УДК 621.831

Кравцов В. В., д-р техн. наук Качан А. Я.

Запорожский национальный технический университет, г. Запорожье

ВЛИЯНИЕ ДВОЙНОЙ ХИМИКО-ТЕРМИЧЕСКОЙ ОБРАБОТКИ НА КАЧЕСТВО ИЗГОТОВЛЕНИЯ ЗУБЧАТЫХ КОЛЕС ВЕРТОЛЕТНОЙ ТРАНСМИССИИ

Цель работы. Оценка влияния последовательных этапов химико-термической обработки (цементация + + азотирование) на качество изготовления зубчатых колес из стали 16ХЗНВФМБ-Ш главных вертолетных редукторов.

Методы исследования. Микроструктура образцов зубчатых колес из стали 16ХЗНВФМБ-Ш главных вертолетных редукторов исследовалась на оптическом металлографическом микроскопе модели «Axio Observer. Dlm» (фирма «Karl Zeis», производитель Германия), оснащенного камерой ARTCAM-300MI (3M pixels progressive USB2/0 COLOR CMOS CAMERA); съемка образцов выполнена в отраженном свете по методам светлого поля.

Механические свойства образцов зубчатых колес из стали 16ХЗНВФМБ-Ш после XTO определялись по стандартной методике при испытании на растяжение по ГОСТ 1497-84 на машине INSTRON-8801.

Полученные результаты. На основе результатов экспериментальных исследований, показано влияние двойной химико-термической обработки на микротвердость, микроструктуру и механические свойства зубчатых колес из стали 16ХЗНВФМБ-Ш главных вертолетных редукторов.

Научная новизна. В данной работе экспериментально установлено влияние последовательных этапов (цементация + азотирование) химико-термической обработки на параметры качества контактных поверхностей зубчатых колес из стали 16Х3НВФМБ-Ш главных вертолетных редукторов.

Практическая ценность. На основании полученных результатов эксперимента возможно разработать рациональный технологический процесс изготовления зубчатых колес из стали 16ХЗНВФМБ-Ш главных вертолетных редукторов, обеспечивающий высокие эксплуатационные характеристики.

Ключевые слова: главный вертолетный редуктор, зубчатые колеса, двойная химико-термическая обработка, микроструктура цементированного слоя, микроструктура азотированного слоя, механические свойства зубчатых колес, экспериментальные данные.

Введение

Изготовление зубчатых колес – многооперационный технологический процесс, где операции горячей пластической деформации и механической обработки сочетаются с операциями термической обработки заготовок и химико-термической обработки (XTO) деталей. Зубчатые колеса вертолетных редукторов относятся к числу наиболее сложных в технологическом отношении деталей. При их изготовлении число операций и переходов достигает нескольких десятков. Сложная и ажурная конфигурация зубчатых колес, минимальные припуски существенно усложняют процессы термической и механической обработки, требуют тщательного их выполнения [1].

Работоспособность зубчатых колес в решающей степени зависит от точности изготовления и качества поверхностного слоя зубьев, которое должно быть высоким, чтобы в условиях действия больших контактных напряжений, сил трения и контактных температур рабочие поверхности могли противостоять повреждению и разрушению усталости [2, 3]. Среди современных упрочняющих технологий, обеспечивающих требуемые эксплуатационные характеристики зубчатых колес, центральное место принадлежит химико-термической обработке.

1 Анализ исследований и публикаций

Химико-термическая обработка (ХТО) представляет собой совокупность процессов теплового и химического воздействия, направленных на изменение химического состава и структуры поверхностного слоя зубъев колес для повышения их эксплуатационных свойств. При ХТО зубчатые колеса помещают в нагретую до высоких температур химически активную среду, в которой происходит диффузионное насыщение их поверхности одними или несколькими химическими элементами. В результате поверхностного легирования в сочетании с предварительной или последующей термической обработкой формируют диффузионные слои, обладающие комплексом высоких механических свойств.

©Кравцов В. В., Качан А. Я., 2018 DOI 10.15588/1607-6885-2018-2-6 ISSN 1607-6885 Нові матеріали і технології в металургії та машинобудуванні №2, 2018 ХТО включает несколько способов. Для эффективного упрочнения поверхности зубьев колес используют цементацию, высокотемпературную нитроцементацию и азотирование. Каждый из этих способов имеет несколько технологических вариантов, отличающихся насыщающей средой, оборудованием, технологическими возможностями, экономичностью и экологической чистотой. Влияние этих факторов обуславливает различный механизм формирования диффузионного слоя при цементации (нитроцементации) и азотировании, его химический состав, структуру и свойства [2], [4–6].

2 Цель работы

Цель работы – оценка влияния последовательных этапов химико-термической обработки (цементация + азотирование) на качество изготовления зубчатых колес из стали 16ХЗНВФМБ-Ш главных вертолетных редукторов.

3 Объект исследования

В качестве объекта исследования, для последовательной химико-термической обработки, приняты образцы зубчатых колес главных вертолетных редукторов из стали 16ХЗНВФМБ-Ш.

4 Методы исследования

Для оценки качества материала проведена химикотермическая обработка трёх образцов из стали 16Х3НВФМБ-Ш по следующим режимам:

образец № 1:

- . цементация (930 °C) 16 Ч;
- отжиг (660 °C) 7 ч;
- нормализация (935 °C) 3 ч 30 мин;
- отпуск (650 °С) 4 ч;
- закалка (915 °C) 2 ч 15 мин;
- холод (-60 °С) 1 ч 10 мин;
- отпуск (300 °С) 3 ч 15 мин.

образец № 2: после цикла обработки, как для образца № 1 + азотирование при 540 °С – 2 ч 30 мин.

образец № 3: после цикла обработки, как для образца № 2 + повторное азотирование при 550 °C – 2 ч. Микроструктура образцов исследовалась на оптическом металлографическом микроскопе «Axio Observer. Dlm» (фирма «Karl Zeis», Германия), оснащенного камерой ARTCAM-300MI (3M pixels progressive USB2/0 COLOR CMOS CAMERA); съемка выполнена в отраженном свете по методам светлого поля.

Механические свойства образцов после XTO определялись по стандартной методике при испытании на растяжение по ГОСТ 1497-84 на машине INSTRON-8801.

5 Результаты исследований и их обсуждение

Результаты определения микротвердости по сечению диффузионного слоя со стороны поверхностей, подвергавшихся цементации и цементации с азотированием, представлены в табл. 1.

Примечание. Значения твердости, представленные в таблице 1, в единицах измерения (HRN15) и (HRC), получены на основании таблиц перевода значений прямого измерения методом Виккерса HV1.

Из приведенных результатов микротвердости (HV1) следует, что эффективная глубина диффузионного слоя, соответствующая 500HV, составляет:

- образец № 1 2,2 мм;
- образец № 2 1,9 мм;
- образец № 3 1,55 мм.

На образце № 1 глубина цементированного слоя составляет ~ 2,17 мм (рис. 1 *a*).

Микроструктура цементированного слоя представляет собой мартенсит и карбиды, выделившиеся в виде сетки (рис. 1*б*, *в*), микроструктура сердцевины – мартенсит отпуска.

На образцах № 2 и № 3 глубина упроченного слоя составляет 2,220 мм (рис. 2*a*, 3*a*).

Микроструктура упроченного слоя представляет собой мартенсит + карбиды в виде грубой сетки и карбонитриды. С поверхности имеется ξ - фаза толщиной ~ 0,004 мм на образце № 2 и ~ 0,010 мм на образце № 3 (рис. 26, e; 36, e), микроструктура сердцевины – мартенсит отпуска.

№ образца	Расстояние от поверхности, мм										
		0,2	0,4	0,6	0,8	1,0	1,2	1,4	1,6	1,8	2,0
	Микротвердость, HV1 (HRC, HRN15)										
Образец № 1	HV1	754	757	749	727	716	692	656	623	561	527
	HRN15	91,0	91,0	91,0	90,5	90,5	90,0	89,0	88,5	86,5	85,5
	HRC	62,0	62,0	62,0	61,0	60,5	59,5	58,0	56,5	53,0	51,0
Образец № 2	HV1	610	599	593	592	579	575	558	537	524	498
	HRN15	88,0	88,0	87,5	87,5	87,5	87,5	87,0	86,0	85,5	85,0
	HRC	55,5	55,0	54,5	54,5	54,0	53,5	52,5	51,5	50,5	49,0
Образец № 3	HV1	578	572	567	564	552	537	518	496	-	-
	HRN15	87,0	87,0	87,0	87,0	86,5	86,0	85,5	84,5	-	-
	HRC	54,0	53,5	53,0	53,0	52,5	51,5	50,0	48,5	_	_

Таблица 1 – Микротвердость по сечению диффузионного слоя

Рис. 2. Микроструктура цементированного слоя образца № 2

Рис. 3. Микроструктура цементированного слоя образца № 3

Примечание. Качество азотирования, проведенного после цементации на образцах № 2 и № 3, оценивали со стороны поверхности, не подвергавшейся цементации. В результате установлено, что качество азотирования удовлетворительное: - глубина азотированного слоя на образце № 2 составляет ~ 0,10 мм, на образце № 3 ~ 0,13 мм; - твердость азотированного слоя на образце № 2 – 89 HRN15, на образце № 3 – 90-91 HRN15.

- микроструктура азотированного слоя представляет собой азотистый мартенсит отпуска и единичные тонкие избыточные нитриды; толщина ξ - фазы на образцах № 2 и № 3 составляет ~0,002 и ~0,005 мм, соответственно (рис. 4, 5).

Дополнительно определены механические свойства стали 16Х3НВФМБ-Ш после двойной термообработки (цементация + азотирование). Испытания проводились на хордовых образцах, вырезанных из зубчатого колеса. Результаты испытаний представлены в табл. 2.

 $\delta \times 500$

 $a \times 100$

 $\delta \times 500$

Рис. 5. Микроструктура азотированного слоя образца № 3

Таблица 2 – Механические свойства образцов из стали 16ХЗНВФМБ-Ш после двойной термообработки (цементация + азотирование)

№ образца	Режим термообработки	$\sigma_{\scriptscriptstyle B},$ МПа	σ _{0,2} , МПа	δ, %	Ψ, %	КСИ, МПа	
Хордовый образец из стали 16Х3НВФМБ-Ш	- цементация (930 °C) – 3 ч - отжиг (660 °C) – 7 ч	1291,6	1127	12,4	51,1	45,4	
	- закалка (915 °C) – 2 ч 30 мин	не менее					
Нормы по 27ТУ-135	- холод (-60 °C) – 1 ч 10 мин - отпуск (300 °C) – 3 ч 15 мин - азотирование (540 °C) – 2 ч 30 мин	1274	1127	6,5	35	41,2	

Выводы

Качество материала образцов № 1, 2, 3 детали колесо зубчатое, после цементации (образец № 1) и после цементации и азотирования (образцы № 2 и № 3) по твердости поверхности, твердости сердцевины и глубине упрочненного слоя соответствуют нормам.

Следует отметить, что после выполнения двойной химико-термической обработки (цементация + азотирование) имеет место снижение твердости упрочненного слоя при прямом измерении поверхности под нагрузкой 1500H (HRC), а также микротвердости (HV1) по сечению упрочненного слоя, на расстоянии ~ 0,2 мм от поверхности, в сравнении с твердостью и микротвердостью цементированного слоя, вследствие того, что азотирование выполняется при температуре 540 °C, превышающей температуру отпуска после цементации (300 °C).

Микроструктура цементированного слоя на образцах № 1, 2, 3 неудовлетворительная.

Механические свойства основного материала колеса зубчатого после двойной химико-термической обработки (цементация + азотирование) соответствуют нормам 27ТУ-135.

Список литературы

- Елисеев Ю. С. Научные основы совершенствования технологии изготовления зубчатых колес ГТД / Елисеев Ю. С. // Двигатель. – 2001. – № 4 (16). – С. 10–13.
- Производство зубчатых колес газотурбинных двигателей : Произв.-практ. издание / Ю. С. Елисеев, В. В. Крымов, И. П. Нежурин и др. ; под ред. Ю. С. Елисеева. – М. : Высш. шк., 2001. – 493 с.
- Фомина Л. П. Повышение триботехнических свойств зубчатых колес газотурбинного двигателя путем совершенствования технологии их изготовления / Л. П. Фо-

мина // Технология металлов – 2004. – № 8. – С. 43–47.

- Райцес В. Б. Химико-термическая обработка деталей / В. Б. Райцес, В. М. Литвин. – К.: Техника, 1980. – 152 с.
- Цырлин Э. С. Химико-термическая обработка деталей машин / Э. С. Цырлин. – М. : НИИмаш, 1980. – 80 с.
- Современные технологии повышения долговечности цилиндрических зубчатых колес / А. А. Пермяков, А. Н. Шелковой, А. А. Клочко, А. А. Охрименко // Прогресивна техніка, технологія та інженерна освіта: матеріали XVIII між народної науково-технічної конференції 29 червня 1 липня 2017 р. Київ, 2017. С. 348–350.

Одержано 28.01.2019

Кравцов В.В., Качан О.Я. Вплив подвійної хіміко-термічної обробки на якість виготовлення зубчатих коліс вертолітної трансмісії

Мета роботи. Оцінка впливу послідовних етапів хіміко-термічної обробки (цементація + азотування) на якість виготовлення зубчатих коліс зі сталі 16ХЗНВФМБ-Ш головних вертолітних редукторів.

Методи дослідження. Мікроструктура зразків зубчатих коліс із сталі 16ХЗНВФМБ-Ш головних вертольотних редукторів досліджувалась на оптичному металографічному мікроскопі моделі «Axio Observer. Dlm» (фірма «Karl Zeis», виробник Німеччина), оснащеного камерою ARTCAM-300MI (3M pixels progressive USB2/0 COLOR CMOS CAMERA); зйомка зразків виконана у відбитому світлі за методами світлого поля.

Механічні властивості зразків зубчатих коліс зі сталі 16ХЗНВФМБ-Ш після ХТО визначалися за стандартною методикою при випробуванні на розтягування за ГОСТ 1497-84 на машині INSTRON-8801.

Отримані результати. На основі результатів експериментальних досліджень, показано вплив подвійної хіміко-термічної обробки на мікротвердість, мікроструктуру та механічні властивості зубчатих коліс зі сталі 16ХЗНВФМБ-Ш головних вертолітних редукторів.

Наукова новизна. Експериментально встановлено влив послідовних етапів (цементація + азотування) хіміко-термічної обробки на параметри якості контактних поверхонь зубчатих коліс зі сталі 16Х3НВФМБ-Ш головних вертолітних редукторів.

Практична цінність. На основі отриманих результатів експерименту можливо розробити раціональний технологічний процес виготовлення зубчатих коліс зі сталі 16ХЗНВФМБ-Ш головних вертолітних редукторів, який забезпечує високі експлуатаційні характеристики.

Ключові слова: головний вертолітний редуктор, зубчаті колеса, подвійна хіміко-термічна обробка;,мікроструктура цементованого шару, мікроструктура азотованого шару, механічні властивості зубчатих коліс, експериментальні дані.

Kravtsov V., Kachan A. Influence of double chemical-thermal treatment on the production quality of gear wheels of helicopter transmission

Purpose. Influence estimation of consecutive stages of chemical-thermal treatment (cementation + nitriding) on the manufacture quality of gear wheels from steel 16X3HBΦMБ-Ш of helicopter main gearboxes.

Research methods. Models microstructure of gear wheels from steel 16X3HBΦMБ-Ш of helicopter main gearboxes had been researched on the optical metallographic microscope «Axio Observer. Dlm» («Karl Zeis», made in Germany), equipped with ARTCAM-300MI camera (3M pixels progressive USB2/0 COLOR CMOS CAMERA); shooting of models is executed in the reflected light by methods of the light field.

Mechanical properties of gear wheels from steel 16X3HBΦME-III were determined after chemical-thermal treatment according to standard procedure by tensile test according to GOST 1497-84 on the INSTRON-8801 machine.

Results. Based on the results of experimental studies, it is shown the influence of double chemical-thermal treatment on microhardness, microstructure and mechanical properties of gear wheels from steel $16X3HB\Phi MF-III$ of helicopter main gearboxes.

Scientific novelty. It was experimentally established the influence of consecutive stages (cementation + nitriding) of chemical-thermal treatment on parameters of contact surfaces quality of gear wheels from steel $16X3HB\Phi MF-III$ of helicopter main gearboxes.

Practical value. On the basis of the received results of experiment it is possible to develop the rational processing of manufacturing of gear wheels from steel $16X3HB\Phi ME-III$ of helicopter main gearboxes providing high operational characteristics.

Key words: helicopter main gearbox, gear wheels, double chemical-thermal treatment, microstructure of the cemented layer, microstructure of the nitrated layer, mechanical properties of gear wheels, experimental data.