УДК 663.257.4

ИССЛЕДОВАНИЕ ОСНОВНЫХ КАЧЕСТВЕННЫХ ХАРАКТЕРИСТИК ВИНОГРАДА ТЕХНИЧЕСКИХ СОРТОВ КЛОНОВОЙ СЕЛЕКЦИИ В УСЛОВИЯХ ЮГА УКРАИНЫ

Ткаченко О.Б., канд. техн. наук, доцент,
Одесская национальная академия пищевых технологий, г. Одесса
Шелехов Ю.Н., зам. генерального директора ООО «ПТК ШАБО», г. Одесса
Гержикова В.Г., д-р техн. наук, профессор, Погорелов Д.Ю., младший научный сотрудник,
Владимирова Л.Г., старший химик, Щербина В.А., аспирант,
НИВиВ "Магарач", г. Ялта

Показано влияние основных характеристик винограда технических сортов клоновой селекции на качество шампанских и белых столовых виноматериалов в условиях юга Украины.

Ключевые слова: клон, виноград, Шардоне, Мускат оттонель, виноматерал, фенольные вещества.

На современном этапе развития виноградо-винодельческой отрасли клоновая селекция винограда является одним из основных факторов повышения и поддержания качественной и количественной продуктивности винограда. Метод базируется на способности виноградного растения к образованию мутаций – изменений наследственной основы (генотипа) растительного организма, передаваемых потомству при вегетативном размножении. Изменения могут затрагивать самые разнообразные признаки – морфологические, физиологические, биохимические.

В европейских странах ведущая роль в области клоновой селекции принадлежит Германии, Италии, Франции, где в результате длительных исследований выявлено и закреплено в вегетативном потомстве большое число клонов, обладающих более ценными биологическими и хозяйственными признаками и свойствами, чем базовые сорта.

Ведущие винопроизводящие страны и страны, претендующие сегодня на звание винодельческой державы ориентированы на получение и внедрение в производство перспективных клонов классических европейских сортов винограда, таких как Каберне, Мерло, Сира, Совиньон, Шардоне, группа Пино, Рислинг, группа мускатных сортов и др., которые отличаются высокой продуктивностью и качеством урожая и позволяют выпускать конкурентоспособную винодельческую продукцию.

В Украине после 1985 года наблюдается устойчивый спад в развитии отрасли виноградного питомниководства – среднегодовое производство посадочного материала сократилось за этот период в 3,8 раза. В настоящее время для реализации Программы развития виноградарства и питомниководства Украины на 2005 – 2010 годы, которая предусматривает ежегодные посадки виноградников в объеме до 7,4 тыс. га необходимо увеличить производство посадочного материала практически вдвое, таким образом, в настоящее время наблюдается реальный дефицит качественного посадочного материала [1]. В результате внедрения новых клонов технических сортов винограда в нашей стране открываются возможности повышения урожайности, а следовательно, рентабельности виноградников и получения высококачественного сырья для виноделия. Сегодня в новых посадках виноградников можно встретить клоновый посадочный материал ведущих европейских производителей перечисленных стран, например, только кооператива "VCR" (Италия) 1642 га основных европейских сортов винограда, в т.ч. Шардоне – 306 га, Мускат оттонель - 63 га. Однако, по мнению отечественных ученых, закладка виноградников импортным посадочным материалом не дает возможности создавать полноценные насаждения, не обеспечивает хорошей адаптации растений к местным условиям, приводит к распространению новых опасных заболеваний (бактериальный рак и некроз, вирусы и др.)[2]. Поэтому, организация исследований по изучению поведения посадочного материала в агроклиматических условиях Украины, безусловно, является сегодня

Такого рода работы регулярно проводятся ведущими научно-исследовательскими центрами, в т.ч. в России, в 2003-2005 гг. проводились исследования клонов сорта Шардоне селекции "VCR" (Италия). В сопоставимых агроклиматических условиях было проведено их сравнение по агробиологическим и хозяйственно-технологическим свойствам на виноградниках селекционной опытной станции Перна (Чехия), и в ОАО «Раевское» Краснодарского края (Россия).

По результатам фенологических наблюдений было установлено, что существенных различий в сроках наступления фенофаз между клонами в пределах сорта не наблюдается. Клоны итальянского происхождения характеризуются более ранним (на 2–3 дня) наступлением фазы распускания почек и роста

побегов, обладают средней и большой силой роста побегов и пасынков. Большой силой роста побегов отличаются клоны VCR10 и Cl.95. Средняя нагрузка кустов по клонам относительно стабильная – в пределах 8,3–12,0 глазков. Очень важным составным показателем оценки продуктивности являются коэффициенты плодоношения и плодоносности побегов, величина которых носит генотипический характер. У изучаемых клонов эти показатели довольно высокие и составляют 0,74–1,83 и 0,91–2,23 соответственно. Все изучаемые клоны обладают высоким уровнем сахаронакопления – 22 г/100 см³ и выше. [3].

В 2004 – 2009 году в условиях Причерноморской виноградарской зоны (Агрофирма «Шабо») были осуществлены посадки клонов основных европейских сортов – Шардоне (R-8, R-10, Cl.95), Траминер розовый (R-6, R-1), Мускат оттонель (1211,26/31,11/10,D90), Рислинг рейнский (R-3,R-1), Каберне-Совиньон (R-11), Каберне-фран (R-10), Пино нуар (R-4) и Мерло (R-3) общей площадью более 500 га.

В связи этим перед нами стояла задача оценить влияние качества винограда клоновой селекции белых сортов Шардоне и Мускат оттонель на физико-химические и органолептические характеристики виноматериалов в реальных производственных условиях.

В 2007 – 2008 году были получены следующие результаты по основным качественным характеристикам винограда клонов сорта Шардоне, регламентированным нормативной документацией:

Клон	Год	Фаза сбора урожая	Кондиции сусла, массовая концентрация, г/дм ³				
			сахаров	титруемых кислот	рН		
R10	2007	21.08	199	9,2	3,34		
	2008	02.09	195	9,3	3,29		
R8	2007	25.08	202	8,2	3,48		
	2008	06.09	223	8,2	3,39		
C1.95	2007	26.08	226	7,4	3,65		
	2008	07.08	218	9,1	3,26		

Таблица 1 – Показатели качества урожая винограда клонов сорта Шардоне

Как видно, характеристики соответствуют декларированным направлениям использования клонов и позволяют получать кондиционный виноград в достаточно ранние сроки сбора. Виноград сорта Мускат оттонель вступил в плодоношение в 2008 году и первый год имел урожайность 47 ц/га, кондиции сусла составили: массовая концентрация сахаров – $223 \, \Gamma/\text{дm}^3$, титруемых кислот – $5.4 \, \Gamma/\text{дm}^3$, рН – 3.59.

Виноград также был проанализирован по методике, разработанной в НИВиВ "Магарач" (табл. 2)

Методика моделирует возможные варианты поведения винограда в ходе переработки на виноматериалы и дает возможность выявить его особенности и соответственно определить индивидуальные режимы и параметры технологических процессов. Как видно из результатов исследований, поведение сорта сопоставимо как в случае его клонового исполнения, так и в контроле – винограде, отобранном из существующих на Украине посадок. Выход сусла, скорость фильтрации – показатели, характеризующие степень зрелости винограда, активность окислительных ферментов – его фитосанитарное состояние – находятся в диапазоне значений, позволяющем подтвердить общепринятое мнение о пластичности данных сортов, хорошо адаптирующихся в различных агроклиматических условиях.

Существенную разницу можно наблюдать у винограда сорта Мускат оттонель в значениях массовой концентрации терпеновых спиртов — в образце клонового винограда этих соединений на $40\,\%$ больше, чем в контрольном. В отличие от ароматичных сортов, в винограде Шардоне было выявлено очень небольшое содержание терпенов, т.к. в неароматичных сортах винограда, к которым также относятся Совиньон, Семильон, в сложении аромата участвуют нетерпеновые гликозиды C_{13} -норизопреноиды, включая теаспираны, витиспираны и β -дамасценон [4,5]. Все изучаемые клоны обладают высоким потенциалом сахаронакопления и достаточно высокими значениями массовой концентрации титруемых кислот, что позволяет производить вина, способные к выдержке в барриках, а также шампанские виноматериалы высокого качества. Достаточно высокие значения показателя рН предполагают необходимость организации тщательной защиты винограда от окисления в процессе его транспортировки и переработки.

Виноград был переработан на виноматериалы в соответствии с действующей нормативной документацией по производству шампанских и белых столовых виноматериалов. Для Муската оттонель и клонов Шардоне R-8 и Cl.95 был использован прием пеликулярной мацерации для эффективного извлечения ароматических компонентов, локализованных в кожице виноградной ягоды. Результаты исследования виноматериалов представлены в (табл.3)

Таблица 2 – Результаты сравнительных исследований винограда сортов Шардоне и Мускат оттонель

мускат оттонель									
Наименование	Шардоне				Мускат оттонель				
показателя	R-10	R-8	Cl.95	контроль	1211	контроль			
Выход сусла из 200 г	135	130	125	135	130	143			
ягод, мл				155	130				
5 мин, мл	4	4	6	5	8	2			
10 мин, мл	5,5	5	6,5	6	9,5	2,8			
15 мин, мл	6	6	7	6,5	10	3			
рН	3,20	3,39	3,26	3,33	3,59	3,08			
Сахаров, г/дм3	195	223	218	190	223	195			
ТК, г/дм3	9,3	8,2	9,1	7,8	5,1	6,3			
Исх.∑ ФВ, мг/дм3	224	351	243	229	253	310			
$\sum \Phi B$ (окисление 1 час), мг/дм3	239	364	263	254	280	323			
∑ ФВ (Т.3., при 70°С 30 мин.), мг/дм3	569	694	614	518	553	463			
Терпенов	2,85	3,06	3,06	2,88	15,05	10,75			
Пероксидаза	_	_	_	_	_	_			
О-дифенолоксидаза	0,0413	0,0586	0,0446	0,0604	0,0417	0,0509			
Выход сусла из 200 г	134	130	125	135	130	145			
ягод, мл	134	130	123	133	130	143			
5 мин, мл	6	6	4,5	6	7	2,5			
10 мин, мл	6,5	7	5	6,5	8	3			
15 мин, мл	7,5	7,5	5,5	7	8,5	3,25			
Исх.∑ ФВ, мг/дм3	265	352	322	276	328	346			

Таблица 3 – Физико-химические показатели виноматериалов клонов Шардоне и Мускат оттонель

					•		•	•	
Образец	Объемная доля этило- вого спир- та, %	D 420	рН	Массовая концентрация					
				тит- руемых кислот, г/дм ³	общего экстрак- та, г/дм ³	Фенольных веществ, $M\Gamma/ДM^3$		Терпеновых спиртов, мг/дм ³	
						общих	поли- меров	общих	свобод ных
Шардоне Шампан- ский R10	12,0	0,071	3,18	9,0	18,8	242	14	0,38	0,35
Шардоне Cl.95	13,7	0,110	3,20	8,2	22,7	293	23	0,43	0,3
Шардоне Марочный R8	12,7	0,102	3,38	7,6	21,4	265	0	0,92	0,87
Мускат от- тонель	13,2	0,105	3,63	5,0	22,4	305	56	5,07	4,66

Виноматериалы характеризуются оптимальной спиртуозностью и экстрактивностью для каждого клона в соответствии с декларированным направлением использования: R10 – на шампанские виноматериалы, R-8 и C1.95 – на тихие вина, ординарные и выдержанные в барриках. Обращает на себя внимание достаточно высокие значения показателей фенольных веществ, представленные в основном мономерными их формами и соответственно более высокими, чем у виноматериалов, произведенных из отечественного посадочного материала значениями показателя D 420. Действительно, в ходе органолептической оценки образцов был отмечен более интенсивный, ярко-соломенный до золотистого цвет. Диапазон зна-

чений рН позволяет производить малолактическую ферментацию при необходимости во всех клонах Шардоне.

Виноматериал Муската оттонель имеет в своем составе большее количество полимерных форм фенольных веществ, поскольку для него характерны низкие значения титруемых кислот и высокие значения показателя рН, что оказывает существенное влияние на скорость ОВ-процессов, протекающих в виноматериалах при хранении. Данную особенность необходимо учитывать при определении алгоритма хранения и дозах антиоксидантов.

Таким образом, первые результаты исследований показывают, что клоны сортов винограда Шардоне и Мускат оттонель итальянской и французской (Cl.95) селекции показывают хорошие результаты как на винограднике, так в процессе переработки на виноматериалы, качество которых не уступает, а по ряду показателей — превышает качество сортовых виноматериалов, произведенных из отечественного посадочного материала. Безусловно, данные выводы можно считать предварительными, продолжая исследования по предложенной схеме в течение нескольких лет, расширяя перечень сортов по мере вступления их в фазу плодоношения.

Литература

- 1. Шевченко С.А. Состояние и перспективы питомниководства Украины/ ВиноГрад №4(4 2008). С 28-32
- 2. Власов В.В., Шевченко І.В., Ляшенко Г.В. Екологічний паспорт районованих в Україні сортів винограду./ВиноГрад №7(7)2008 С.22-26
- 3. Афиногенова В.А. Агробиологическая и хозяйственно-технологическая характеристика клонов сортов винограда Шардоне и группы Пино: Автореф. дис... кан-та сельхоз. наук: 06.01.07/ МСХА им. К.А. Тимирязева РФ. М., 2007. 22 с.
- 4. Спиртные напитки. Под ред. Э.Ли и Дж.Пигготта. Санкт-Петербург: Профессия, 2006. 534 с.
- 5. Ribèreau-Gayon P. Traitè d'oenologie. T. 2: Cyimie du vin Stabilisation et traitements / P. Ribèreau-Gayon, D. Dubourdieu, D. Doneche // 5 édition. 2004. P. 584-591.

УДК 663.3

ХАРАКТЕРИСТИКА ЯКОСТІ ВИНОМАТЕРІАЛІВ ІЗ ЯГІД СУНИЦІ

Орел О.В., викладач Уманський національний університет садівництва, м. Умань

Наведено дані про вміст основних і додаткових компонентів хімічного складу спиртованих та зброджено-спиртованих соків із ягід суниці, спиртів, кислот, альдегідів, складних ефірів, терпенів, залежно від сорту і способів обробки мезги.

Data on the content of basic and additional components of bleach and bleach-fermented juice of grapes strawberries, alcohols, acids, aldehydes, esters, suffered, depending on variety and processing methods septum. Ключові слова: суниця, спиртовані, зброджено-спиртовані соки, ароматичні сполуки.

Характерною ознакою сучасного ринку алкогольних напоїв у нашій країні ε збільшення обсягу виготовлення фальсифікованої продукції. Тому виготовлення натуральних плодово-ягідних вин та напоїв з використанням місцевої сировини, багатої на біологічно активні речовини, ε досить актуальним у наш час. Харчова цінність плодово-ягідних вин обумовлена вмістом різноманітних сполук: ароматичних, барвних і дубильних речовин, органічних кислот, вітамінів, мікро-, макроелементів та інших. При правильному приготуванні плодово-ягідних вин вітаміни та інші поживні речовини, що містилися в натуральному сокові плодів та ягід, значною мірою зберігаються у винах та напоях [1].

Ягоди суниці мають багатий, складний аромат, їх застосовують для покращення органолептичної якості купажних плодово-ягідних вин. Проте, хімічний склад ароматоутворювального комплексу суничних соків досліджено недостатньо [2].

Для виготовлення якісних плодово-ягідних вин з використанням суниці основними компонентами ϵ спиртовані та зброджено-спиртовані соки.

Метою досліджень було вивчення збереженості біологічно активних речовин та формування ароматоутворювального комплексу спиртованих та зброджено-спиртованих суничних соків.