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DIFFERENT TYPE VIBRATION ABSORBERS DESIGN FOR ELONGATED CONSOLE 

STRUCTURES  
 

The main aim of this paper is different type dynamic vibration absorbers investigation and optimization. As the 

model of many actual systems in the literature, Timoshenko beams with various supporting conditions and DVA’s of various type 

are used. Methods of decomposition and numerical synthesis are considered on the basis of the adaptive schemes. Design of 

elongated elements of  machines and buildings in view of their interaction with system of dynamic vibration absorbers is 

under discussion. A technique is developed to give the optimal DVA’s for the elimination of excessive vibration in sinusoidal 

and impact  forced Timoshenko beams system. 

Key words: noise and vibration, elongated elements, dynamic vibration absorbers, optimization, Timoshenko beam.  

Eq. 17. Tabl. 1. Fig. 4. Ref. 24.  

 

Introduction. Noise and vibration are of concern with many mechanical systems including 

industrial machines, home appliances, transportation vehicles, and building structures. Many such 

structures are comprised of beam like console elements. The vibration of beam systems can be reduced by 

the use of passive damping, once the system parameters have been identified.  

Machines will typically introduce both acoustic and vibration energy into any fluids or structures 

surrounding the machinery. This is dangerous for both for its construction strength and human health. 

From two general classes of tools used to assess and optimize machines acoustic performance: test based 

methods and Computer Aided Engineering based methods, the second should be discussed in this paper. 

Large elongated elements, particularly such elements as big masts of fire machines or derricks elongated 

elements of agricultural machines, are dynamically unbalanced during operation due to their exposure to 

various factors. It is often impossible to balance this elements to reduce the vibration to an acceptable 

level. 

A tuned mass damper (TMD), or dynamic vibration absorber (DVA), is found to be an efficient, 

reliable and low-cost suppression device for vibrations caused by harmonic or narrow-band excitations. In 

the classical theory of DVA, the primary structure is modeled as a spring-mass system; however, other 

models also have high interesting research and engineering application. In particular, the pendulum type 

system occurring as a model of a solid body with a fixed fulcrum point can play an important role in 

many fields such as machinery, transportation and civil engineering. The effect of a DVA on a pendulum 

structure with the impact masses can be very different from that on a spring-mass system. 

The paper contemplates the provision of dynamic vibration absorbers (DVA) or any number of 

such absorbers [1, 2]. Such originally designed absorbers reduce vibration selectively in maximum 

vibration mode without introducing vibration in other modes. In order to determine the optimal 

parameters of an absorber the need for complete modeling of machine dynamics is obvious. Present 

research has developed a modern prediction and control methodology, based on a complex continuum 

theory and the application of special frequency characteristics of structures.  

The two most popular computational methods used in structural dynamics are: the finite element 

method (FEM) and the boundary element method (BEM). While investigating higher frequency ranges 

for acoustic applications and using finite elements, structures are decomposed into smaller and smaller 

elements. The mesh size is chosen so that its largest dimension does not exceed the wavelength of the 

vibration. Going in this direction, when dealing with complex and large structures, the number of 

elements often becomes prohibitive. The calculation of eigenvalues in the range of medium frequency 

becomes cumbersome and time consuming.  

Since the dynamic characteristics of some structural systems may be predicted by using a beam 

carrying single or multiple concentrated elements, the literature concerned is plenty. In [3] the vibration 

analysis of a uniform cantilever beam with point masses by an analytical-and-numerical-combined 

method is performed  The frequency equations of a Bernoulli–Euler beam to which several spring–mass 

systems are attached in span were investigated in [4].  The approach presented in [5] was based on the 

method which divided the beam into segments from the point attached to the spring–mass system. For the 

vibration analysis of beams with various attachments, various classical analytical methods are presented 

to solve the similar problems [6-10]. The hybrid methods and lumped-mass (model) transfer matrix 
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method are one of the known approaches in early years [11–14].  From reviews of the existing literature 

[3–14], one finds that the information regarding the  vibration analysis of a non-uniform beam with 

various boundary conditions and carrying multiple sets of pendulum type concentrated elements is rare, 

thus, the purpose of this paper is to extend the theories of [15-24] to the presented structures. 

Basic equations for discrete-continuum modelling. Problem of vibration fields modelling of 

complicated designs deformation and strain is considered for the purposes of dynamic absorption. The 

problem is solved on the basis of modified method of modal synthesis. The basis of these methods is in 

deriving solving set of equations in a normal form at minimum application of matrix operations. The 

essence of the first method consists in reviewing knots of junctions as compact discrete elements n
iA for 

which inertial properties are taken into account without reviewing their strain, and massive connected 

parts - as deformable elements c
iA , their inertion being taken into account on the basis of modal 

expansion.  

For every point  X=(x, y, z)  of  c
iA  we have 
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By variation of strain n
iU  and kinetic n

iK  energies for connecting and attached discrete element  

n
iA  we have 
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Here ijX are point of contact of discrete element n
iA  and continual element c

jA  and ijk – 

corresponding rigidity of connection. For the mass-less joints of continual elements we must add to the 

strain energy such terms 
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Kinetic energy variation of discrete one-mass element n
iA  is 
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 By Hamilton-Ostrogradsky variation equation  
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equating terms by independent variation parameters in (2-5) we obtain [15-24] 

,0)(  qqKqM  ,                                                       (6) 

a set of ordinary differential equations.  

 Beam modeling. For the beam modeling let us consider no uniform Timoshenko beam. The 

kinematical hypothesis are (for pure bending) are  

,),(),,,( ZtxtZYXU      ).,(),,,( txwtZYXW                                        (7) 
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By substitution of (7) into the variation Hamilton-Ostrogradsky equation  
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and taking the power series expansion for the functions  
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we obtain a set of ordinary differential equations for unknown time dependent functions (written in 

matrix form) 
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Here [M] and [C] are well known mass and rigidity matrix, 











pqr ,  – vector of unknown 

functions, 


f  vector of outer forces. Vectors F or f  consists of two parts 1: Fe or f e  –beam dynamic 

loading; 2: Fz or   f z – beam DVA connections terms ( ZeZe ffforFFF  ).  

. 

Pendulum – system modeling. Let us consider DVA-beam system. The first –ordinary mass elastically 

attached to the end of the beam and second – ordinary massive pendulum attached to the end of the beam 

(Fig. 1) 

 

 
(a) 

 

 
 

(b) 

 
(с) 

 

 Fig. 1. a) ordinary mass DVA ; b) –mast-single pendulum system; c) –pendulum with the additional 

elements  

The additional variations of the kinetic and potential energies caused by elastically suspended pendulum 

are 
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Here M is a concentrated DVA mass, W – tip beam deflection (in normal to the beam direction) Xm, Ym 

– DVAa’s  rejections in horizontal end vertical directions, L,α – geometrical parameters (Fig.1b).  

Combined now the set of equation for beam (10) and (11, 12) we obtain the complete system of dynamic 

equations 

   




 fRC
dt

Rd
M RR 2

2

.                                                          (13) 

Here  RM  and  RC  are complete mass and rigidity matrix, 






















mm YXpqr ,,,  – complete vector of 

unknown functions, 


f the same vector of outer forces.  

In Fig. 1с the pendulum type DVA with the additional elements is presented: 9 – an additional 

impact mass in container 2 with  elastic elements 8;  12 – additional linear spring  and 13 – additional 

friction damper. Anti-shock  system consist of elements 4-6, 11, 15.   

The additional variations of the kinetic and potential energies caused by impact mass  
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The additional elastic energy of elastic elements is 

  AxUAxAxKMmU xvxxvv  0;     (15) 

 

Numerical results, optimization. Let us at first consider the case of elastically connected DVA. 

The rigidity of elastic element is k and mass is m. In Fig. 2. results are presented for impact loading of 

beam with the elastically connected DVA. The mass of the tapered beam was 150 kg and length 15 m. 

Pendulum DVA is appropriately optimized (Fig. 1b). In Fig. 2. the results of optimization of first DVA 

(Fig. 1a) are presented by elastic and damping parameters. In Fig.3 the results of optimization of 

pendulum  DVA by the length and the mass of the pendulum are presented. The evaluation function was 

the maximum tip beam deflection under 5s. 

  TWF cTe 5max         (16) 

DVA are appropriately optimized by genetic algorithms near the beam first eigen-frequency.  

   1.45Hzf7.0,  HzfAMaxCiL       (17) 

The process of optimization for the DVA (Fig. 1c) is presented in Tabl. 1. 
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Fig. 2. The evaluation functions for 

elastically clamped DVA: M=10 kg 
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Fig. 3. Evaluation functions map for  DVA 

with the pendulum length La, mass Ma 

 

Table 1. 

______________________________N =    2___________________________________ 

  Mx  .179E+01   A   .228E+02   Dx  .143E+00   DGx  .153E+00   CiL  .182E+00 

   L  .290E+02   DM  .331E+00   Da  .563E-01    Ka  .825E+03 

______________________________N =  366___________________________________ 

  Mx  .127E+01   A   .222E+02   Dx  .108E+00   DGx  .321E-01   CiL  .116E+00 

   L  .215E+02   DM  .377E+00   Da  .126E-01    Ka  .280E+03 

______________________________N = 2452___________________________________ 

  Mx  .138E+01   A   .226E+02   Dx  .283E+00   DGx  .193E+00   CiL  .112E+00 

   L  .208E+02   DM  .423E+00   Da  .155E-01    Ka  .263E+03 

 

Here: Mx – additional impact mass, A – clearens, Dx – inner viscose-elastic damping in container, 

DGx –  damping in elastic elements, L – pendulum length, DM –  equivalent damping in frictional 

element, Da –  damping in linear spring, Ka – rigidly  of linear spring, CiL - the evaluation function.  

In Fig. 4. the results of DVA optimization is presented in graphical forms.  

Concluding remarks. As the model of many actual systems, Timoshenko tapered beams with 

console supporting conditions and DVA of various type are used. However, in these applications the DVA’s 

are frequently assumed to be elastically clamped. In the present study, a pendulum type DVA  attached to 

the tip of a cantilevered beam thus composing the system is under study. The dynamic equation of this 

combined system is derived. Comparison of the numerical results with the elastically clamped DVA and 

pendulum type DVA case reveals the fact that this second is more preferable for some parameter 

combinations. The more compact pendulum-type DVA with additional elastic, damping and impact 

elements present better vibroabsorbing properties in the wide frequency range.  
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Fig. 4. The results of DVA optimization presented in graphical forms: a) damping in linear 

spring 12 (see Fig. 1c); b Dm – equivalent damping in the  additional friction damper 13; b) The 

evaluation function, d) result of optimization in the frequency range 
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