УДК 669.136.9

Ю.Г. Чабак¹, Т.В. Пастухова¹, Н.П. Зайчук², Б.В. Ефременко¹, В.Г. Ефременко¹

ГВУЗ «Приазовский государственный технический университет»¹ Луцкий национальный технический университет²

СТРУКТУРА ЛИТОЙ ИЗНОСОСТОЙКОЙ СТАЛИ С ВЫСОКИМ СОДЕРЖАНИЕМ БОРА

В статье описана микроструктура, фазовое состояние и фазовый элементный состав литой износостойкой стали с комплексным легированием (5% W, 5% Mo, 5% V, 15% Cr, 2.5% Ti), содержащей 0,9% C и 1,5% В. Установлено, что сталь имеет эвтектическую структуру, состоящую из двух эвтектик: $((W,Mo,V,Cr,Ti)_2(B,C)_5+\phieppum)$ и $((Cr,W,Mo,V,Fe,Mn)_7C_3+aycmenum)$. Первая эвтектика имеет морфологию «Chinese Script», занимая 80% объема стали. Вторая эвтектика имеет розеточную морфологию; ее объемная доля составляет 10 %. Также в структуре содержатся компактные включения карбида $(Ti_{0,25}V_{0,15}W_{0,52} Fe_{0,06}Cr_{0,02})C$ и карбоборидов $M_2(B,C)$, $M(B,C)_2$ на базе титан. Твердость стали составляет 38 HRC, микротвердость эвтектики на базе карбоборидов – 456 HV, на базе карбида хрома – 870 HV.

Ключевые слова: мультикомпонентная сталь, бор, бориды, карбобориды, карбиды, эвтектика.

Ю.Г. Чабак, Т.В. Пастухова, Н.П. Зайчук, Б.В. Єфременко, В.Г. Єфременко СТРУКТУРА ЛИТОЇ ЗНОСОСТІЙКОЇ СТАЛІ З ВИСОКИМ ВМІСТОМ БОРУ

У статті описана мікроструктура, фазовий стан і фазовий елементний склад литої зносостійкої сталі з комплексним легуванням (5% W, 5% Mo, 5% V, 15% Cr, 2.5% Ti), що містить 0,9% C і 1,5% В. Встановлено, що сталь має евтектичну структуру, що складається з двох евтектик: $(W_{1,0}Mo_{0,3}Fe_{0,3}V_{0,2}Cr_{0,2})_2(B_{2,4}C_{2,6})_5 + ферит» і$ $«(Cr_2Fe_{2,7}V_{0,9}W_{0,8}Mn_{0,1}Ti_{0,1})_7C_3+ аустеніт». Перша евтектика має морфологію «Chinese Script», займаючи 80% обсягу$ сталі. Інша евтектика має розеткову морфологію; її об'ємна частка становить 10%. Також в структурі $містяться компактні включення карбіду (<math>Ti_{0,25}V_{0,15}W_{0,52}Fe_{0,06}Cr_{0,02}$)С і карбоборидів $M_2(B,C)$, $M(B,C)_2$ на базі титану. Твердість сталі становить 38 HRC, мікротвердість евтектики на базі карбоборидів – 456 HV, на базі карбіду хрому – 870 HV.

Ключові слова: мультикомпонентна сталь, бор, бориди, карбобориди, карбіди, евтектика.

Yu.G. Chabak, T.V. Pastukhova, N.P. Zaichuk, B.V. Efremenko, V.G. Efremenko STRUCTURE OF CAST WEAR RESISTANT STEEL WITH HIGH BORON CONTENT

The article describes the microstructure, phase state and phase elemental composition of cast wear-resistant steel with complex alloying (5 % W, 5 % Mo, 5 % V, 15 % Cr, 2.5 % Ti) containing 0.9 % C and 1.5 % B. The steel is intended for pulsed-plasma deposition of protective coatings. The work is fulfilled using optical microscopy, scanning electron microscopy, EDS-analysis, hardness measurements. It is established that steel has a eutectic structure consisting of two eutectics: $((W_{1,0}Mo_{0,3}Fe_{0,3}V_{0,2}Cr_{0,2})_2(B_{2,4}C_{2,6})_5 + ferrite» and <math>((Cr_2Fe_{2,7}V_{0,9}W_{0,8}Mn_{0,1}Ti_{0,1})_7C_3 + austenite»$. The first eutectic has the "Chinese Script" morphology, occupying 80 % of the steel volume. The second eutectic has a rosette morphology; its volume fraction is 10 %. The structure also contains compact inclusions of carbide $(Ti_{0,25}V_{0,15}W_{0,52}Fe_{0,06}Cr_{0,02})C$ and carboborides $M_2(B,C)$, $M(B,C)_2$ based on titanium. The hardness of the steel is 38 HRC; the microhardness of carboborides -based eutectic is 456 HV, of chromium carbide-based eutectic on the basis of is 870 HV.

Keywords: multicomponent steel, boron, borides, carboborides, carbides, eutectics.

Постановка проблемы. Обеспечение высокой эксплуатационной долговечности деталей машин во многом зависит от правильного выбора материала. Для быстроизнашивающихся металлоизделий эффективным является применение материалов триботехнического назначения, в частности, износостойких сплавов разных систем легирования, включая белые чугуны специального назначения. Несмотря на достигнутые успехи в области триботехники, химический состав и технология обработки этих сплавов продолжают совершенствоваться за счет применения нетрадиционных решений.

Анализ последних исследований и публикаций. К группе износостойких чугунов относятся мультикомпонентные чугуны (МКЧ) (multi-component cast irons), разработанные японскими учеными в середине 1990-х годов [1, 2]. Эти чугуны легированы несколькими сильными карбидообразующими элементами в примерно равной пропорции, что приводит к формированию комплексной структуры, состоящей из аустенитно-карбидных эвтектик на базе карбида M_7C_3 и других карбидов (M_6C , M_2C , MC). Классический мультикомпонентный чугун содержит 2...5 % Cr, 2...5 % V, 2...5 % W, 2...5 % Mo, 2...5 % Co [1...3]. Существуют и другие модификации МКЧ, например, в работах Шимидзу с соавторами [4, 5] описываются структура и свойства чугунов, содержащих (кроме вольфрама, ванадия и хрома) ниобий в количестве 3...5 %. В работе [6] исследованы МКЧ, содержащие 3...5 % Ni. В статьях [1, 7] описывается успешное применение МКЧ при производстве валков горячей и холодной прокатки.

Другим направлением в разработке износостойких сплавов является разработка сплавов с высоким содержанием бора [8, 9]. Эти сплавы содержат карбидообразующие элементы, чаще всего

хром, однако, в отличие от чугунов, углерод в них заменен (полностью или частично) на бор. Количество вводимого бора доходит до 3 %, количество углерода не превышает 1,5 % [10, 11]. Структура таких сплавов содержит боридную (карбоборидную) эвтектики, а матрицей, в зависимости от термообработки, является феррит или мартенсит. Преимуществом высокобористых сплавов является более высокая твердость боридов по сравнению с карбидами, образованными теми же элементами. Это обеспечивает повышенный уровень износостойкости по сравнению с чугунами [12].

Перспективным направлением является объединение обеих перечисленных концепций проектирования износостойких материалов. Речь идет о создании новой группы сплавов – мультикомпонентных сталей с высоким содержанием бора. До настоящего времени такие сплавы не исследованы и не описаны, что оставляет достаточное широкое поле деятельности для исследований. Также представляет интерес изучить возможность применения таких материалов при нанесении импульсно-плазменных износостойких покрытий. Как показано в работах [13, 14], использование белого чугуна и быстрорежущей стали в качестве расходуемого электрода при импульсно-плазменной обработке позволяет создавать покрытия, содержащие большое количество карбидной фазы, что обеспечивает высокий уровень абразивной износостойкости.

Цель работы – исследование структурного и фазового состояния мультикомпонентной стали с высоким содержанием бора, предназначенного для нанесения износостойких покрытий с помощью импульсно-плазменного напыления.

Методика. Сталь номинального состава 0,9% С – 1,5% В – 10% Сг – 5% W – 5% Мо – 5% V – 2,5% Ті была выплавлена в 25-ти килограммовой лабораторной индукционной печи и разлита в песчаную форму. Микроструктуру стали исследовали после травления 4%-м раствором ниталя, применяя оптический микроскоп Nikon Eclipse M200 и электронный сканирующий микроскоп JEOL JSM-6510. Химический состав фазовых составляющих определяли EDS-методом с помощью детектора JEOL JED-2300. Фазовый состав сплава исследовали рентгеноструктурным методом с помощью дифрактометра Rigaku IV Pro в CuK_{α}-излучении; количество феррита и аустенита в матрице стали подсчитывали по методике, изложенной в [15]. Твердость измеряли по методу Роквелла (шкала С), микротвердость – с использованием твердомера Future-Tech FM-300 при нагрузке 20 г. Объемную долю структурных компонентов (карбидов, эвтектических колоний) подсчитывали методом секущих.

Результаты исследований и их обсуждение. На рис. 1 приведено оптическое изображение микроструктуры сплава, полученное при небольшом увеличении, что дает возможность оценить общий характер структуры. Из рис.1, а видно, что сталь имеет эвтектическую структуру, представленную колониями эвтектики с достаточно плотным распределением упрочняющей фазы. Избыточные фазы в виде дендритов твердого раствора или первичных боридных (карбидных) включений выявлены не были. Периферии колоний имеют более разреженный характер, что свидетельствует о радиальном росте колоний из центра кристаллизации.

Анализ микроструктуры показал, что большая часть объема сплава занята эвтектикой, вид которой показан на рис. 1, б. Такой характер эвтектики очень схож с эвтектикой «Chinese Script» [16], в которой включения разветвленной фазы формируют рисунок, напоминающий очертание китайских иероглифов. Колония имеет инвертированное строение, т.е. упрочняющие волокна являются разветвленной фазой, а твердый раствор – матрицей. Видно, что рост эвтектической колонии происходил из определенного центра в радиальных направлениях. С удалением от центра ветви колонии расходились в пространстве с одновременным утолщением упрочняющих включений. При разрастании волокна кристаллизовались в виде «трубок» прямоугольного сечения, что особенно четко проявляется в периферийных участках колоний, где толщина стенок таких «трубок» составляет от 0,5 до 2,7 мкм.

Исследование структуры с помощью СЕМ показали, что помимо эвтектики «Chinese Script» в структуре присутствует инвертированная эвтектика иного типа с розеточным распределением разветвленной фазы, имеющей на СЭМ-изображениях более темную окраску (рис.1, в). Подобная морфология эвтектики характерна для высокохромистых чугунов. Кроме эвтектических структурных составляющих, в структуре выявлены компактные включения, равномерно распределенные в объеме сплава (показаны стрелками на рис. 1, б).

Обработка полученных изображений микроструктур показала, что эвтектика «Chinese Script» занимает 80,4 % площади микрошлифа, а эвтектика розеточного типа – 10,9 %. Доля компактных включений составляет 8,7 %.

Дюрометрические исследования показали, что средняя твердость сплава составляет

Рис. 1. Микроструктура сплава: а – оптический микроскоп; б, в – СЭМ-изображения.

Результаты рентгеноструктурного анализа сплава представлены в таблице 1. На дифрактограмме были выявлены максимумы, относящиеся к αFe и γFe, т.е. матричная фаза сплава представлена как ферритом, так и аустенитом. Судя по соотношению интенсивностей пиков, доля феррита в матрице составляет 74,9 %, а доля аустенита – 25,1 %. Кроме этих фаз, на дифрактограмме присутствуют линии, относящиеся к боридным и карбидным фазам. Для большинства таких линий не удалось провести четкой идентификации, поскольку различные фазы, которые, судя по химическому составу стали, могут присутствовать в ее структуре, имеют близкие значения d/n. Для более точного определения фазового состава стали применили метод энергодисперсионной спектроскопии, позволивший получить данные о химическом составе фазовых составляющих.

Устанвовлено, что включения в эвтектике «Chinese Script» содержат W, Mo, V, Fe и Cr при более высоком содержании вольфрама (21,83 %) и железа (20,68%) и меньшем содержании других элементов (13,51% Mo; 16,23% V; 12,20% Cr; 0,75% Ti). Марганец входит в состав включения как примесь (0,10%). Также в этих включениях присутствуют бор (10,19%) и углерод (4,52%). Соответствующий рентгеновский спектр включения приведен на рис. 2, а. Среди зафиксированных дифракционных пиков достаточно часто встречаются пики (линии 2...4, 12, 15), которые могут быть отнесены (наряду с другими фазами) и к боридам M_2B_5 (W_2B_5 , Mo_2B_5 , Ti_2B_5). Учитывая это, а также химический состав включений эвтектики «Chinese Script», можно предположить, что они представляют собой комплексно-легированный карбоборид М₂(B,C)₅. С учетом содержания элементов В карбобориде его формула может быть представлена как $(W_{1,0}Mo_{0,3}Fe_{0,3}V_{0,2}Cr_{0,2})_2(B_{2,4}C_{2,6})_5.$

Таблица 1

370

Результаты рентгеноструктурных исследований				
N⁰	Угол 20,	d/n	Фаза	Интенсивность
лини	град.			
1	29,68	3,011	Ti ₂ B (3,06)	сл.
2	35,04	2,562	Fe ₂ B (2,56), W ₂ B ₅ (2,58), Mo ₂ B ₅ (2,58)	cp.
3	36,92	2,436	$Ti_2B_5(2,42)$	cp.
4	39,88	2,262	$W_2B_5(2,25), Ti_2B_5(2,26)$	оч. сл.
5	43,48	2,082	γFe	C.
6	44,64	2,031	αFe	O. C.
7	46,84	1,941	Ti ₂ B (1,93)	ср. сл.
8	50	1,825	Cr ₇ C ₃ (1,837), Fe ₂ B (1,83), Ti ₂ B (1,83), Cr ₂ B (1,833)	сл.
9	56,32	1,634	Cr ₂ B (1,64), Ti ₂ B (1,62), Fe ₂ B (1,63)	сл. ср.
10	61,12	1,53	TiC (1,52), V ₃ B ₂ (1,515), MoB ₂ (1,53), VB ₂ (1,528)	сл.
11	65	1,435	αFe	cp.
12	71,76	1,316	$Ti_{2}B(1,33), W_{2}B_{5}(1,32), Mo_{2}B_{5}(1,30), Ti_{2}B_{5}(1,33)$	сл.
13	74,04	1,281	γFe	сл.
14	76,16	1,250	TiC (1,249), Ti ₂ B ₅ (1,26), Cr ₅ B ₃ (1,25), FeB (1,25)	сл. ср.
15	80,2	1,197	Mo ₂ B ₅ (1,19), VB ₂ (1,19), W ₂ B (1,18)	сл.
16	82,4	1,171	αFe	cp. C.
17	97,72	1,024	TiB ₂ (1,02), VB ₂ (1,019)	сл.
18	98,92	1,015	αFe	сл. ср.
19	116	0,909	γFe	сл. ср.
20	128,2	0,857	VB ₂ (0,865), TiB ₂ (0,843)	сл.
21	137,48	0,827	αFe	сл.

Матрица эвтектики «Chinese Script» содержит 8,53% Cr; 1,23% V, 0,95% Мо и 0,79% W, остальное – железо (рис. 2, б). Обращает на себя очень низкое содержание марганца в матрице (0,01%). Также в матрице зафиксировано присутствие 3,54% углерода, что представляется явно завышенным. Известно, что EDS-анализ дает лишь качественную оценку присутствия углерода, сильно завышая его концентрацию в связи с загрязнением поверхности углеродсодержащими веществами, имеющим место при изготовлении и травлении шлифа.

Эвтектические включения, относящиеся к розеточной эвтектике, имеют химический состав, отличный от включений эвтектики «Chinese Script» (рис. 2, в). К основным их компонентам относятся железо (38,37%) и хром (30,50%). Ванадий, молибден и вольфрам присутствуют в меньшем количестве (13,43%; 3,60%; 4,30%, соответственно). Марганца и титана содержится существенно больше (1,28% и 1,33%, соответственно), чем в карбоборидах эвтектики «Chinese Script». Отличительной чертой включений в розеточной эвтектике является присутствие 7,18% углерода при отсутствии бора, т.е. включения являются карбидами на базе хрома, предположительно Cr₇C₃. Линия такого карбида (№ 8) присутствует на дифрактограмме, соответствуя отражению при угле 20 равном 50 град. Поскольку карбид содержит различные следует представить с учетом элементы, его формулу химического состава как $(Fe_{2,7}Cr_2V_{0,9}W_{0,8}Mn_{0,1}Ti_{0,1})_7C_3.$

В матрице розеточной эвтектики содержится гораздо больше легирующих элементов по сравнению с матрицей эвтектики «Chinese Script», а именно: хрома (26,44%), ванадия (7,80%), молибдена (3,49%), вольфрама (2,60%), марганца (1,04%) (рис. 2,в). Указанные концентрации карбидообразующих элементов (особенно Cr и V), а также углерода (7,55%) представляются завышенными. Очевидно, при определении химического состава матричных зон в зону действия детектора при точечном анализе попали участки эвтектических карбидов вследствие малого расстояния между карбидами в эвтектике. Таким образом, карбиды обеспечили кажущийся повышенный уровень содержания указанных выше элементов. Несмотря на это, общее содержание углерода и легирующих элементов в матрице розеточной эвтектики выше, чем в матричной фазе эвтектики «Chinese Script», что является предпосылкой для формирования аустенитной структуры основы. Учитывая это обстоятельство, а также наличие в стали двух типов твердых растворов – феррита и аустенита, можно полагать, что феррит является матрицей эвтектики «Chinese Script», а аустенит – матрицей розеточной эвтектики. Это соответствует соотношению долей фаз, определенному рентгеноструктурным методом, а также соотношению объемных долей обесих эвтектик.

Puc. 2. EDS-спектры с различных фазовых составляющих: а – включение эвтектики «Chinese Script», б – матрица эвтектики «Chinese Script», в – включение розеточной эвтектики, г – матрица розеточной эвтектики, д – компактные включения

Установлено, что компактные равноосные включения, равномерно распределенные в объеме стали, обогащены титаном (35,83%), ванадием (20,93%) и вольфрамом (19,87%). В меньшей степени в них присутствует железо (2,81%) и хром (1,49%) (рис. 2, д). Концентрация углерода составляет 13,33%, бор отсутствует. Соответственно, эти включения идентифицируются как сложные карбиды ($Ti_{0,25}V_{0,15}W_{0,52}$ $Fe_{0,06}Cr_{0,02}$)C с кубической решеткой карбида титана (линии №№ 10, 14 в табл. 1). Кроме этого, на дифрактограмме выявлены часто встречающиеся линии, относящиеся к боридам титана Ti_2B (линии №№ 1, 7, 9) и TiB_2 (линии №№ 17, 20) и не совпадающие с линиями карбида титана. Это дает основание предположить, что часть компактных включений является карбоборидами $M_2(B,C)$, $M(B,C)_2$ на базе титана, имеющими те же морфологические признаки, что и карбиды MC. Карбиды и карбобориды титана равномерно распределены в объеме сплава независимо от расположения эвтектических колоний, следовательно, они кристаллизовались первыми еще до начала эвтектических реакций.

Таким образом, установлено, что экспериментальная сталь содержит в своей структуре

достаточно большое количество карбидных и карбоборидных фаз, что может обеспечивать стали повышенный уровень триботехнических свойств. Направлением дальнейших исследований является изучение микроструктуры и износостойкости покрытий, полученных импульсноплазменным напылением с использованием исследованной стали в качестве расходуемого электрода.

Выводы.

1. Впервые изготовлена и исследована литая мультикомпонентная высокобористая сталь содержащая номинально 0,9% С; 1,5% В; 10% Сг; 5% W; 5% Мо; 5% V; 2,5% Ті. Сталь имеет ee эвтектическое строение, структура состоит ИЗ инвертированных эвтектик «(W_{1,0}Mo_{0,3}Fe_{0,3}V_{0,2}Cr_{0,2})₂(B_{2,4}C_{2,6})₅+феррит» и «(Cr₂Fe_{2,7}V_{0,9}W_{0,8}Mn_{0,1}Ti_{0,1})₇C₃+аустенит». Кроме того, в структуру стали входят компактные включения карбида (Ti_{0.25}V_{0.15}W_{0.52} Fe_{0.06}Cr_{0.02})С и карбоборидов М₂(B,C), М(B,C)₂ на базе титана.

2. Эвтектика на базе карбоборида (W, M)2(B, C)5 имеет морфологию «Chinese Script», а эвтектика на базе карбида хрома (Cr, M)₇C₃ – розеточное строение, характерное для высокохромистых ЧУГУНОВ. В эвтектике «Chinese Script» включения карбоборидов кристаллизуются в виде «трубок» прямоугольного сечения с толщиной стенки до 2,7 мкм.

3. Карбиды и карбобориды титана равномерно распределены в объеме сплава, что указывает на их кристаллизацию из жидкости до начала эвтектических реакций.

Литература.

1. Wu H.-Q. Solidification of multi-component white cast iron: Type and morphology of carbides / H.-Q. Wu, N. Sasaguri, Y. Matsubara, M. Hashimoto // AFS Transactions. - 1996. - vol. 104. - P. 103-108.

2. Matsubara Y., Sasaguri, N., Yokomizo, Y., and Wu. H.-Q.: Continuous cooling transformation behavior of multi-component white cast iron / Y. Matsubara, N. Sasaguri, Y.Yokomizo, H.-Q. Wu // Journal of Japan Foundry Engineering Society. - 1999. - vol. 71. - P.183-189.

3. Yu K. Abrasion Wear Resistance of Alloyed White Cast Iron with Several Types of Carbides and Matrices / K. Yu, Y. Matsubara // AFS Transactions. - 1998. - vol. 27. - P. 53-58.

4. Kusumoto K. Abrasive wear characteristics of Fe-2C-5Cr-5Mo-5W-5Nb multi-component white cast iron / K.Kusumoto, K.Shimizu, X.Yaer [et al.] // Wear. - 2017. - vol. 376–377. – P. 22–29.

5. Kusumoto K. Three body type abrasive wear characteristics of multi-component white cast irons / K. Kusumoto, K. Shimizu, V.G. Efremenko [et al.] // Wear. - 2019. - vol. 426-427. - P. 122-127.

6. Zhang Y. Influence of Ni addition on erosive wear characteristics of multi-component white cast iron at elevated temperature / Zhang Y., K. Kusumoto, K. Shimizu [et al.] // Wear. - 2017. - vol. 376-377. - P. 452-457.

7. Matsubara Y. Solidification and abrasion wear of white cast irons alloyed with 20% carbide forming elements / Y. Matsubara, N. Sasaguri, K. Shimizu [et al.] // Wear. - 2001. - vol. 250. - P. 502-510.

8. Christodoulou P. A step towards designing Fe-Cr-B-C cast alloys / P. Christodoulou, N. Calos // Materials Science and Engineering: A. - 2001. - vol. 301. - is. 2. - P. 103-117. 9. Li Y.X. Development of boron white cast iron /Y.X. Li, Z.L. Liu, X. Chen // International Journal of Cast

Metals Research. - 2008. - vol. 21. - is. 1-4. - P. 67-70.

10. Kazdal H. Effect of Boron and Heat Treatment on Mechanical Properties of White Cast Iron for Mining Application / H. Kazdal, Z. Hakan, Y. B. Berme // Journal of Iron and Steel Research, International. - 2011. - vol. 18. is. 11. – P. 31-39.

11. Jian Y. Investigation on two-body abrasive wear behavior and mechanism of Fe-3.0 wt% B cast alloy with different chromium content / Y. Jian, Z. Huang, J. Xing // Wear. - 2016. - vol. 362-363. - P. 68-77/

12. Ma S. Wear resistant high boron cast alloy – a review / S. Ma, J. Zhang // Rev. Adv. Mater. Sci. – 2016. – vol. 44. – P. 54-62.

13. Efremenko V. G. Pulsed plasma deposition of Fe-C-Cr-W coating on high-Cr-cast iron: effect of layered morphology and heat treatment on the microstructure and hardness / V. G. Efremenko, Yu. G. Chabak, A. Lekatou [et al.] // Surface and Coating Technology. - 2016. - Vol. 304. - P. 293-305.

14. Chabak Yu. G. Phase-Structural Composition of coating obtained by pulsed plasma treatment using eroded cathode of T1 high speed steel / Yu. G. Chabak, V. I. Fedun, K. Shimizu [et al.] // Problems of Atomic Science and Technology. Series «Plasma Electronics and New Acceleration Methods». - 2016. - № 4. - P.100-106.

15. Efremenko V.G. Two-body abrasion resistance of high-carbon high-silicon steel: Metastable austenite vs nanostructured bainite / V.G. Efremenko, O. Hesse, Th. Friedrich [et al.] // Wear, 2019, Vol. 418-419, Pages 24-35.

16. Georgatis E. Development of a Cast Al-Mg2Si-Si In Situ Composite: Microstructure, Heat Treatment, and Mechanical Properties / E. Georgatis, A. Lekatou, A.E. Karantzalis // Journal of Materials Engineering and Performance. -2013. - vol. 22. - P. 729-741.

Рецензент

Маслов Владимир Александрович, профессор, ГВУЗ «Приазовский Д.Т.Н., государственный технический университет»

Стаття надійшла до редакції 05.05.2019

© Ю.Г. Чабак, Т.В. Пастухова, Н.П. Зайчук, Б.В. Ефременко, В.Г. Ефременко