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Y00ecvra deporcasna axademis 6ydisnuymea ma apximexmypu
2Kuiscokuti HayioHabHuil yHi6epcumem mexnoio2ii ma Ousatiny
BUBIP KOHCTPYKTUBHOI'O PIHLIEHHSA BUCOKOYACTOTHOI'O CTABIJII3BATOPA
JUHAMIYHOTI'O HATSTY HUTOK OCHOBH HIJISIXOM MOJAJBHOT'O AHAJII3Y B
ITAKETI ANSYS

Y pobomi pozenadacmupca KoncmpyKkyin 6ucoKouacmomno2o cmadinizamopa OUHAMIYHO20 HAMAZY HUMOK OCHOGU )
opmi monkoi mpukymnoi naacmunu 3 eupizom npu 3miHHIl Kinbkocmi pebep dycopcmxocmi. Po3e'azox 3aedanmns npo
GiZIbHI KOJIUGAHHA MAKOI CUCEMU MOJNCHA 00€PIHCamu MiibKu YUCETIbHUMU MemOoOamu. 3a60anHs UPIULYEMbCA MEMOOOM
CKiHueHHux enemenmie i3 3acmocysanuam npozpamu ANSYS. /locniosceno wicmo piznux KOHCMpPYKmMueHux eapianmie
eucoxouacmommnozo cmaoinizamopa. Y euxioniii modeni eapireanaca KinbKicms pebep xcopcmikocmi i ix 0oedxcuna.
Mooentoeanna 6uKOHAHE MAKUM YUHOM, WO O08XHCUHY KOMCHO20 pedpa MOXCHA 3MIHIOamu 6i0 Hynd, w0 6ionoeioac
giocymnocmi 6ionosionozo pebpa, 00 zpanuyunozo 3nauenua. Buznaueni nepwii n'ame énacnux uacmom i ¢hopm Koueams.
Ananiz pesynomamie nokasye, wjo 61ACHA YACMOMA KOIUGAHbL 00CA2AE CE020 MAKCUMANbHO20 3HAUEHHA NPU HAAGHOCMI
mpbox niOKPIn0aANbHUX pPedep MAKCUMATbHOT 006IICUHU.

Kntouosi cnosa: sucoxouacmomuuti cmabinizamop, mMpukymHa RIACMUHA, MemooO CKIHYeHHUX eleMeHmis, 61acHd
yacmoma, popma korueans, ANSYS.

H.I'. Cypbsinunos, /I.B. JIazapeBa, B.B. Ya0an
BbBIBOP KOHCTPYKTHUBHOI'O PEHIEHUSA BBICOKOYACTOTHOI'O CTABUJIM3ATOPA
JAUHAMUYECKOI'O HATA)KEHUS HUTOK OCHOBBI IYTEM MOJAJIBHOI'O
AHAJIN3A B ITIAKETE ANSYS

B pabome paccmampueaemcs KOHCIMPYKUYUS GbICOKOUACMOMHOZ0 CHMAOUNUZAMOPA OUHAMUYECKO20 HAMANCEHUA
HUMOK OCHOGbL 8 (hopme MOHKOI MmPey2obHOll NAACMUHRBL C 6bIPE30M NPU NEPEMEHHOM Kouvecmee pedep HceCmKoChu.
Pewienue 3a0auu 0 c600600HbIX KONEOAHUAX MAKOU CUCIEMBI MONHCHO NOAYUUMD NOABKO YUCTAEHHLIMU Memooamu. 3a0aua
pewaemces Memooom KOHEUHbIX iemenmos ¢ npumenenuem npozpammovt ANSYS. Hccneoosamnvt wecmv paznuunbix
KOHCIMPYKIMUBHBIX 6APUAHMOE BbICOKOUACMOMHO20 cmaodunusamopa. B ucxoonoit modenu 6apvuposeanocy Koauuecmeo
pebep ocecmkocmu u ux Oauna. Moodenuposanue GvlnoOIHEHO MAKUM 00pA30M, YMO ONUHY KaAXHCO020 pedpa MOIHCHO
UBMEHAMb Om HYIsA, YMO COOMEEMCHMEYen OMCYMCHEUI0 COOMEEMCIMEYIuez0 peopa, 00 NpPedebHO20 3HAUEHUA.
Onpedenenvt nepevie namb COOCMEEHHBIX uacmom u Gopm Konedanuii. Ananus pe3yabmamos HOKA3bIGACHl, YO
coOcmeeHHan yacmoma KoaebaHuil 00cmuzaem ce0ezo0 MAKCUMAIbHO20 3HAYEHUA NPU HATUYUU Mmpex NOOKPEenaAIouux
pebep makcumanbHol OUHbL.

Kniouegvie cnosa: evicokouacmommuwiti cmabunuzamop, mpeyoivbHas NIACMUHA, MEmMOO KOHEUHbIX I1eMeHMOs,
cobcmeennas wacmoma, gpopma xoneovanuti, ANSYS.
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CHOICE OF A CONSTRUCTIVE SOLUTION OF A HIGH-FREQUENCY STABILIZER OF
DYNAMIC TENSION OF A WARP THREADS BY MEANS OF A MODAL ANALYSIS IN
ANSYS PACKAGE

The paper discusses the design of a high-frequency stabilizer of dynamic tension of warp threads in the form of a thin
triangular plate with a notch with a variable number of stiffeners. The solution of the problem of free oscillations of such a
system can be obtained only by numerical methods. The problem is solved by the finite element method using the ANSYS
program. Studied six different design options for high-frequency stabilizer. In the initial model, the number of stiffeners and
their length varied. The simulation is performed in such a way that the length of each edge can be changed from zero, which
corresponds to the absence of the corresponding edge, to the limit value. The first five natural frequencies and oscillation
modes are determined. Analysis of the results shows that the natural frequency of oscillation reaches its maximum value in
the presence of three reinforcing ribs of maximum length.

Keywords: high-frequency stabilizer, triangular plate, finite element method, natural frequency, vibration shape, ANSYS.

Introduction. An analysis of the designs of the warp knitting and sewing machines showed that, as
a stabilizer of dynamic tension of the warp threads (SDTWT), mainly passive stabilizers are used, the
structures of which are based on an elastic element. Analytical studies of passive SDTWT confirmed the
validity of the requirements for the operating parameters of passive SDTWT - to have the maximum
possible natural frequency of oscillations with a relatively (comparable with the stiffness of the warp
threads in an elastic refueling system) low stiffness [1 - 4]. These requirements identified the main
directions of improvement of passive SDTWT - creation of high-frequency structures.

Problem formulation. The basis of the existing design solutions used to increase the natural
frequency, is to reduce the mass of moving elements of the stabilizer. At the same time, a way of
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increasing the rigidity of structures, which directly follows from the well-known formula seems to be
promising - [5 - 7]
c

0= |—,
m

where @ — natural frequency; ¢ — stiffness.

Moreover, it is proposed to increase the rigidity of the stabilizer by the arrangement of stamped
stiffeners, because this approach does not increase the mass of the system.

The paper considers the design of a high-frequency stabilizer of dynamic tension of warp threads
(SDTWT) in the form of a thin triangular plate with a notch with a variable number of stiffeners (Fig. 1).
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Fig. 1. Model of high-frequency SDTWT

Research results. The solution of the problem of free oscillations of such a system can be obtained
only by numerical methods, and the most effective, in our opinion, is the finite element method.
Currently, there are a large number of computer programs that implement this method. Among them, the
authors selected the ANSYS package [8-9], the capabilities of which allow the following types of
dynamic calculations to be performed: transient dynamics, modal analysis, response to harmonic
influence, spectral analysis, and response to random vibration.

Modal analysis allows you to determine the natural frequencies and mode shapes. In addition, it is
used as a reference for other, more detailed dynamic calculations, such as non-stationary dynamic
analysis or the response of the system to harmonic effects.

In ANSYS, modal analysis is a linear procedure. Any non-linearities like plasticity or gap-contact
elements are ignored, even if they are specified. Four methods are available to detect natural modes of
vibration, including damping.

When performing a modal analysis, the Young's modulus and the density of the material, which is
assumed to be linear, isotropic, or orthotropic, with properties depending or independent of temperature
are set.

When defining eigenmodes of vibration, four methods can be used: short-cut, subspace,
asymmetric (for problems with an asymmetric matrix, for example, when the fluid interacts with the
structure) and decrement (when friction cannot be neglected, for example, when analyzing movement on
a supporting surface).

For most applications, you need to choose between two methods: short-cut and subspace. The first
of them works faster, since it uses a shortened (condensed) matrix system to obtain a solution. However,
compared with the second method, it is less accurate.

The file of calculation results contains natural frequencies and shapes forms, as well as
corresponding stresses and forces.

When determining the natural frequencies and modes of oscillations of a structure, it is assumed
that free continuous oscillations occur [10]:
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Mu” +Ku =0 (1)
Note that the stiffness matrix of the structure K may include the effect of preloading.
For a linear system, the free oscillations will be harmonic:
U=g cosm t, )
where gZi — eigenvector representing the i-th form of oscillations;
o, — i-th natural circular eigenfrequency (radians per unit time);
t — time.
Thus, the matrix equation (1) takes the following form:
(-o’M+K)p, =0. 3)
This equation has a solution, in addition to the trivial (7% =0, only when the determinant of this
system (—wfﬁ + R) is zero, that is:
\—@2M+R\ =0. (4)

The last equation is the eigenvalue problem [11 - 12]. The solution of equation (4), if n is the order
of the matrix, is the characteristic polynomial of the n-th order, which has n roots: @?, @? ... >, where n

is the number of degrees of freedom. These roots are eigenvalues of the equation. The eigenvectors gZi
are obtained by substituting the obtained roots @’ into equation (3). The eigenvalue »” determines the

eigenfrequency of the system afa)f, and the eigenvector ;;i defines the corresponding form of

oscillations (displacement of the system).
The values of the natural cyclic frequencies @ and the natural technical frequencies f are related
by the following relationship:
.
f=—", 5
' 2 ©)
where f —i-th technical eigenfrequency (cycles per unit time).

Usually, the eigenvector g;i is called normalized if the following equality holds (reflecting the
orthogonality property of the forms of natural oscillations):

—T ——

¢ Mg, =1. (6)
In another case, the eigenvector _(;fi is normalized from the condition that its largest components are

equal to one. The condition of the orthogonality of the forms of oscillations can be explained as the
equality to zero of the forces of inertia of the i-th form of oscillations on the displacements of the k-th
form of oscillations.

When using the method of frequency condensation (reduction of degrees of freedom), the n
eigenvectors can then be expanded at the “expansion” stage to the full set of modal degrees of freedom of
the structure:

#u =K | [Kn Jo. U

where ési — the vector of excluded (auxiliary) degrees of freedom of the i-th mode (the auxiliary degrees
of freedom are those degrees of freedom that will be condensed to reduce the dimension of the system);

[Rss:|, |:Rsm:| — submatrices of stiffness with respect to auxiliary degrees of freedom and the

connection of auxiliary degrees of freedom with those held respectively;
éi — vector of the held (basic) degrees of freedom of the i-th mode.

The model is approximated by the standard Shell63 finite element. The element is defined by four
nodes, four values of thickness (in this case it is a constant value), the stiffness of the elastic base and the
properties of an orthotropic material. The direction of orientation of an orthotropic (in general) material is
related to the coordinate system of the element. The x-axis of the coordinate system can be rotated through
a certain angle.

The work of the element is based on the Kirchhoff — Love theory.

6 different design variants of high-frequency SDTWT were investigated (Fig. 1).
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In the initial model, the number of stiffeners and their length (1,,1,,1,) varied. The simulation is

performed in such a way that the length of each edge can be changed from zero (which corresponds to the
absence of the corresponding edge) to the limiting value:

1" =T77mm, 1577 =T7TMmm, 5% =60,28Mmm .

SDTWT options investigated:

eoption1: |, =I, =77mm, I, =0;

eoption 2: |, =1, =38,5mm, I, =0;

eoption 3: |, =l, =77mm, I, = 60,28mMm ;

eoption 4: |, =1, =38,5mMm, I, =30,14mm ;

eoption 5: I, =1, =1, =0 (triangle plate without ribs);

e option 6: triangle plate without ribs and notch.

The number of frequencies and vibration forms that can be obtained as a result of the calculation in
the ANSYS program is practically unlimited, however, it is obvious that higher frequencies can be of

only theoretical interest. Therefore, Table 1 shows the values of only the first five natural frequencies
(technical and cyclic) for each of the calculation options.

Table 1
Eigen frequencies
Eigen frequency
NQJ;@ Technical, Hz Cyclic, s™
opt fi f, f; f, fs 2} @, Wy @, s

1 ]66,04 502,08 | 779,65 | 1133,7 | 1676,0 | 414,9 | 3154,7 | 4898,7 | 7123,2 | 10530,6
46,44 | 271,58 | 393,40 | 621,47 | 712,54 | 291,8 | 1706,4 | 2471,8 | 3904,8 | 4477,0
72,21 | 548,7 | 827,56 | 1185,7 | 1835,6 | 453,7 | 3447,6 | 5199,7 | 7450,0 | 11533,4
46,77 | 275,52 | 397,55 | 642,86 | 714,16 | 293,9 | 1731,1 | 2497,9 | 4039,2 | 44872
42,67 | 199,86 | 243,18 | 536,98 | 585,61 | 268,1 | 1255,8 | 1527,9 | 3373,9 | 3679,5
55,60 | 250,91 | 265,25 | 624,63 | 682,75 | 349,3 | 1576,5 | 1666,6 | 3924,7 | 4289,8

OO IWIN

Table 1 analysis shows that the natural frequency of oscillation reaches its maximum value
(w,=453,7c*) in the presence of three reinforcing ribs of maximum length

(l, =1, =77mm, I, =60,28mm ). In this case, the mass of the plate (on the basis of the value

p =7800k2 / M*) is 10.362846 grams (Table 2).

Note that the ANSY'S program automatically calculates the mass of the plate for each of the options
considered, and minor differences in the numerical values of the mass are due to the fact that the program
perceives the edges as structural elements, not taking into account that these edges are obtained by
stamping, without the use of additional material.

Table 2
Plate volume and mass
NeNe ) pyote volume, mm® | Plate mass, g
of option

1 1275.50 9,94890

2 1208.30 9,42474

3 1328.57 10,362846

4 1232.53 9,613734

5 1140.17 8,893326

6 2000.00 15,6

Forms of natural oscillations corresponding to the first two eigenfrequencies given in Table 1 are
shown in Fig. 2-7.
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Fig. 2. Oscillation forms of the first calculation option

Ya g aN

1 form 2 form

Fig. 3. Oscillation forms of the second calculation option

Vay aNy

1 form 2 form

Fig. 4. Oscillation forms of the third calculation option

1 form 2 form

Fig. 5. Oscillation forms of the fourth calculation option
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Fig. 6. Oscillation forms of the fifth calculation option

i, i

1 form 2 form

Fig. 7. Oscillation forms of the sixth calculation option

Conclusions. In all the considered variants of calculation, the first form of oscillations is flexural,

and the other four forms are flexural-twisting.
Table 1 analysis shows that the natural frequency of oscillation reaches its maximum value

(w,=453,7c*) in the presence of three reinforcing ribs of maximum length
(I, =1, =77mm, I, = 60,28mm ).
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