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CIRCULAR CRACK GROWTH IN THE ORTHOTROPIC PLATE UNDER BENDING

The study of thin plates weakened by cracks is especially important in the case of composite materials, due to the
possibility of interlayer delaminating. Crack growth parallel to the median surface of a plate under bending is less dangerous
than the perpendicular crack propagation; however, the analysis of such defect’s evolution is of great interest and has its
possible applications in engineering analysis of fracture and fatigue of composite plates. In the present study, the bending of a
circular plate containing a penny-shaped internal crack is considered based on the equations of the improved theory of the
middle thickness plate bending. The influence of a transverse anisotropy and a length of the crack on a stress and
displacement of the plate are analyzed.
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PICT KPYT'OBOI TPILLIMHU B OPTOTPOITHIU IJIUTI 3A 11 3ArUHY

Bueuenna moukux naum nocnadneHux mpilyuHamu € 0COOIUB0 6A)CIUBUM Y 6UNAOKY KOMROZUMHUX Mamepiaie
YHACTIOOK MOMNCAUBO20 PO3UIApYSanHs Komnonenm. Picm mpiwjun, napanensnux 00 cepedunnoi noeepxni naumu 3a iv
32UHY, € MEHW HeOe3NeYHUM, HINC NOUWIUPEHHA NEPREHOUKYIAPHUX MPIWUH; 00HAK AHAI3 3DOCMAHHA MAKuUX oeghekmis
M€ 3HaUHUI IHmepec ma 3acMOCy6aAHHA 6 IHICEHEPHUX 3a0auax O0O0CNiONCeHHA PYUHYGAHHA MA GMOMU KOMHOZUMHUX
naum. Y uybomy 00CnioxncenHi po3enadacmsbca 32UuH Kpy2060i naumu iz MOHEmonooioHow MpiuuHo i3 6UKOPUCHAHHAM
CnigeiOHOUIeHb ymoOuUHeHoi meopii 32uny naum cepeonvoi moswunu. Bueuacmuvca ennue nonepeunoi anizomponii ma
00631CUHU MPILUHU HA HARPYHCEHO-0eOpMOsanull cman ma KoeiuicHmu iHmeHcueHoCmi HaAnPYHceHs.

Kntouogi cnosa: mpiwuna, wapysamuii KOMRO3UM, 32UH, OPMOMPONHULL, KOeQIYicHmM IHMEHCUBHOCIT HANPYICEHb.

Introduction. This paper considers bending of a circular transversely isotropic plate, containing an
internal penny-shaped crack, which is parallel to the median surface. Similar problems of bending,
stability and vibration of cracked Kirchhoff-Love plates were considered earlier by Yeghiazaryan [1],
Marchuk and Khomyak [3], Serensen and Zaytsev [4], Cherepanov [5] and others [7]. However,
abovementioned solutions do not consider anisotropy and transverse compression of the plate. The stress
intensity factors are also neglected due to used one-dimensional models, and hence, these solutions
cannot be applied to analysis of fracture initiation and propagation.

Therefore, this paper utilizes the improved theory of bending [6], which accounts for transverse
shear and compression. This allows to account transverse anisotropy of the plate and to study stress
intensity induced by the crack.

Formulation of the problem. Consider a circular plate of a radius R and a thickness 2h under a

surface pressure q distributed uniformly at the face z=—h (Fig. 1). At the distance h, € [O;h] from the

bottom face of the plate, the latter contains a penny-shaped crack of a radius | e[O, R]. The crack is

parallel to a median surface of the plate.
To solve the stated problem one can utilize the technique [1], according to which the plate is
formally decomposed into two domains with different bending rigidities:
— a domain containing the crack, which cylindrical rigidity equals the algebraic sum of rigidities of the
upper and lower plate elements:

D,=D; +D; =6D, (6§ =1-38+3p5%, B=h,/2h). 1)
(Here D =E(2h—h, )3 /12 :(1—ﬁ’)3 D is a rigidity of the upper plate part above the crack; and
D =ﬁ3D is a rigidity of the lower plate part below the crack; h, is a distance from the bottom

face of the plate to the crack; E= E/(l—vz); E is an elasticity modulus and v is a Poisson ratio);

— and a domain without a crack, which cylindrical rigidity equals the rigidity of the unnotched plate
D, =D =2Eh%/3.
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Fig. 1. The sketch of the considered problem

It should be noted that the technique [1] can be applied in cases, when the plate model does not
take into account the transverse compression, i.e. when vertical displacements do not depend on the

transverse coordinate z . Within this technique it is impossible to determine the real radial stress o, ,

which act in the upper and lower parts of the plate over and under the crack, respectively. Therefore,
henceforward the model of plates of a middle thickness [6], which utilize the improved equations of
bending, is used.

Solution strategy. The differential equations of bending of transversely isotropic plates under
uniformly distributed load can be written in the cylindrical coordinate system as follows [6]:

DiAZWi =0 _glhizAzqiz _EzhiAAzqiz' )
u A’ dg.
K’AW y __I:__~_I11
q|2 | r2 E dr
D, re(0;l 2
where D,={ ( ) i=1 for re[0;l), and i=2 for re(l;R]; A—d— li
D, re(iR) dr? rdr
’ 4 ’ 2E =. 3 . ' ' ’ . —.
K'=2Gh; &=5—; D=D,=IE1=2n°/3, K=K=4Gh/3, ¢,=-05q;
P33 5G'
Wr(i):—gghAW—— G, — K’ h'Ag,: G,=0"; U, W,w_h=uww,h for the domain r>1;

h=h"=h(1-8); pB=h/2h; q,=0,=05(c,(h-h)-a), G,=0,=0 +o,(h-h),
u,W,w, =u",w,w'; D=D=I"E; 1"'=2n°1-5)°/3, K/=K,=4Gh(1-p)/3 or
D, =D, =1"E; I"=h’/12; K]=2G'},/3; q,=0q,=0,50,(h—h); q,=0,=-0c,(h—h,) and
u, W, w,_,h=u",w,w_,h, /2 for the top and bottom parts of the plate in the domain r<I,

14

respectively; g = %(1—0,75\/*)5 , &= 210 (1— ) IIEé' ; E= E/(l—vz); A = 1‘:‘/ :

v'=0,5"G'/G; E,E', G, G, v, v" are the elastic and shear moduli and Poisson ratios of the plate
in the longitudinal and transverse (with primes) directions; g~ = ¢ = const is the distributed load applied
to the top surface of the plate (z=-h); u, are horizontal displacements of the median surfaces of the
upper and lower parts of the plate; w and w_ are the entire and shear vertical displacements of the
median surface of an uncracked part of the plate; the Roman numerals at superscripts of w,w_,u and
0,,q, denote the order of a derivative on the variable r; subscripts «u» and «l» denote respectively
upper and lower parts of the plate at the cracked domain; 2h is a thickness of the plate; h, is a thickness
of the plate part which is under the crack. In the formulated problem one assumes that the bottom face
(z=h) of the plate is traction free, hence, q" =0, and the stress o,(h—h,) equals to the contact

pressure between crack faces.
One can obtain the value of normal contact pressure p (or the stress o,(h—h,)) within the

framework of the Kirchhoff — Love hypotheses for thin plates, or based on the Timoshenko plates theory.
Both states that vertical displacement w (together with their derivatives) does not depend on the

transverse coordinate z, i.e. W, =w, =W. Therefore, the first equation of the system (2) for the upper

and lower parts of the plate can be written as:
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DiA'W=0q,,=q-p: DA'w=gq,=p. (3)
Thus, the approximate value of the contact pressure between crack faces, according to Eq. (3), is

equal to
qb,

D/ +D))A’w=q; p=——1—
(O +Dy) q; p Dy + D,

=qB°ls, (4)

where 5 =1-38+3/°.
Hence, the normal contact stress acting on crack faces equals

o,(h-h)=-p=—qp°/5. (5)
Stresses o, and o, , and displacements U (r,z) and W (r,z) of a plate in the uncracked domain

(re(I;R]) , according to the model [6], are as follows

N M, _ G, ) , G’
=" +—L7+°— (z2-0.6h - Ag,h* = |; 6
o, =t )(qz a, E,) (6)
1(.z Z° 1, L
O_z:ql"'Z[‘?’ﬁ_Fj'qz; q1:§(q —q )’ q2=(q +( );
dw dw 22 ) (1-v')dg
u(r,z)=u(r)—z| ———=|1-(1-v*)— | |- =12 3.
(r.z)=u(n- (dr dr( (1= )3h2D 8EN dr
W(r.2) = w(r)+ 2a,2- 31 A L pws %% gy )
R = 2 8E'h
' V” 2 24 * 1 E "
where A = : B(z)=6B,z" -B,—; G = ——v"(3+ :
(1—1/) ( ) 2 3 h2 4(1_‘/)((3! v ( V)j
50=#(4£—v"(7 v)j W=W+1.552q2h/|§, BZ=1+£; BS=BZ—VAE :
20(1-v)\ G’ 20,G' 4a,G
h
d*w vdw
=05-v'-A'; M =|zo0dz=-D +— h ,
Y r _Ih Or (dr2 r dr) %

h
N, = Io,dz:ZEh(g—u+vE)+2A'hql, Q = K'd(;N” are the bending moment, normal and shear
% rr r

i 1 (d? d . . . . -
forces, respectively; A =——| — + Y 2 | is a differential operator; U is a tangential displacement of
1+v{dr® rdr

the median surface of the uncracked domain of the plate.
The general solution of Egs. (2) and (4) has the following form

W, = Ar? +Br In—+C In—+K + , (1=12)
R R 6
: (8)
: . . r .
w® = AL 4+ BY InE—qi2r2/4Ki’, u=Fr+Lr+u’,

where integration constants A,B,,C,,K;, A”, B, F, L, are determined from the boundary
conditions, and ui* are the particular solutions.

From the displacement and bending moment boundedness conditions it follows, that four
integration constants are equal to zero: B, =C,=B® =L =0. The notations used here should be
extended to account values corresponding to the upper and lower parts of the plate. Thus, these faces will
be denoted with signs «+» and «-», respectively. Then for the cracked domain (0,|) of the plate

displacements (8) for the plate part under the crack can be written as,
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4 14
_ -2 - pr — - 2 ' - - v p
W =AT +K + , W =A —pri/(4K)), u, =Fr+—r. (9
L= A 175 4D, C=A -pri/(4K)), u; 1 oE €)

For the uncracked domain (I; R) displacements are equal to:

~ ré
W, =Ar’+Br?ln— +K+q : 10
,=A ) 64D, (10)

"

vq
2E
Integration constants A, B,, K., B®, A" F are determined within the boundary conditions at
the edge r =R of the plate. In the case of a hinge supported plate these boundary conditions write as,
w,(R)=0, w,(R)=0, M,,(R)=0, N,,(R)=0. (11)
Satisfying conditions (11) one can obtain that
qrR*(3+v)  gh’g

.
w? = A® +B®? InE—qr2/4K’, u,=Fr+—r.

- - AP =g R?/4K" F, =0;
A 32D(+v) 2D(A+v)’ ° % ? )
gR* 5+v(, 32g, h? gR? re.
= 1+ M, =R D,
>~ 64D 1+v( s R ) Mo e Gt
dw® d oR
R)=K'—=| =-D—(Aw,) =--——.
Q2(R)= dr |, dr( Z)r:R 2

Here it is assumed that the constants B,, B(Z) can be determined from the equilibrium of the shear

forces Q, and under the given load they are zero ( B = B =0).

Except the conditions (11) at the edge of the plate, it is necessary to satisfy the contact conditions
between the cracked and uncracked domainsat r =1 :

w, (1)=W (I,h(@= B)); o; (1, ph) =0, (1,h); Nr‘(l):.[hh%ar(l,z)dz, (13)
N, (r) M. (r G 2 2 G,
hf ), r( )zl +23|- (z —0.15h0)(q,2—0.25Aq,2h0 Ej’

z, =2—h+h,/2 isalocal coordinate of the plate part under the crack, which is directed downwards.

Hence, the normal and shear forces and the bending moment acting at the bottom part of the plate
under the crack are defined as [6],

where o, (rz)=

Np; = hEL(U; ) +vu; /1] +hAg,

Jaw (d*w  vdw
Q —K dr M Dl (?‘i‘r d J 02580q|2h0

Here M, (r)= Mr‘l(l)+31+—6v(lz—r2)p; Qu(1)=Q,()+a,l/2; Q,(1)=—ql/2.

Satisfying the boundary conditions (13) at the interface r=1 one can obtain equations for
determination of the rest of unknown integration constants:

_ _ I gh
P_tAIP+K —K, +—2 _(1-5-6)+ I B(B) =0,
A Al”+K; 2+64D5( )+8E' (B)

NS (Dh/B+3M5 (1) 52 =3M,, (1) +0.4(q — p)h’G": (14)

N5 (1)=38(1- B)M,,(1)/h—0.1ghG" f /4,
3D Ny OlGE S 1 (E .
where F = e (1-v)(1-p) 3E (1-v); G _4(1—v)(G’ V(3+V)j,
B(S) = a,(1- B)[8— T, () B, — A]; 5 =85A(L- f)*h?[12) =45 (t-1);
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t=1+2AL- B’ /1%, A = 2((V13 V(1_—2€,) ,,)G

f.(8)=0-p)E+28-p5; f =1-(1-28)" (1+208(1-3)).
Solving the systems of equations (12) and (14) simultaneously, one can derive the integration
constant A, the biggest deflection w; (0) of the bottom part of the plate at its center, and the moment

M (1):
qrR?

2 1 2
A= —m{(?wv)[lﬂé? (g—l)j+16goﬁ

M ()= TS @+)a-00; 0=

h? _O,2(q—p)hZG*_ 0,1gh*G" f
SR? | 3(1+v)BD  24(1+v)A°D
4 112 2
W{(O):qR 5+v 1+(1_1j94_59 (3+v)[1_2921+vj+3250 h 1. Hz(ﬂ 1y
64D1+v| |6 26(5+v) 3+v) 5+vR?
2( 212 2 2
+O,29 (- p)R*h°G” OlethG f mB(ﬂ); (15)
3(1+v)fD  24(1+v)fD  8E
Mo (1)=8°M,,(1)+0,482(q- p)h’G" /13+0,15qh* F G /12 =

qﬂSRZ 2 2 2/ % 2 *
= (34+V)A-0%)+0,45% (a4~ p)hG"13+010h" 1 G /12,

Maximal stress o, (0,%h,/2) can be obtained from Egs. (6), (13) as
N (1) 3M.(0) ,

2(0th /2)=—"S+ +0,2G" 16
Grl( b ) 28h 25 212 P, (16)
2
where N (1)=38(1- )M, (1)/h—0.1ghG" f /4; Mr2(|)=%(3+v)(1—02);

M (0)= 3+Vp|2 +°M,,(1)+0.48%(q - p)h*G"/3+0.18gh* f G /12;

(9)=1-(1-2) (14 208(1-)): &= 1 V)[g_w(sw))

Substituting the values of N (I) and M (0) into Eq. (15) one can obtain the closed-form

formulae for the maximal stress o, at the external surface of the plate under the crack:

. (0, ho/2):%{1+(§—1)02}+0.26*q; 17)
05(0,—ho/2)=3(3;2—;)qw{(1 0°)(1-2p)- ﬁ }—O.ZG*q—0.0ZSG*qf(,B)/ﬂ.

For determination of stresses in the plate part above the crack, one can utilize Eq. (6) in the local
coordinates (z,,r):

o,/ (rz,)= N M, ZG

2 _ 29'
A T GRLL) )[quz—o.sAquzh 1-p) E,], 18)

where z, =7+ fh is a transverse coordinate of the upper part of the plate above the crack,
directed downwards to its median surface.
The values of N, M, are obtained from the contact conditions on the interface of cracked and

uncracked domains at r =1:
h(1-2.)
N()=], " o.(,2)dz; o (I,-=p)h)=o,(1,-h). (19)
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Satisfying conditions (19), one obtains
N;,(1)=-3B8(1— S)M,, (1)/h+0.1ghG"f /4; (20)

3M;, (1) =h(1- )N/, (1) +3(1— B)’ M,, (1) +0.4(1— B)’ ph’G".
And hence,

M, ( ) (1 ,B) ( )+O4(1 ,3) ph’G*/3+0.1(1—- A)gh’fG*/12.  (21)
Consequently, maximal stress a,l(O,i h, /2) can be obtained from Eq. (18) with the account of

Egs. (20), (21),
Na(l) | 3Ma(0)
2(1— p)h ™ 2(1- p)? h2
where h, =2h" =2h(1-£); M/, (0)=M/ (I )+3+—V(q— p)IZ.

c,(0xh,/2)= 0.2G*(q-p). (22)

The problem is solved under the assumption that the applied load causes crack faces to be in a
smooth contact, thus, the opening mode stress intensity factor (SIF) K, is equal to zero. At the same

time, in front of the penny-shaped crack a shear stress exists even for the smooth contact of crack’s faces,
which causes nonzero values of a sliding mode SIF K,,. It is a challenging problem to find the latter

based on the proposed improved theory of plates of average thickness. However, one can obtain the
gualitative estimation of SIF using the approximate formula

K, (1,8)=2% (1, p)N2xl (23)
where 7 (I,ﬂ)=—3ﬂ(1—\/ﬁ) th(l) :\/Eqﬂéﬁ(l—\/ﬁ)R/h is a shear stress in front

of the crack.
In particular, for a case when the crack is placed at the median surface of the plate (ﬁ = 0.5), SIF

K, equals

K, (1,0.5)=0.3q+/zl -6R/h. (24)

Together with the Paris-like crack growth law this allows to simulate the internal fatigue crack
propagation in the composite laminates.

To verify the obtained results the dual boundary element method is utilized. The boundary integral
equations are adopted for studying of internal closed cracks. Special numerical quadratures, polynomial
transformations and shape functions are utilized for accurate determination of the stress intensity factor.
Numerical results are in good agreement with the analytic calculations.

Conclusion. This paper obtains the analytic dependences convenient for engineering applications
and calculation of stresses and displacements in isotropic and transversally-isotropic plates, damaged by
penny-shaped cracks. These results allow predicting with enough practical accuracy the strength and
rigidity of plates using the geometrical parameters of a crack in a plate, as well as physical characteristics
of material and its transversal anisotropy.
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