УДК 663.3

ХІМІКО-ТЕХНОЛОГІЧНА ОЦІНКА ПЛОДІВ БУЗИНИ ЧОРНОЇ ТА РОЗРОБКА ТЕХНОЛОГІЇ НЕКРІПЛЕНИХ ВИНОМАТЕРІАЛІВ З НИХ

Токар А.Ю., канд. с.-г. наук, доцент Уманський національний університет садівництва, м. Умань

Наведено дані про вміст компонентів хімічного складу в плодах дикорослої бузини чорної та некріплених виноматеріалах з них.

Data about of the contents of components the chemical composition in fruits of wild black elderberry and non-fortified wine materials with them.

Ключові слова: бузина чорна, погодні умови, вегетація, плоди, обробка, сік, некріплені виноматеріали.

Вітчизняні грунти та клімат народжують плоди, ягоди, лікарські рослини, збагачені необхідними для здоров'я речовинами – мікро- та макроелементами, вітамінами, амінокислотами, органічними кислотами, фенольними, пектиновими та іншими сполуками, тільки вміле поєднання їх перетворює у найкращі ліки. Вино є нешкідливим, а навпаки – корисним для людини напоєм, та одним із засобів боротьби з алкоголізмом [1].

Плоди і ягоди мають антиокислювальні властивості. Аскорбінова кислота виявляє специфічну антирадіаційну дію, має антиокислювальні властивості, позитивно діє на центральну нервову систему. Встановлено протизапальні, антивірусні, протиканцерогенні властивості флавоноїдів, антоціанів і проантоціанідинів [2–4].

За останні роки стала більш відомою надзвичайна корисність плодів бузини чорної. Проте їх не споживають свіжими і в Україні не застосовують для промислового виготовлення вин, які готують тільки в домашніх умовах. Тому проведення хіміко-технологічної оцінки плодів бузини чорної з метою визначення їх придатності для виготовлення кондиційних некріплених виноматеріалів на промисловій основі є своєчасним.

За даними вчених [5,6], плоди бузини дрібні, їх середні розміри близько 6-7 мм. Вони мають темний, майже чорний колір. Ягоди містять (11,2-18,2) % сухих речовин, (3,36-10,48) % — загальних цукрів, (2,2-5,8) г/дм³ — титрованих кислот, (11,0-19,6) г/дм³ — барвних речовин, 0,29 % — дубильних і барвних речовин, 0,61 % — пектинових речовин, 51,8 мг% — вітаміну С, 1140-1200 — поліфенолів, 420-570 мг% — катехінів і лейкоантоціанів. В Україні в дикорослому стані ε майже у всіх областях [7].

Дослідження проводили протягом 1994-2007 років в Уманському національному університеті садівництва. Метою роботи було проведення хіміко-технологічної оцінки ягід бузини чорної дикорослої з метою визначення їх придатності для виготовлення некріплених виноматеріалів. Витягання соку проводили за двома технологіями: А – до підготовлених ягід бузини додавали (10-15) % прокип'яченої води і нагрівали плоди до температури (80-85) °С 3–5 хвилин. З розрахунку середнього виходу соку додавали цукор-пісок і доводили початкову масову концентрацію цукрів до необхідної. Після охолодження до температури (18-20) °С у сусло додавали розводку чистої культури дріжджів і бродіння проводили з мезгою. Виноматеріали за технологією А виготовляли у 1994-1996, 1999, 2006 і 2007 рр. За технологією Б – до ягід бузини додавали (10-15) % прокип'яченої питної води і нагрівали до температури (80-85) °С 3-5 хвилин, після охолодження пресували, одержували сік І фракції. Вичавки заливали кип'яченою водою у співвідношенні 2:1, настоювали 4 години і пресували повторно. Соки І та ІІ фракції змішували, з них готували виноматеріали. Масова концентрація цукрів до бродіння у суслі була 26,6 і 27,5 г/100см³. У 1994, 1995, 1999, 2000 і 2005 роках для зброджування застосовували расу Сидрова 101, у 2006 році – різні раси, у 2007 році – активні сухі дріжджі ЕС-1118. Компоненти хімічного складу визначали стандартними методами.

Результати досліджень. Плоди бузини чорної у роки досліджень накопичували від 6,0 до 10,0 % СРР (табл. 1). Вміст цукрів також змінювався у досить широких межах. Їх частка переважала у СРР. За середніми даними вони складали 60,5 %. Однак у плодах, зібраних у 2000 році, вміст цукрів був усього 46,7 % від вмісту СРР. В окремі роки питомий вміст цукрів у плодах бузини досить високий. Зокрема, 67,6 % – у 1994 р. та 71,1 % – у 2006 р. Вміст СРР та цукрів у плодах бузини значно менший у порівнянні з окультуреними видами плодової та ягідної сировини, вирощеної в умовах Центрального Лісостепу України.

Плоди бузини дуже відрізнялися за масовою часткою титрованих кислот. Найменше (0,56 %) титрованих кислот містили плоди врожаю 2006 року. У 2000 р. вони накопичили титрованих кислот у 2,14 рази, а 1999 р. – у 2,23 рази більше. У більшості варіантів вміст титрованих кислот був наближеним до

оптимального у виноробстві. Винятком ε плоди 1999 та 2000 років урожаю, коли вміст титрованих кислот перевищував оптимальний.

Dir rmorroro		Вміст аскорбінової		
Рік урожаю	CPP	цукрів	титрованих кислот	кислоти, мг у 100 г
1994	7,4	5,0	0,93	52,0
1995	8,7	4,9	0,64	46,0
1996	7,2	4,2	0,72	50,8
1999	9,6	6,0	1,25	64,4
2000	6,0	2,8	1,20	82,0
2004	10,0	6,5	0,88	49,3
2005	8,6	5,0	0,77	54,0
2006	9,0	6,4	0,56	33,0
2007	9,2	5,4	0,75	46,0
HIP_{05}	0,8	0,4	0,08	4,4
Середнє	8,4	4,9	0,86	53,1

Таблиця 1 – Вміст компонентів хімічного складу у плодах бузини чорної

Отже, при виготовленні некріплених виноматеріалів з плодів чорної бузини матимуть місце високі витрати цукру-піску, однак соки не потребують нормалізації за вмістом титрованих кислот.

Очевидним ϵ вплив погодних умов вегетаційного періоду на формування якості плодів бузини чорної. За найбільшої суми опадів протягом вегетаційного періоду в 1996, 2000 і 2005 рр. середньомісячні температури відрізнялися всього на (0,1-0,4) °C, у плодах накопичилася найменша кількість СРР та цукрів. Найбільша концентрація органічних кислот відмічена у плодах бузини врожаю 1999 р. за максимальної кількості опадів та найвищої середньомісячної температури вегетаційного періоду. У цьому році був найвищим гідротермічний коефіцієнт, із зниженням значення якого концентрація органічних кислот у плодах бузини чорної знижується.

Плоди бузини чорної накопичували 33–82 мг у 100 г аскорбінової кислоти, найбільший вміст якої був за найвищої концентрації титрованих кислот у плодах.

При витяганні соку за технологією Б, вихід соку в перерахунку на клітинний сік плодів перевищував вихід за технологією A на 2,2 дал/т (рис. 1).

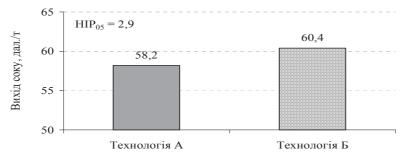


Рис. 1 – Вихід соку з плодів бузини чорної залежно від технології (середній за роки досліджень)

При цьому відходи і втрати при зберіганні, сортуванні, митті, інспекції дорівнювали 6 %, кількість гребенів (10-15) %. Результати дисперсійного аналізу показали, що на вихід соку з плодів бузини найбільш істотно впливали умови року та взаємодія факторів, вплив способу витягання був менший (ступінь впливу відповідно такий 55,0 %; 28,1; 16,7 %).

Соки з ягід бузини чорної також відрізнялися між собою за густиною та за фізико-хімічними показниками якості (табл. 2).

Так, соки, одержані за технологією Б, містили менше чи на одному рівні СРР і цукрів із соками за технологією А. Результати дисперсійного аналізу показали, що ступінь впливу на густину та фізико-хімічні показники фактора — умови року був найголовнішим, від 32,0 до 84,3 %, вплив взаємодії факторів технології та умов року — (13,0-33,9) %. Вплив технології на густину, вміст СРР та цукрів у сокові з бузини приблизно на одному рівні (23,6-26,9) %, а от на масову концентрацію титрованих кислот вплив технології дорівнював усього 0,1 %.

Масова концентрація, г/дм³ Рік Масова частка Технологія Густина титрованих CPP, % урожаю цукрів кислот 1994 1.027 48 9.0 Α 1995 43 Α 1,029 7,6 5,6 1996 1,026 7,0 41 7,0 A 1999 A 1,033 8,6 54 1,2 Б 2000 1,018 4,9 23 9,8 1,031 53 7,2 Б 2004 8,2 Б 2005 1,026 7,0 41 6,2 A 2006 1.034 9.0 64 5,6 A 2007 1,035 9,2 54 7,5

Таблиця 2 – Густина та фізико-хімічні показники якості соків з плодів бузини чорної

У роки досліджень тривалість бродіння сусел з плодів бузини чорної була 31-60 діб (табл. 3). Сусла досить швидко заброджували й інтенсивно бродили. Об'ємна частка етилового спирту вища за 13 % визначалася вже через 12-15 днів бродіння. Потім сусла повільно доброджували і в кінці бродіння іноді спостерігалося підвищення етилового спирту.

0,2

0.003

 HIP_{05}

В результаті бродіння у виноматеріалах накопичувалась різна кількість етилового спирту, об'ємна частка якого була від 13 до 16,6 %. Відповідно до концентрації етилового спирту різною була концентрація залишкових цукрів у виноматеріалах.

Таблиця 3 – Тривалість бродіння та фізико-хімічні показники якості виноматеріал	ΙİΒ
з плодів бузини чорної	

Рік урожаю,	Тривалість	Об'ємна час-	Масова концентрація, г/дм ³			Вміст аскорбі-	
технологія	бродіння,	тка етилового	залишкових	титрованих	летких	залишкового	нової кислоти,
Технологи	доба	спирту, %	цукрів	кислот	кислот	екстракту	мг у 100 г
1994, A	31	16,0	2	6,4	0,72	28,8	20,0
1995, A	46	16,6	1	4,5	0,26	32,7	30,5
1996, A	38	16,0	1	6,1	0,61	36,4	30,0
1999, A	48	15,5	18	9,0	0,75	25,0	32,0
2000, Б	40	15,6	0	8,4	0,88	14,6	22,0
2004, Б	60	14,6	18	7,0	0,96	24,7	24,8
2005, Б	44	13,0	45	5,2	0,40	22,8	16,0
2006, A	42	15,1	7	4,8	0,25	35,0	18,0
2007, A	37	16,0	2	6,4	1,00	24,1	23,0
HIP ₀₅		0,4	4	0,2	0,08	2,1	4,8
А (середнє)	40	15,9	5	6,2	0,60	30,3	26,2
Б (середнє)	48	14,4	21	6,9	0,75	20,7	20,7

Масова концентрація титрованих, летких і аскорбінової кислот істотно відрізнялася залежно від технології та умов року.

Зниження концентрації титрованих кислот під час бродіння сусел з плодів бузини чорної було нижчим за 4 %. Винятком були сусла з плодів урожаю 1994 р. – 16,9 % і 1999 р. – 9,1 %. Якщо в суслі з плодів 1999 р. врожаю масова концентрація титрованих кислот до бродіння була високою – 9,7 г/дм 3 , то у суслі з плодів урожаю 1994 р. – помірною (7,7 г/дм 3).

Залишковий екстракт у виноматеріалах з бузини чорної у трьох варіантах був рівним чи перевищував 30 г/дм^3 , проте у 2000 році, коли була апробована технологія Б, вміст залишкового екстракту досить низький, 14.6 г/дм^3 .

Порівняння двох технологій між собою за середніми даними показало, що при зброджуванні сусел без плодів процес триває на вісім днів довше. При цьому об'ємна частка етилового спирту була на 1,5 % меншою, у виноматеріалах залишалося на $16 \text{ г/}100 \text{ см}^3$ більше залишкового цукру, накопичувалося більше летких кислот, вони мали нижчий на $9,6 \text{ г/дм}^3$ залишковий екстракт. Поступалися виноматеріали також за вмістом аскорбінової кислоти.

0.6

На формування якості некріплених виноматеріалів з плодів бузини чорної за визначеними показниками відмічався переважний вплив технології (42,6-51,5) % або взаємодії факторів (41,7-73,7) %. Ступінь впливу умов року складав (9,4-35,9) % і на жоден показник не мав переважного впливу.

У виноматеріалах з чорної бузини містилося аскорбінової кислоти 16,0—32,0 мг у 100 г. Виготовлення некріплених виноматеріалів з плодів чорної бузини рекомендуємо проводити способом бродіння з мезгою. Оптимальна тривалість процесу бродіння періодичним способом 42 доби, але може затягтися до 60 діб.

Збереженість аскорбінової кислоти у виноматеріалах з бузини чорної щодо її вмісту у плодах бузини чорної значно відрізнялася за варіантами (рис. 2). У 2000 та 2005 роках відсоток збереження був найнижчий, усього 26,8 і 29,6. Це можна пояснити тим, що виноматеріали виготовляли за технологією Б, яка передбачала настоювання мезги з водою для отримання соку другої фракції та розведення соку водою.

Рис. 2 – Збереженість аскорбінової кислоти у виноматеріалах з плодів бузини чорної щодо її вмісту у плодах

Підтверджено вплив суми опадів за період вегетації на накопичення СРР і цукрів, а гідротермічного коефіцієнта — на концентрацію титрованих кислот у плодах бузини чорної (табл. 4). Концентрація титрованих кислот у виноматеріалах з них може бути розрахована за погодними умовами періоду вегетації, залишкового екстракту — за вмістом титрованих чи аскорбінової кислот у плодах та інші показники. Зокрема, масову частку цукрів (у, г/100 см³) за масовою часткою СРР (х, %) у плодах бузини чорної можна порахувати за рівнянням: y = 0.70x - 1.01, $\sigma_x = 0.2$ г/100 см³ і навіть з більшою точністю за рівнянням третього порядку.

Таблиця 4 – Коефіцієнти кореляції та рівняння регресії між погодними умовами періоду вегетації та компонентами хімічного складу соків і виноматеріалів з плодів бузини чорної

Назва показника, що є функцією (у)	Назва показника, що ε аргументом (x)	Коефіцієнт кореляції (r)* з відхиленнями	Рівняння регресії
М. ч. СРР у плодах, %	СО, мм	0,75±0,27	$y = -0.003x^2 + 0.165x - 10.24$
М. к. цукрів у плодах, %	СО, мм	$-0,97\pm0,10$	$y = -0.0001x^2 + 0.0586x + 0.165$
М. к. цукрів у плодах, %	М.ч. СРР у плодах, %	$0,71\pm0,03$	y = 070x - 1,01
М. к. цукрів у плодах, %	М.ч. СРР у плодах, %	0,97±0,10	$y = 0.21x^3 - 5.11x^2 + 41.39x - 107.2$
М. к. ТК у плодах, %	ГТК	$0,79\pm0,01$	y = 0.823x - 0.21
Вміст АК у плодах, мг у 100 г	М. ч. ТК у плодах, %	$0,85\pm0,01$	y = 49,55 + 11,24
М. к. ТК у виноматеріалах, г/дм 3	СТ, град.	0,86±0,21	$y = -8,465x^3 + 429,9x^2 - 7263,6x + 40831$
М. к. ТК у виноматеріалах, г/дм ³	СА, град.	0,97±0,10	$y = 0.0004x^2 - 2.029x + 2411.6$
М. к. ТК у виноматеріалах, г/дм ³	ГТК	$0,88\pm0,20$	$y = 28,432x^2 - 61,786x + 38,6$
М. к. ТК у виноматеріалах, г/дм ³	М. к. ТК у плодах, %	$0,78\pm0,01$	y = 15,92x - 6,05
М. к. ЗЕ у виноматеріалах, г/дм ³	М. к. ТК у плодах, %	-0,68±0,04	y = -19,96x + 44,29
М. к. ЗЕ у виноматеріалах, г/дм ³	Вміст АК у плодах, мг у 100 г	0,91±0,17	$y = -0,0009x^3 + 0,014x^2 - 7,791x + 167,2$

^{*} Примітка. За криволінійної залежності кореляційне відхилення (η_{vx}).

Висновки

1. Плоди бузини чорної в умовах Правобережного Лісостепу України накопичують (6-10) % СРР, (2,8-6,5) — цукрів, (0,56-1,25) % — титрованих кислот та (33,0-82,0) мг у 100 г аскорбінової кислоти. На формування якості плодів істотно впливають показники погоди періоду вегетації. На 5 %-ному рівні значущості виявлено обернені сильні зв'язки між сумою опадів за вегетаційний період та накопиченням сухих розчинних речовин $(r = -0,72\pm0,03)$ і цукрів $(r = -0,67\pm0,05)$ у плодах бузини. Виявлено також сильний кореляційний зв'язок між гідротермічним коефіцієнтом вегетаційного періоду та вмістом титрованих кислот у плодах бузини $(r = 0,79\pm0,01)$.

Між вмістом компонентів хімічного складу також виявлені сильні зв'язки. Зокрема, сильний кореляційний зв'язок між масовою часткою СРР та цукрів ($r = 0.71 \pm 0.03$), що забезпечує визначення вмісту цукрів (у, r/cm^3) у плодах чорної бузини розрахунковим шляхом за вмістом ССР (x, %): y = 0.70x-1.01.

- 2. Відходи і втрати при зберіганні, сортуванні, митті, інспекції плодів чорної бузини становлять 6 %, при чищенні (відділенні гребенів) (10-15) %. Вихід соку при додаванні (10-15) % прокип'яченої води, пастеризації сусла і бродінні з мезгою 58,2 дал/т; при нагріванні мезги до (80-85) °С, пресуванні, настоюванні вичавок з водою у співвідношенні 2:1 протягом 4 годин, змішуванні соків першої і другої фракції. Загальний вихід соку 72,9 дал/т, у перерахунку на клітинний сік 60,4 дал/т.
- 3. У виноматеріалах з плодів чорної бузини, виготовлених способом бродіння з мезгою, об'ємна частка етилового спирту дорівнює (15,1-16,6) %, титрованих кислот (4,5-9,0) г/дм³, летких кислот 0,26-1,00, залишкового екстракту (24,1-36,4) г/дм³, вміст аскорбінової кислоти (18,0-32,0) мг у 100 г. У виноматеріалах, виготовлених шляхом бродіння без мезги, вищезазначені показники відповідно такі: 13,0–15,6; 5,2–8,4; 0,40–0,96; 14,6–24,7; 16,0–24,8. Збереженість аскорбінової кислоти при виготовленні некріплених виноматеріалів з плодів чорної бузини (26,8–66,9) %. Плоди бузини чорної придатні для виготовлення некріплених виноматеріалів.
- 4. Виявлено сильні зв'язки між показниками погоди періоду вегетації бузини чорної та масовою концентрацією титрованих кислот у виноматеріалах. Зокрема, з сумою середньомісячних температур ($r = 0.69\pm0.04$), сумою активних температур ($r = 0.67\pm0.05$) зв'язок сильний і може перейти у середній. Сильний кореляційний зв'язок виявлено між ГТК та масовою концентрацією титрованих кислот у виноматеріалах з них ($r = 0.88\pm0.02$). Сильний зв'язок також між масовою концентрацією титрованих кислот у виноматеріалах та їх вмістом у плодах бузини ($r = 0.78\pm0.01$).

Література

- 1. Виноградное вино и алкоголизм. Записка В.Е. Таирова, консультанта Главного Управления Землеустройства и Земледелия по вопросам виноградарства и виноделия // Сад, виноград і вино України. 1999. № 1. С. 30—31.
- 2. Гудковский В.А. Антиокислительные (целебные) свойства плодов и ягод и прогрессивные методы их хранения / Гудковский В.А. // Хранение и переработка сельхозсырья. 2001. № 4. С. 13–19.
- 3. Иванова Т.Н. Плодоовощные нектары сырье для приготовления молочних напитков / Иванова Т.Н., Мартынова О.В., Зайцева Е.А. // Хранение и переработка сельхозсырья. 2007. № 4. С. 63–64.
- 4. Барабашова Л.Ю. Вітамінний щит від радіації / Барабашова Л.Ю. // Сад, виноград і вино України. 1999. № 2. С. 22—23.
- 5. Бузина [Ред. стаття] / Квіти України. 2004. № 4. С. 32.
- 6. Химический состав бузины черной и малины / [И. Купатадзе, А. Хотивари, А. Киладзе и др.] // Хранение и переработка сельхозсырья. $-2005. N_{\rm 2} 6. C. 55-56.$
- 7. Гаммерман А.Ф. Лекарственные растения / Гаммерман А.Ф., Кадаев Г.Н., Хмелевский А.А. М.: Высшая школа, 1990. 544 с.