металу заготовки клапана.

**Методи дослідження.** Електронна фіксація технологічних параметрів плавки (струм, напруга, швидкість подачі електрода, витрата електроенергії). Макро- і мікроаналіз структури виливки. Металографічний метод визначення об'ємної частки неметалічних включень. Механічні випробування.

**Отримані результати.** Встановлено, що додатковий плазмово-дуговий підігрів електрода,що витрачається, під час електрошлакової виплавки дозволяє збільшити допустиму швидкість наплавлення злитка до 20 %, знизити при цьому питому витрату електроенергії на 15–17 %. Якість металу отриманої заготовки клапана повністю відповідає вимогам ГОСТ 5632-72, ГОСТ 25054-81.

**Наукова новизна.** Вперше показана можливість підвищення техніко-економічних показників електрошлакового процесу при збереженні властивостей якості металу. Спосіб ЕШВ + ДП захищений авторським свідоцтвом.

**Практичне значення.** На підставі наведених у статті даних можна значно розширити сферу застосування технології ЕШВ + ДП для отримання широкої номенклатури деталей.

**Ключові слова:** електрошлакова виплавка, плазмово-дуговий нагрів, макроструктура, мікроструктура, механічні властивості.

## Bilonik I., Davidchenco S., Bilonik D., Shumikin S., Kononov A. Receiving billets of shut valve from steel 08X18H10T method of electroslag smelting with additional heating of the consumable electrode (ESS+AH)

**Purpose.** To obtain by the method of electroslag smelting with additional plasma-arc heating of the consumable electrode (ESS + AH) billet of valve from steel 08X18H10T. Determine the process parameters and examine the quality of the cast metal billets of valve.

**Research methods.** Electronic fixation of melting technological parameters (current, voltage, electrode feed rate, power consumption). Macro and microanalysis of the casting structure. Metallographic method for determining the volume fraction of non-metallic inclusions. Mechanical testing.

**Results.** It was established that additional plasma-arc heating of the consumable electrode during electroslag smelting can increase the allowable fusion rate of the ingot to 20%, while reducing the specific power consumption by 15–17%. The quality of the metal obtained billet of valve fully meets the requirements of GOST 5632-72, GOST 25054-81.

**Scientific novelty.** For the first time, the possibility of improving the technical and economic indicators of the electroslag process while maintaining the quality properties of the metal is shown. The way ESS + AH is protected by copyright certificate.

**Practical meaning.** Based on the data provided in the article, it is possible significantly expand the scope of application of ESS + AH technology to obtain a wide range of parts.

**Key words:** electroslag smelting, plasma-arc heating, macrostructure, microstructure, mechanical properties.