УДК 539.3 А. О. Сяський, Н. В. Шинкарчук Рівненський державний гуманітарний університет

КУСКОВО-ОДНОРІДНА ОРТОТРОПНА ПЛАСТИНКА З ЕЛІПТИЧНИМ РОЗРІЗОМ ЗА УМОВИ КОНТАКТУВАННЯ ЙОГО БЕРЕГІВ

Досліджено напружено-деформований стан на контурі еліптичного отвору ортотропної пластинки, який частково спаяний з абсолютно жорстким диском, за умови контактування берегів розрізу. Система сингулярних інтегральних рівнянь задачі розв'язується методом механічних квадратур і колокації. Розглянуто випадок повного змикання берегів розрізу.

Ключові слова: ортотропна пластинка, напружений стан, контактні зусилля, жорсткий диск, сингулярні рівняння.

Вступ. Кусково-однорідні пластинки, як тонкостінні елементи конструкцій, широко використовуються в інженерній практиці. Їх міцність великою мірою залежить від наявності на лінії розділу матеріалів дефектів типу тріщин (розрізів), що виникли в процесі виготовлення або експлуатації пластинчастої конструкції. З'ясування питання, чи береги дефекту при дії зовнішнього навантаження розходяться, чи контактують, має важливе значення з погляду забезпечення непроникності або герметичності конструкції.

Дослідження контактної взаємодії берегів розрізів по дузі кола в кусково-однорідних ізотропних і ортотропних пластинках, які перебувають в умовах узагальненого плоского напруженого стану, зведенням до задачі лінійного спряження проведено в роботах [1-3].

Подаючи компоненти вектора зміщення контурних точок інтегральними залежностями від компонентів тензора напружень з логарифмічними ядрами, в [4] побудовано систему сингулярних інтегральних рівнянь для кусково-однорідної ізотропної пластинки з криволінійним розрізом на лінії розмежування матеріалів за умови контактування його берегів при її силовому навантаженні в центрі диска. Аналогічна задача для ортотропної пластинки розглянута в [5].

Пропонується новий підхід до розрахунку напруженого стану в кусково-однорідній ортотропній пластинці з еліптичним розрізом, береги якого перебувають у частковому або повному гладкому контакті, при її навантаженні на нескінченності.

Постановка задачі. Розглядається пластинчаста конструкція, що містить нескінченну ортотропну пластинку товщиною 2h з еліптичним отвором, в який без зазору і натягу вставлено абсолютно жорсткий диск. Середня площина пластинки віднесена до системи прямокутних (x, y) і полярних (r, δ) координат з полюсом в центрі отвору (рис. 1). Вважається, що головні осі ортотропії матеріалу пластинки співпадають з координатними осями і осями еліпса.

На ділянці $\Gamma_3 = [\pi + \alpha_1^*, \pi + \beta_1^*]$ контуру отвору Γ диск спаяний з пластинкою. Розглянута конструкція перебуває в умовах однорідного напруженого стану на нескінченності, створеного рівномірно розподіленими зусиллями p і q, які діють в напрямках координатних осей. Зовнішнє навантаження на диск відсутнє.

Внаслідок дії зовнішнього навантаження контур пластинки на ділянці $\Gamma_1 = [\alpha_0^*, \beta_0^*]$ вступає в контакт з контуром диска. На ділянках $\Gamma_2 = [\beta_0^*, \pi + \alpha_1^*] \cup [\pi + \beta_1^*, 2\pi + \alpha_0^*]$ контакт між пластинкою і диском відсутній. Тут $\alpha_0^*, \beta_0^*, \pi + \alpha_1^*, \pi + \beta_1^*$ – полярні кути початку та кінця ділянок контакту та спаю.

Рис. 1. Розрахункова схема задачі

Розв'язок задачі полягає у визначенні компонентів напружено-деформованого стану на контурі отвору пластинки а також встановленні умов, що накладаються на зовнішнє навантаження та величину і положення зони спаю, при виконанні яких контакт між пластинкою і диском буде суцільним.

Інтегральні рівняння задачі. Співвідношення для компонентів вектора зміщення контурних точок пластинки (u, v) та жорсткого диска (u^{0}, v^{0}) при заданому навантаженні запишемо наступним чином [6]

$$2E_{x}hu = (\beta_{1}\beta_{2} - \nu_{x})\int_{\alpha_{0}}^{\lambda} f_{1}'(t)dt - \cos\lambda[(\beta_{1} + \beta_{2})bp + ap + \beta_{1}\beta_{2}aq] + \\ + \frac{\beta_{1} + \beta_{2}}{\pi} \left[\int_{\alpha_{0}}^{\beta_{0}} f_{2}'(t)\ln\left|\sin\frac{\lambda - t}{2}\right|dt + \int_{\pi + \alpha_{1}}^{\pi + \beta_{1}} f_{2}'(t)\ln\left|\sin\frac{\lambda - t}{2}\right|dt\right] + c_{1};$$

$$2E_{x}hv = (\beta_{1}\beta_{2} - \nu_{x})\int_{\alpha_{0}}^{\lambda} f_{2}'(t)dt + \beta_{1}\beta_{2}\sin\lambda[(\beta_{1} + \beta_{2})aq + bp + \beta_{1}\beta_{2}bq] - \\ \frac{\beta_{1}\beta_{2}(\beta_{1} + \beta_{2})}{\pi} \left[\int_{\alpha_{0}}^{\beta_{0}} f_{1}'(t)\ln\left|\sin\frac{\lambda - t}{2}\right|dt + \int_{\pi + \alpha_{1}}^{\pi + \beta_{1}} f_{1}'(t)\ln\left|\sin\frac{\lambda - t}{2}\right|dt\right] + c_{2}, \quad \lambda \in \gamma;$$

$$(u^{\partial} + iv^{\partial}) = U_{0} + iV_{0},$$
(1)

де E_x , v_x – модуль Юнга і коефіцієнт Пуассона матеріалу пластини в напрямку осі Ox; β_1 , β_2 – корені характеристичного рівняння [7]; c_1, c_2 – сталі;

$$f_{1} + if_{2} = i \int_{\alpha_{0}}^{\alpha} (T_{\rho}^{*} + iS_{\rho\lambda}^{*})e^{it}dt; \quad T_{\rho}^{*} + iS_{\rho\lambda}^{*} = (T_{\rho} + iS_{\rho\lambda})\omega'(\sigma); \quad \sigma = e^{i\lambda};$$

$$z = \omega(\xi) = R_{0}\left(\xi + \frac{\varepsilon}{\xi}\right) -$$
(2)

функція [7], яка здійснює конформне відображення зовнішності одиничного кола $\gamma(\rho_0 = 1)$ в площині $\xi = \rho e^{i\lambda}$ на область, яку займає пластинка в площині z = x + iy; $R_0 = \frac{a+b}{2} = 1$; $\varepsilon = \frac{a-b}{a+b}$; $a = 1+\varepsilon$, $b = 1-\varepsilon$ – півосі еліпса; ε – ексцентриситет еліпса; (ρ, λ) – полярна © А. О. Сяський, Н. В. Шинкарчук система координат в площині ξ ; $i = \sqrt{-1}$; α_0 , β_0 , α_1 , β_1 – образи кутів α_0^* , β_0^* , α_1^* , β_1^* при відображенні (2); T_{ρ} , $S_{\rho\lambda}$ – нормальні та дотичні зусилля на контурі Γ ; U_0, V_0 – компоненти жорсткого зміщення диска.

Граничні умови задачі в зоні контакту при відсутності сил тертя запишуться у вигляді [8]

 $a(\lambda)u + b(\lambda)v = a(\lambda)U_0 + b(\lambda)V_0; \quad S_{\rho\lambda} = 0, \quad \lambda \in \gamma_1,$ (3)

а в зоні спаю запишуться так

$$u = U_0; \quad v = V_0, \quad \lambda \in \gamma_3. \tag{4}$$

Тут γ_1, γ_3 – образи ділянок Γ_1, Γ_3 при відображенні (2);

$$a(\lambda)+ib(\lambda)=(\alpha+i\beta)e^{i\lambda}; \quad \alpha+i\beta=\omega'(\sigma); \quad \alpha=1-\varepsilon\cos 2\lambda; \quad \beta=\varepsilon\sin 2\lambda$$

Підставляючи (1) в граничні умови (3), (4), одержимо систему чотирьох сингулярних інтегральних рівнянь з логарифмічними ядрами для визначення функцій f'_1 , f'_2

$$a(\lambda)\left[\left(\beta_{1}\beta_{2}-\nu_{x}\right)\int_{\alpha_{0}}^{\lambda}f_{1}'(t)dt+\frac{\beta_{1}+\beta_{2}}{\pi}\left[\int_{\alpha_{0}}^{\beta_{0}}f_{2}'(t)\ln\left|\sin\frac{\lambda-t}{2}\right|dt+\int_{\pi+\alpha_{1}}^{\pi+\beta_{1}}f_{2}'(t)\ln\left|\sin\frac{\lambda-t}{2}\right|dt\right]-\\-\cos\lambda\left[\left(\beta_{1}+\beta_{2}\right)bp+ap+\beta_{1}\beta_{2}aq\right]\right]+b(\lambda)\left[\left(\beta_{1}\beta_{2}-\nu_{x}\right)\int_{\alpha_{0}}^{\lambda}f_{2}'(t)dt+\beta_{1}\beta_{2}\sin\lambda\times\right]\\\times\left[\left(\beta_{1}+\beta_{2}\right)aq+bp+\beta_{1}\beta_{2}bq\right]-\frac{(\beta_{1}+\beta_{2})\beta_{1}\beta_{2}}{\pi}\left[\int_{\alpha_{0}}^{\beta_{0}}f_{1}'(t)\ln\left|\sin\frac{\lambda-t}{2}\right|dt+\right]+\int_{\alpha_{0}}^{\beta_{0}}f_{1}'(t)\ln\left|\sin\frac{\lambda-t}{2}\right|dt\right]=a(\lambda)\widetilde{c}_{1}+b(\lambda)\widetilde{c}_{2},\quad f_{1}'(\lambda)a(\lambda)+f_{2}'(\lambda)b(\lambda)=0,\quad \lambda\in\gamma_{1};$$
(5)

$$\left(\beta_{1}\beta_{2}-\nu_{x}\right)\left[\int_{\alpha_{0}}^{\beta_{0}}f_{1}'(t)dt+\int_{\pi+\alpha_{1}}^{\lambda}f_{1}'(t)dt\right]+\frac{\beta_{1}+\beta_{2}}{\pi}\left[\int_{\alpha_{0}}^{\beta_{0}}f_{2}'(t)\ln\left|\sin\frac{\lambda-t}{2}\right|dt+\\ +\int_{\pi+\alpha_{1}}^{\pi+\beta_{1}}f_{2}'(t)\ln\left|\sin\frac{\lambda-t}{2}\right|dt\right]=\widetilde{c}_{1}+\cos\lambda\left[(\beta_{1}+\beta_{2})bp+ap+\beta_{1}\beta_{2}aq\right];$$

$$\left(\beta_{1}\beta_{2}-\nu_{x}\right)\left[\int_{\alpha_{0}}^{\beta_{0}}f_{2}'(t)dt+\int_{\pi+\alpha_{1}}^{\lambda}f_{2}'(t)dt\right]-\frac{\beta_{1}\beta_{2}(\beta_{1}+\beta_{2})}{\pi}\left[\int_{\alpha_{0}}^{\beta_{0}}f_{1}'(t)\ln\left|\sin\frac{\lambda-t}{2}\right|dt+\\ +\int_{\pi+\alpha_{1}}^{\pi+\beta_{1}}f_{1}'(t)\ln\left|\sin\frac{\lambda-t}{2}\right|dt\right]=\widetilde{c}_{2}-\beta_{1}\beta_{2}\sin\lambda\left[(\beta_{1}+\beta_{2})aq+bp+\beta_{1}\beta_{2}bq\right], \quad \lambda\in\gamma_{3},$$

$$(6)$$

де $\tilde{c}_1 = 2E_x h U_0 - c_1$, $\tilde{c}_2 = 2E_x h V_0 - c_2$.

Умови силової рівноваги диска [9], які служать для визначення сталих \tilde{c}_1, \tilde{c}_2 , можна перетворити до вигляду

$$\int_{\alpha_0}^{\beta_0} f_2'(t) dt + \int_{\pi+\alpha_1}^{\pi+\beta_1} f_2'(t) dt = 0; \quad \int_{\alpha_0}^{\beta_0} f_1'(t) dt + \int_{\pi+\alpha_1}^{\pi+\beta_1} f_1'(t) dt = 0.$$
(7)

Контактні зусилля на контурі отвору пластинки, через функції $f'_1(\lambda)$, $f'_2(\lambda)$ визначаються за формулою [5]

$$T_{\rho} + iS_{\rho\lambda} = \frac{\left(f_{2}'(\lambda) - if_{1}'(\lambda)\right)\left(a(\lambda) - ib(\lambda)\right)}{\alpha^{2} + \beta^{2}}, \lambda \in \gamma,$$
(8)

а кільцеві зусилля T_{λ} знаходимо із співвідношення [5]

© А. О. Сяський, Н. В. Шинкарчук

$$T_{\lambda} = -T_{\rho} - \frac{(1+\beta_{1})(1+\beta_{2})}{4\Delta_{1}\Delta_{2}} \Big[\Big((a+b)l_{4}\sin^{2}\lambda\cos^{2}\lambda + l_{1}l_{2} \Big) R_{1} + \\ + \big((a+b)l_{1} - l_{2}l_{4} \big) R_{2}\sin\lambda\cos\lambda \Big] - \frac{(1-\beta_{1})(1-\beta_{2})}{4\Delta_{1}\Delta_{2}} \Big[\big(l_{4}(b-a)\sin^{2}\lambda\cos^{2}\lambda - l_{1}l_{3} \big) \widetilde{R}_{3} + \\ + \big(l_{4}l_{3} + (b-a)l_{1} \big) \widetilde{R}_{4}\sin\lambda\cos\lambda \Big] + T_{\lambda}^{0}.$$
(9)

Тут введено позначення

$$\begin{split} T_{\lambda}^{0} &= \frac{a^{2} \sin^{2} \lambda + b^{2} \cos^{2} \lambda}{\Delta_{1} \Delta_{2}} \Big[q \beta_{1} \beta_{2} (l_{4} \cos^{2} \lambda - l_{1}) - p(l_{1} + l_{4} \sin^{2} \lambda) \Big]; \\ l_{1} &= a^{2} \sin^{2} \lambda - b^{2} \beta_{1} \beta_{2} \cos^{2} \lambda; \quad l_{2} = a \sin^{2} \lambda - b \cos^{2} \lambda; \quad l_{3} = a \sin^{2} \lambda + b \cos^{2} \lambda; \\ l_{4} &= a b \big(\beta_{1} + \beta_{2} \big); \quad \Delta_{j} = a^{2} \sin^{2} \lambda + b^{2} \beta_{j}^{2} \cos^{2} \lambda, \quad (j = 1, 2); \\ R_{1} &= -2T_{\rho}^{*} + \frac{1}{\pi} \int_{\gamma} \Big[T_{\rho}^{*}(t) - S_{\rho\lambda}^{*}(t) ctg \, \frac{\lambda - t}{2} \Big] dt ; \\ R_{2} &= -2S_{\rho\lambda}^{*} + \frac{1}{\pi} \int_{\gamma} \Big[S_{\rho\lambda}^{*}(t) + T_{\rho}^{*}(t) ctg \, \frac{\lambda - t}{2} \Big] dt ; \\ R_{3} &= -4T_{\rho}^{*} - R_{1}; \quad R_{4} = 4S_{\rho\lambda}^{*} + R_{2}; \end{split}$$

 $\vec{R}_3 = R_3 \cos 2\lambda + R_4 \sin 2\lambda$; $\vec{R}_4 = R_4 \cos 2\lambda - R_3 \sin 2\lambda$.

Співвідношення (5)-(9) визначають математичну модель поставленої задачі. Розглянемо її часткові випадки:

- якщо в (5)-(9) покласти β₁ = β₂ = 1, то одержимо розв'язок задачі для ізотропної пластинки з еліптичним отвором [5];
- приймаючи в (5)-(9) є = 0, знаходимо відповідну систему співвідношень для ортотропної пластинки з круговим отвором.

Вибором величини і положення зони спаю та зовнішнього навантаження можна добитися, щоб береги розрізу змикалися повністю ($\pi + \alpha_1 = \beta_0$; $\beta_1 = \pi + \alpha_0$) або зона контакту між пластинкою і диском була відсутня ($\alpha_0 = \beta_0$). За умов $\beta_0 > \pi + \alpha_1$, $\beta_1 > \pi + \alpha_0$ зона контакту буде налягати на зону спаю. В цьому випадку нормальні зусилля на контурі Г будуть неперервними.

Наближений розв'язок задачі. Знаходження точного розв'язку системи (5)-(6) за умов силової рівноваги (7) пов'язано із значними математичними труднощами.

Для наближеного розв'язання задачі перейдемо в системі (5)-(7) до проміжку інтегрування [-1;1]. Це можна зробити наступною заміною

$$tg \frac{\lambda}{2} = \frac{b_0 - a_0}{2} x + \frac{b_0 + a_0}{2}; \quad tg \frac{\lambda}{2} = \frac{\tilde{b}_0 - \tilde{a}_0}{2} \tilde{x} + \frac{\tilde{b}_0 + \tilde{a}_0}{2};$$

$$tg \frac{t}{2} = \frac{b_0 - a_0}{2} s + \frac{b_0 + a_0}{2}; \quad tg \frac{\tilde{t}}{2} = \frac{\tilde{b}_0 - \tilde{a}_0}{2} \tilde{s} + \frac{\tilde{b}_0 + \tilde{a}_0}{2};$$

$$a_0 = tg \frac{\alpha_0}{2}; \quad b_0 = tg \frac{\beta_0}{2}; \quad \tilde{a}_0 = tg \frac{\alpha_1}{2}; \quad \tilde{b}_0 = tg \frac{\beta_1}{2};$$

$$\lambda, t \in [\alpha_0; \beta_0]; \quad \tilde{\lambda}, \tilde{t} \in [\alpha_1; \beta_1]; \quad x, s, \tilde{x}, \tilde{s} \in [-1; 1].$$

Враховуючи, що контактні зусилля на кінцях зони контакту дорівнюють нулю, а на кінцях зони спаю мають кореневу особливість з локальною осциляцією, наближений розв'язок задачі (5)-(9) на підставі [5,9] можна вибрати у вигляді $f'_j(x) = \sqrt{1-x^2}$, $f'_j(\tilde{x}) = \frac{1}{\sqrt{1-\tilde{x}^2}}$, (j=1,2) і

реалізувати методом механічних квадратур та колокації.

Для ортотропної пластинки досліджено вплив на контурні контактні T_{ρ} , $S_{\rho\lambda}$ і кільцеві © А. О. Сяський, Н. В. Шинкарчук *Т_д* зусилля та величину зони контакту ортотропії матеріалу а також зовнішнього навантаження.

Результати числового розрахунку зусиль при
$$\varepsilon = \pm 0.2$$
; $\alpha_1 = -\frac{2\pi}{3}$, $\beta_1 = \frac{2\pi}{3}$; $p = 1, q = 0$

ілюструються на рис. 2-4. Характеристики досліджуваних матеріалів і лінії, які відповідають їм на рисунках, наведено в таблиці 1. В таблиці 2 наведено значення граничних полярних кутів, що визначають зону контакту. В цій же таблиці подано результати розрахунку величини зони спаю $(\alpha_1^*; \beta_1^*)$, для якої при заданому навантаженні береги розрізу змикаються повністю.

Таблиця 1

					В
матеріал					ид
пластинки					Л
					інії
ізотропний (IM)				(
			.300		
скло-епоксид (СЕ)				(
	.271	.762	.250		
графіт-епоксид (ГЕ)				(
	.999	.714	.250	5	
епоксид-скло (ЕС)				(
	.440	.310	.083	/3	
епоксид-графіт (ЕГ)		((
	.143	.401	.010	/25	
	•		•		

Характеристики досліджуваних ортотропних матеріалів і лінії, які їм відповідають на рисунках

Рис. 2. Епюри розподілу зусиль T_{ρ} , $S_{\rho\lambda}$ на контурі отвору при $\varepsilon = 0.2$

Рис. 3. Епюри розподілу зусиль $T_{
ho}$, $S_{
hol}$ на контурі отвору при $\varepsilon = -0.2$

Рис. 4. Епюри розподілу зусиль T_{λ} на контурі отвору при $\varepsilon = \pm 0.2$

Таблиця 2

173

Значення граничних полярних кутів, що визначають зону контакту і зону спаю

мат еріал пластинки	eta_{0}^{*} = д	= - α_0^* (гра)	$eta_1^* = -lpha_1^*$ (гра д)	
	<i>E</i> = 3	<i>E</i> =	<i>E</i> = -	E =
IM	66.	39.	152	1

	02	66	.0	61.8
CE	64.	36.	155	1
	85	95	.7	65.3
ГЕ	61.	30.	160	1
	18	77	.0	68.3
EC	68.	44.	144	1
	00	27	.0	56.9
ЕΓ	68.	47.	123	1
	83	99	.1	42.5

Аналіз одержаних результатів приводить до висновків:

- ✓ форма отвору пластинки суттєво впливає на величину зони контакту. При цьому максимальні нормальні зусилля на ділянці контакту виникають в точках контуру з найбільшою кривиною;
- ✓ ортотропія матеріалу вносить значний вплив на розподіл нормальних і кільцевих зусиль в зоні контакту;
- ✓ вплив ортотропії на розподіл нормальних і кільцевих зусиль в зоні спаю проявляється в меншій мірі;
- ✓ в крайніх точках зони спаю нормальні, дотичні і кільцеві зусилля необмежені, за межами цієї зони необмежені тільки кільцеві зусилля;
- ✓ величина зони контакту для всіх форм отвору зменшується із збільшенням $\frac{E_1}{E_2}$.

Запропонований метод може бути використаний при розв'язуванні аналогічної задачі за наявності двох зон контакту.

Література

- 1. Грилицкий Д.В. Напряженное состояние анизотропной пластинки с впаянным изотропным ядром при наличии разрезов на спае / Грилицкий Д.В., Луцишин Р.М. // Изв. АН СССР. Механика твердого тела, 1962. № 2. С. 159-165.
- Гриліцький Д.В. Напруження в пластинках з коловою лінією розмежування граничних умов / Д.В. Гриліцький, Р.М. Луцишин. – Львів: Видавництво "Вища школа" при ЛДУ, 1975. – 111 с.
- Сяський В.А. Мішана контактна задача для нескінченної пластинки з криволінійним отвором і жорсткого диска / В.А. Сяський, А.О. Сяський // Волинський математичний вісник. – 1998. – Вип. 5. – С. 139–146.
- Сяський А.О. Мішана контактна задача для пластинки з криволінійним отвором і жорсткого диска / А.О. Сяський, Н.В. Шинкарчук // Волинський математичний вісник. Серія прикладна математика. Випуск 7 (16) – Рівне : РДГУ, 2010. – С. 199–209.
- 5. Сяський А. Мішана контактна задача для ортотропної пластинки з еліптичним отвором і жорсткого диска / А. Сяський, Н. Шинкарчук // Вісник Тернопільського національного технічного університету. – Тернопіль, 2010. – Т.15, № 4. – С. 7-13.
- 6. Комбель С. Посадка жорсткого диска в еліптичний отвір нескінченної ортотропної пластинки / С. Комбель // Машинознавство. 2003. № 8. С. 25-31.
- 7. Лехницкий С.Г. Анизотропные пластинки / Лехницкий С.Г. М. : Гостехиздат, 1957. 464 с.
- Сяський А.О. Граничні умови контактних задач для нескінченної пластинки з криволінійним отвором і жорсткого диска / А.О. Сяський, С.М. Комбель // Волинський математичний вісник. – 2002. – Вип. 9. – С. 93–97.
- Трохимчук О. Тиск системи двох штампів з кутовими точками на частково підсилений контур еліптичного отвору ортотропної пластинки / О. Трохимчук, А. Сяський // Вісник Тернопільського державного технічного університету. – Тернопіль, 2010. – Т.15, № 1. – С. 14-20.