УДК 620.186 (084.127)

А.В. Шостак, В.В. Божидарнік, О.В. Мельник, С.В. Синій, Ю.І. Дрозд ЗАСТОСУВАННЯ ВЕКТОРНОГО АНАЛІЗУ В РЕМ-ФОТОГРАММЕТРІЇ

У статті викладені теоретичні засади застосування векторів Гіббса в РЕМ-фотограмметрії, розглянуті питання визначення результуючих та комп'ютерно-програмованих диференціальних нахилів, вдосконалено методику кількісної рентгенографії в РЕМ.

Ключові слова: вектор Гіббса, фотограмметрія, растровий електронний мікроскоп. Форм. 21. Рис. 1. Літ. 10.

А.В. Шостак, В.В. Божидарник, А.В. Мельник, С.В. Синий, Ю.І. Дрозд ПРИМЕНЕНИЕ ВЕКТОРНОГО АНАЛИЗА В РЭМ - ФОТОГРАММЕТРИИ

В статье изложены теоретические основы применения векторов Гиббса в РЭМ-фотограмметрии, рассмотрены вопросы определения результирующих и компьютерно-программируемых дифференциальных наклонов, усовершенствовано методику количественной рентгенографии в РЭМ. Ключевые слова: вектор Гиббса, фотограмметрия, растровый электронный микроскоп.

A. Shostak, V. Bozhydarnyk, A. Melnik, S. Synii, J. Drozd APPLICATION OF VECTOR ANALYSIS IN REM PHOTOGRAMMETRY

In article the theoretical bases of Gibb's vectors using in REM-photogrammetry is interpretated. The questions of determination of resulting and computer-programmed differential gradients are considered. The methods quantitative X-ray is improved in REM.

Keywords: Gibb's vectors, photogrammetry, scanning microscope.

Постановка проблеми. В растровій електронній мікроскопії (РЕМ) при вивченні процесів росту кристалів, наприклад, біогенної генези, дослідженнях їх кристалічної структури (рис. 1) і властивостей важливу роль відіграє коректне встановлення орієнтації кристала стосовно фіксованої системи координат (ФСК), а також розорієнтації сусідніх зерен [1, 6]. Якщо базис, використовуваний для опису ФСК, тотожний кристалографічному, тобто обидва вони є кубічними, гексагональними або якимись іншими, то взаємну їхню орієнтацію доцільно характеризувати оператором повороту *В*, а для кількісної інтерпретації використовувати одне з можливих представлень цього оператора: матрицями або векторами Гіббса, кватерніонами, кутами Ейлера [3].

В електронній мікроскопії одержання орієнтування. матриці шо забезпечує кристалографічну прив'язку не гірше як 0,1°, досягається обмірюванням координат значного відображень (опорних векторів), числа 3 наступним рішенням надлишкової системи нелінійних рівнянь [4]. Реалізація цієї схеми розрахунку виконується на основі громіздких чисельних методів і не завжди ефективна, принаймні в тих випадках, коли бажано оперативно обробляти й аналізувати одержувану інформацію, наприклад, при вивченні внутрізернової розорієнтації. статистичних дослідженнях границь зерен у полікристалах, тощо [9]. Постановку цих питань і шляхи їх вирішення можна простежити за матеріалами конференцій останніх років [2, 9].

Аналіз останніх досліджень і публікацій. Аналізуючи відомі досягнення електронної мікроскопії, зокрема мікро-дифракції (SAED) за останнє десятиліття, правомірно віднести методи електронної мікроскопії до розряду аналітичних, високотехнологічних і наукоємних.

Рис. 1. Мікрофотографія кристалічної структури біогенного походження Збільшення – 2500

Інтеграція аналітичних методів просвітлювальної, растрової та комп'ютерної технологій – основа поглиблених досліджень на субмікронному рівні.

Не дивлячись на потенційні можливості, інтегральний підхід не знайшов на сьогодні ще © А.В. Шостак, В.В. Божидарнік, О.В. Мельник, С.В. Синій, Ю.І. Дрозд широкого практичного застосування. Тому вдосконалення окремих його аспектів – актуальна задача.

Невирішені раніше частини загальної проблеми. Коли досліджується значна кількість міжзернових та міжфазних границь, то використання матриці повороту як функції послідовних поворотів недоцільне, оскільки при такому підході розв'язок задачі починається з вибору кутів повороту, їх послідовності і напрямку обертання. В результаті розв'язок виявляється залежним від вибраних параметрів і може суттєво змінюватися при зміні, наприклад, послідовності поворотів. Тому доцільно, по можливості, відмовлятися від кутів послідовних поворотів як оцінюючих параметрів.

Найбільш економно представляти просторовий поворот у формі тривимірного вектора Гіббса [3], оскільки він є функцією трьох елементів і в явному вигляді містить три незалежних параметри орієнтації. Окрім цього, векторне вираження просторового орієнтування безпосередньо пов'язане з кватерніонним, яке найбільш зручне для геометрично-кристалографічних та деяких інших задач. Однак в РЕМ-фотограмметрії такий підхід не розглядався і потребує окремого дослідження.

Метою дослідження є розв'язок теоретичних та прикладних задач в РЕМ-фотограмметрії із застосуванням векторів Гіббса, шляхом послідовного вирішення наступних завдань:

• Отримати за МНК аналітичне рішення проблеми із застосування формалізму векторів Гіббса.

• Обгрунтувати методику реалізації такого підходу.

• Отримати в явній формі вирази для розрахунку оптимальних параметрів орієнтування в РЕМ (ПЕМ)-рентгенографічних дослідженнях.

Виклад основного матеріалу.

1. Визначення в РЕМ операторів повороту на основі векторів Гіббса.

В операторному вигляді математичний опис взаємного просторового розвороту (обертання) двох базисів (вихідного $\{\vec{e}_i\}$ і поверненого $\{\vec{e}_i'\}$) представляється як

$$\vec{e}_i' = \prod \vec{e}_i, \quad i = 1, 2, 3$$
 (1)

3 фізичної точки зору будь-яке обертання — це поворот на кут Ω навколо осі, що характеризується одиничним вектором \vec{C} з напрямними косинусами (C_1, C_2, C_3).

Експериментальні методи визначення орієнтації кристала ґрунтуються на реєстрації координат вибраного опорного *i*-го вектора: *i*=1,2,..., *N* (звичайно це нормаль до площини, що дала відображення) до (позначимо цей вектор $\vec{g}_{(i)}$) і після ($\vec{r}_{(i)}$) здійснення повороту об'єкта (кристала) як цілого. Математично перетворення $\vec{g}_{(i)}$ в $\vec{r}_{(i)}$ записується наступним чином:

$$\vec{t}_{(i)} = \prod_{i=1}^{n} \vec{g}_{(i)} \,. \tag{2}$$

Визначення координат вектора $\vec{r_i}$ { (r_{i1}, r_{i2}, r_{i3}) } завжди пов'язано з деякими похибками, рівень яких лімітується як можливостями приладу (класом шкал гоніометрів), так і ступенем досконалості самого об'єкта дослідження – кристала. Тому в ліву частину рівняння (2) реально підставляють не математично точне значення $\vec{r_{(i)}}$, а його експериментальну оцінку. Позначимо її через $\tilde{\vec{r_{(i)}}}$.

Оператор повороту незалежно від способу його представлення описується трьома незалежними параметрами, а інші шість отримують з умови ортогональності і нормованості її рядків. Отже, для обчислення параметрів повороту необхідно експериментально поміряти як мінімум три незалежні величини. В кристалографії орієнтація вектора $\tilde{\vec{r}}_{i}$ визначається двома незалежними параметрами, наприклад кутами $\tilde{\omega}$ і $\tilde{\varphi}_i$, тому для однозначного розрахунку трьох компонентів повороту необхідно проміряти координати щонайменше двох опорних векторів: i=1,2. Однак для підвищення точності необхідно знати якомога більше опорних векторів. Надлишкові системи рівнянь звичайно розв'язують методом найменших квадратів шляхом мінімізації квадрата відхилення поміряних величин від розрахункових $(\tilde{\vec{r}}_i) - \vec{r}_i)$:

274 Міжвузівський збірник "НАУКОВІ НОТАТКИ". Луцьк, 2013. Випуск №41 Частина 2

$$\sum_{i=1}^{N} \left[\widetilde{\vec{r}}_{(i)} - \widehat{\Pi} \cdot g_{(i)} \right]^2 \xrightarrow{\widehat{\Pi}} \min .$$
(3)

У будь-якому представленні оператора \prod мінімізація функціонала (3) зводиться до рішення системи нелінійних рівнянь, для чого необхідна попередня лінеаризація та ітеративний метод розв'язку. Водночас застосування формалізму векторів Гіббса G дозволяє отримати розв'язок в явному вигляді.

Вектори Гіббса, як відомо [3], задаються трьома компонентами G_1, G_2, G_3 . Так, для вищезгаданих базисів $\hat{C} = G_1 \bar{e}_1 + G_2 \bar{e}_2 + G_3 \bar{e}_3 = G'_1 \bar{e}'_1 + G'_2 \bar{e}'_2 + G'_3 \bar{e}'_3$. Компоненти вектора \bar{G} за визначенням пов'язані з кутом повороту Ω і напрямними косинусами (C_1, C_2, C_3) одиничного вектора \bar{C} , орієнтованого уздовж осі повороту. Цей зв'язок має вигляд [1]:

$$\vec{G} = \vec{C}tg\frac{\Omega}{2}.$$
(4)

Закон перетворення вектора $\vec{g}_{(i)}$ в $\vec{r}_{(i)}$ записується в такий спосіб:

$$\vec{r}_{(i)} = \cos^2 \frac{\Omega}{2} \left[\left(1 - \left| G^2 \right| \right) \vec{g}_{(i)} + 2 \left(\vec{G} \cdot \vec{g}_{(i)} \right) \vec{G} + 2 \vec{G} \times \vec{g}_{(i)} \right] \right].$$
(5)

Тут векторний і скалярний добутки слід розписувати за звичайними формулами, а вектори $\vec{g}_{(i)}$, $\vec{r}_{(i)}$ і \vec{G} задавати в єдиній системі координат.

Для рішення системи (5) можна застосувати наступний прийом, недостатньо строгий математично, але задовольняючий за точністю кінцевого результату більшість практичних задач. Використаємо для розрахунку компонентів \overline{G} не рівняння (5), а наступну властивість векторів

Використаємо для розрахунку компонентів О не рівняння (5), а наступну властивість векторів Гіббса, що безпосередньо випливає з визначення:

$$\tilde{\vec{r}} \times \left(\vec{r}_{(i)} + \vec{g}_{(i)} \right) = \left(\vec{r}_{(i)} - \vec{g}_{(i)} \right).$$
(6)

Відповідно до цієї властивості будемо мінімізувати різницю

$$F(G_1, G_2, G_3) = \sum_{i=1}^{N} \left[\vec{G} \times \left(\widetilde{\vec{\eta}}_{(i)} + \vec{g}_{(i)} \right) - \left(\widetilde{\vec{\eta}}_{(i)} - \vec{g}_{(i)} \right) \right]^2 \xrightarrow{G_1, G_2, G_3} \min .$$
(7)

Співвідношення (7) – лінійне стосовно G₁, G₂ і G₃.

Після переходу від векторної до координатної форми і покомпонентної мінімізації, отримаємо:

$$\sum_{x}^{N} \left\{ \left[G_{2}(r_{i3} + g_{i3}) - G_{3}(r_{i2} + g_{i2}) \right] - \left[r_{i1} - g_{i1} \right] \right\}^{2} \Rightarrow \min.$$

$$\sum_{y}^{N} \left\{ \left[G_{3}(r_{i1} + g_{i1}) - G_{1}(r_{i3} + g_{i3}) \right] - \left[r_{i2} - g_{i2} \right] \right\}^{2} \Rightarrow \min.$$

$$\sum_{x}^{N} \left\{ \left[G_{1}(r_{i2} + g_{i2}) - G_{2}(r_{i1} + g_{i1}) \right] - \left[r_{i3} - g_{i3} \right] \right\}^{2} \Rightarrow \min.$$

Із виконання умов екстремуму $\frac{\partial F}{\partial G_1} = \frac{\partial F}{\partial G_1} = \frac{\partial F}{\partial G_1} = 0$ і відповідних перетворень система нормальних рівнянь має вигляд:

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} G_1 \\ G_2 \\ G_3 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix},$$
(8)

$$a_{11} = \sum_{i=1}^{N} [(\vec{r}_{i2} + g_{i2})^2 + (\vec{r}_{i3} + g_{i3})^2]; \ a_{22} = \sum_{i=1}^{N} [(\vec{r}_{i1} + g_{i1})^2 + (\vec{r}_{i3} + g_{i3})^2];$$

$$a_{33} = \sum_{i=1}^{N} [(\vec{r}_{i1} + g_{i1})^2 + (\vec{r}_{i2} + g_{i2})^2]; a_{lm} = \sum_{i=1}^{N} [(\vec{r}_{il} + g_{il})^2 + (\vec{r}_{im} + g_{im})^2], l \neq m;$$

$$b_1 = 2\sum_{i=1}^{N} (g_{i2}\vec{r}_{i3} - g_{i3}\vec{r}_{i2}); b_2 = 2\sum_{i=1}^{N} (g_{i3}\vec{r}_{i1} - g_{i1}\vec{r}_{i3}); b_3 = 2\sum_{i=1}^{N} (g_{i1}\vec{r}_{i2} - g_{i2}\vec{r}_{i1}).$$

У праві частини входять тільки параметри опорних векторів в двох системах координат, що визначаються експериментально, тобто $\tilde{\vec{r}}_{(i)}$ і $\vec{g}_{(i)}$. За оцінку точності доцільно використовувати середньоквадратичне розсіювання поміряних величин, тобто:

$$S = \frac{1}{N-1} \sum_{i=1}^{N} \left(\tilde{\vec{r}}_{(i)} - \vec{r}_{(i)} \right)^2 , \qquad (9)$$

де $\vec{r}_{(i)}$ обчислюється за формулою (2).

2. Результуючий нахил має принципове значення при дослідженні кристалів і просторової структури складних дислокаційних конфігурацій, коли зразку необхідно придати заздалегідь вибрані нахили. Це питання розглянемо в наступній постановці.

Нехай поворот навколо жорсткої осі характеризується вектором \vec{w} , напрямок якого збігається з віссю обертання, а модуль дорівнює $|\vec{w}| = tg \Omega/2$, то вектор результуючого нахилу визначається за формулою:

$$\vec{w} = \frac{\vec{w}_1 + \vec{w}_2 - \vec{w}_1 \times \vec{w}_2}{1 - \vec{w}_1 \cdot \vec{w}_2} \,. \tag{10}$$

Якщо послідовність поворотів $\varphi \to \psi$, тобто здійснюється навколо взаємно перпендикулярних осей, то:

$$\vec{w}^{2} = \vec{w}_{1}^{2} + \vec{w}_{2}^{2} + (\vec{w}_{1} \times \vec{w}_{2})^{2} - 2\vec{w}_{1}(\vec{w}_{1} \times \vec{w}_{2}) - 2\vec{w}_{2}(\vec{w}_{1} \times \vec{w}_{2}) =$$

$$= \vec{w}_{1}^{2} + \vec{w}_{2}^{2} + (\vec{w}_{1} \times \vec{w}_{2})^{2},$$

$$\vec{w}_{1} \cdot \vec{w}_{2} = \vec{w}_{1}(\vec{w}_{1} \times \vec{w}_{2}) = \vec{w}_{2}(\vec{w}_{1} \times \vec{w}_{2}) = 0.$$

оскільки Остаточно

$$tg\Omega/2 = |\vec{w}| = \sqrt{tg^2 \varphi/2 + tg^2 \psi/2 + tg^2 \varphi/2 \cdot tg^2 \psi/2} .$$
(11)

Знаючи результуючий нахил, подальші перетворення можна обчислити за формулою (5).

3. Комп'ютерно-програмовані диференціальні нахили. В даний час в електронній мікроскопії ведуться розробки по створенню систем повністю автоматизованого аналізу РЕМ-зображень [7, 10]. Такі системи аналізу особливо потрібні, наприклад, при РЕМ-дослідженнях зразків, коли необхідно обстежити дуже велику площу в пошуках декількох мікрооб'єктів, і 2) дослідженні зразків з високою щільністю мікрооб'єктів, коли потрібно виконати надзвичайно велику кількість вимірів. Прикладами таких робіт можуть бути: аналіз і пошук мікрослідів вогнепальної зброї, включення в сплавах, геологічних зразках та ін.

Серед низки питань по автоматизації РЕМ для нас найбільший інтерес представляють особливості програмованих нахилів. Припустимо, що одиничний вектор \vec{N}_0 , що співвпадає у вихідному положенні з віссю Z одиничної сфери, обертається навколо X і Y осей у послідовності $\varphi \rightarrow \psi$. Цим поворотам відповідає перетворення координат

$$\begin{bmatrix} X \\ Y \\ Z \end{bmatrix} = \begin{bmatrix} \cos\psi & 0 & \sin\psi \\ 0 & 1 & 0 \\ -\sin\psi & 0 & \cos\psi \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos\varphi & -\sin\varphi \\ 0 & \sin\varphi & \cos\varphi \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} \cos\varphi \cdot \sin\psi \\ -\sin\varphi \\ \cos\varphi \cdot \cos\psi \end{bmatrix}$$
(12)

© А.В. Шостак, В.В. Божидарнік, О.В. Мельник, С.В. Синій, Ю.І. Дрозд

3 іншої сторони. Із диференціальної геометрії відомо, що $dS^2 = dx^2 + dy^2 + dz^2$, тому

згідно (11) $dS^2 = d\varphi^2 + \cos^2 \varphi \, d\psi^2$. Позначимо $\psi' = \frac{d\psi}{d\varphi}$. Тоді запишемо: $dS = (1 + {\Psi'}^2 \cdot \cos^2 \varphi)^{1/2} d\varphi$ (13)

Це відомий в математиці [3] еліптичний інтеграл 2-го роду, табличне значення якого має вигляд:

$$S = (1 + a^2)^{\frac{1}{2}} \cdot E(k, \varphi), \qquad (14)$$

де a - const; $k = a(1+a^2)^{-1/2}$; $E(k,\varphi) \Rightarrow$ табульовані значення еліптичних інтегралів 2-го роду.

Диференціальні зміни координат dX, dY, dZ обумовлені малими змінами кутів $\Delta \varphi$ і $\Delta \psi$, можна розглядати як нескінченно малий приріст вектора \vec{N} в тривимірному просторі. Їх неважко визначити за відомими правилами векторної алгебри [3]. Це загальне рішення. Для прикладу розглянемо застосування керованих нахилів у рентгенографії шорсткуватих зразків.

4. Кількісна рентгенографія в РЕМ майже завжди здійснюється в режимі "in situ" і на плоских полірованих поверхнях. Як стандартні, так і невідомі зразки мають першокласне полірування й утримуються у фіксованій орієнтації стосовно до електронного зонда до рентгенівського спектрометру. Коли здійснюється рентгенографія (рентгенівський аналіз) на шорстких поверхнях, отриманих, наприклад, у результаті зламу, то виникають ускладнення [5, 8], що ставлять результати в залежність скоріше від мікрорельєфу, ніж від концентрації досліджуваних елементів, оскільки виділення і поглинання рентгенівської енергії в зразку сильно залежить від орієнтації потрібної локальної області стосовно напрямку електронного зонду.

Використовуючи стереоскопічні методи в РЕМ, адаптовані до режиму "in situ", можливо визначити точну орієнтацію локальної поверхні маленької плоскої області на шорсткуватому зразку, а потім реорієнтувати її таким чином, щоб ця область була рівнобіжною стандартним положенням. Якщо це виконано, то можна виміряти інтенсивність рентгенівських променів і точно визначити кількісний склад.

Рішення задачі визначення просторової орієнтації площини в режимі реального часу простіше виконати, скориставшись циліндричною системою координат (r, ϕ, z), у якій рівняння площини приймає вид:

$$z = A \cdot r(\varphi) \cos \varphi + B \cdot r(\varphi) \sin \varphi + C \,. \tag{15}$$

Положення шуканої площини будемо визначати за МНК, мінімізуючи функцію

$$\Phi = \sum_{i=1}^{n} [A \cdot r(\varphi_i) \cos \varphi_i + B \cdot r(\varphi_i) \sin \varphi_i + C - z_i]^2$$
(16)

Тут z_i, φ_i $(i = \overline{1, n})$ - апліката і полярний кут *i*-ої точки, визначені стереометодом; *n* кількість точок.

Необхідною умовою мінімуму функції Ф є виконання рівностей:

$$\frac{\partial \Phi}{\partial A} = 0, \quad \frac{\partial \Phi}{\partial B} = 0, \quad \frac{\partial \Phi}{\partial C} = 0, \quad (17)$$

які з врахуванням (15) приймають вигляд:

$$A\sum_{i=1}^{n} x_{i}^{2} + B\sum_{i=1}^{n} x_{i} y_{i} + C\sum_{i=1}^{n} x_{i} = \sum_{i=1}^{n} z_{i} x_{i} ,$$

$$A\sum_{i=1}^{n} x_{i} y_{i} + B\sum_{i=1}^{n} y_{i}^{2} + C\sum_{i=1}^{n} y_{i} = \sum_{i=1}^{n} z_{i} y_{i} ,$$

$$A\sum_{i=1}^{n} x_{i} + B\sum_{i=1}^{n} y_{i} + nC = \sum_{i=1}^{n} z_{i} ,$$
(18)

© А.В. Шостак, В.В. Божидарнік, О.В. Мельник, С.В. Синій, Ю.І. Дрозд

_{μe} $x_i = r(\varphi_i) \cos \varphi_i$; $y_i = r(\varphi_i) \sin \varphi_i$

Якщо рішення системи (18) відомо, то рівняння шуканої площини має вид:

$$z = A \cdot r \cos \varphi + B \cdot r \sin \varphi + C \tag{19}$$

Потім визначаються напрямні косинуси:

$$\cos\alpha = A/\sqrt{A^2 + B^2 + C^2}; \quad \cos\beta = B/\sqrt{A^2 + B^2 + C^2}; \quad \cos\gamma = C/\sqrt{A^2 + B^2 + C^2}; \quad (20)$$

Напрямні косинуси (20) використовуються для обчислення кутів обертання і нахилу, що повинні бути застосовані до зразка для того, щоб привести досліджувану область у стандартне положення (під кутом 45°). Ці кути легко одержати з простих геометричних співвідношень:

$$\rho_1^{\circ} = \operatorname{arctg} \frac{\cos \alpha}{\cos \beta}; \quad \tau_q^{\circ} = 45^{\circ} - \varphi^{\circ}.$$
⁽²¹⁾

Висновки.

1. Викладений метод має ту перевагу, що перехід від матричного представлення обертання до формалізму векторів Гіббса дозволяє значно простіше вирішувати прикладні РЕМфотограмметричні задачі і дає можливість їх наочної картографічної інтерпретації, наприклад, в стереографічній проекції.

2. Реалізація стереометодів в РЕМ-рентгенографії дозволяє оперативно, тобто в режимі "in situ", визначати просторову орієнтацію досліджуваних зразків, виконувати їх поворот навколо заданих просторових напрямків, здійснювати коректний рентгенівський аналіз шорсткуватих поверхонь.

(Робота виконана за підтримки МОН України (держреєстраційний номер теми № 0112U000290)).

- 1. Валиев Р. Кристалло-геометрический анализ межкристаллитных границ в практике электронной микроскопии [Текст] / Р. Валиев, А. Вергасов, В. Герцман. М.: Наука. 1991. 230 с.
- 2. В. Календин, Ю. Новиков, А. Раков, П. Тодуа // Растровая электронная микроскопия. Дальнейшие пути развития [Текст] // Всероссийская конф. по электр. микроскопии . Черноголовка. 2004. С. 96-97.
- 3. Корн Г., Корн Т. Справочник по математике [Текст] / Г. Корн, Т. Корн М.: Наука. 1974. 830 с.
- 4. В. Рыбин, У. Литвинов, А. Самойлов, Ю. Титовец // Использование формализма векторов Гиббса для описания ориентировок и розориентировок [Текст] // Зав. лаб. 1990. №6. С. 65-69.
- 5. *Bomback J.* Stereoscope techniques for SEM specimens [Text] / J. Bomback // Proc. of Sixth Annyal Scanning Electron Microscope Symposium. Chicago. 1973. pp. 97-104.
- 6. Chon C., Dicks K., Rolland P. Interactive and Quantitative Poll Figures [Text] / C. Chon, K. Dicks, P. Rolland // Materials Science Forum. – 2002. – V.408-412. – C. 131-136.
- Edwards R. Fully Automated SEM Image Analysis [Text] / R. Edwards, J. Lebiedzik, G. Stone // Scanning. 1986. V.8. – C. 221-231.
- Fecher K. The Determinantion of Surface orientation a simple AID in Quantitative Analysis on Rough Surfaces [Text] / K. Fecher // Scanning. 1985. V.7. P. 297-302.
- Frosch G. Texture analysis using EBSD-automated, guantitative method using consecutive inverse pole figures [Text] / G. Frosch // XX Российская конф. по электр. микроскопии. Черноголовка. – 2004. – Р. 131.
- 10. *Konitz H.* Mathematische Gesichtpunkte beim Gebrauch von Doppelkippeinrichtungen in der Elektronenmikroskopie [Text] / H. Konitz // Optic. 1975. V. 43-41. №1. C. 71-78.

Стаття надійшла до редакції 24.04.2013.