Среднеповерхностный размер частиц уменьшается с увеличением окружной скорости вращения ротора, радиальной скорости потока, скорости сдвига потока, частоты пульсаций, количества твердой фазы и уменьшением зазора статором и ротором. Наиболее эффективными параметрами диспергирования крахмалосодержащей среды в РПА для приготовления жидких кормов являются: содержание твердой фазы – 50 %, окружная скорость – 300 рад/с, скорость сдвига потока – 30 •103 с-1, зазор – 500 мкм, частота пульсаций – 3 кГц.

Литература

- 1. Спосіб приготування рідких кормів для молодняка свиней: пат. 80151 Україна: МПК А23К 1/14, А23К 1/00 / Драганов Б.Х., Ободович О.М., Борхаленко Ю.О., Лимар А.Ю; заявник та патентоволодар Інститут технічної теплофізики НАН України. № и 201214515, опубл. 13.05.2013, бюл. №9. 4с.
- 2. Способ приготовления жидких кормов: пат. на полезную модель РФ 2366270., МПК А23 К 1/100, 10.09.09.
- 3. Долинский А.А. Метод дискретно-импульсного ввода энергии и его реализация: Монография / А.А. Долинский, А.Н. Ободович, Ю.А. Борхаленко. Х.: Віровець А.П. «Апостроф» 2012. 185 с.
- Ободович А.Н. Совершенствование технологи приготовления сусла из крахмалосодержащегося сырья в спиртовом производстве с применением метода дискретно-импульсного ввода энергии (ДИВЭ) / Т.Л. Грабова, А.Р. Коба, // Промтеплотехника. 2007. Т. 29, № 4. С. 59-63.
- Промтов М.А. Пульсационные аппарты роторного типа: теория и практика: Монография. М.: Машиностроение – 1, 2001.206 с.

УДК 66.021.001.57:56/59.004.18

ПРОЦЕССЫ КРИСТАЛЛИЗАЦИИ ВОДЫ В УЛЬТРАЗВУКОВОМ ПОЛЕ

Бурдо О.Г., д-р техн. наук, профессор, Тришин Ф.А., канд. техн. наук, доцент, Трач А.Р. Одесская национальная академия пищевых технологий

В работе рассмотрены перспективы и научно-технические противоречия низкотемпературных технологий водоподготовки. Приведена математическая формулировка задачи формирования блока льда. Показано, что время, затраченное на процесс водоподготовки, уменьшается при воздействии на систему кристалл-вода акустических полей. Рассмотрены математические модели кристаллизации в условиях ультразвукового поля. Проведен анализ задачи методами теории обобщенных переменных.

The article is headlined to prospects of low-temperature water treatment technologies, describes the available scientific and technical contradictions and the mathematical formulation of the problem. It is shown that the time taken to process water treatment, decreases when exposed to water-crystal system of acoustic fields and discussed mathematical models of such influence. The problem was analyzed using the theory of generalized variables.

Ключевые слова: водоподготовка, моделирование, энергоэффективность, блочное вымораживание, акустические интенсификаторы.

Вступление. Общий объем воды на Земле составляет около 1400 млн куб. км, из которых лишь 2,5 %, то есть около 35 млн куб. км, приходится на пресную воду. Большая часть ее запасов сосредоточена в многолетних льдах и снегах Антарктиды и Гренландии, а также в глубоких водоносных горизонтах. По данным ООН на начало 2000-х годов более 1,2 млрд. людей живут в условиях постоянного дефицита пресной воды, около 2 млрд. страдают от него регулярно. В 2030 г. 47 % мирового населения будут жить под угрозой водного дефицита. Таким образом, проблема очистки воды является одной из важнейших для современного человека. Для ее решения Всемирной организацией здравоохранения (ВОЗ) была принята стратегия для управления качеством воды в целях охраны и укрепления здоровья человека[1].

Проблемы качества и очистки воды затрагиваются в большом количестве специализированной литературы. Основным современным методом получения качественной воды остается ее дистилляция [2 -6]. Вместе с тем, все шире распространяются нетрадиционные технологии очистки воды.

Перспективы низкотемпературных технологий водоподготовки. В настоящее время растет интерес к холодильным технологиям опреснения воды. Среди таких технологий водоподготовки особое место

занимают вымораживающие опреснительные установки блочного типа [7 -10]. Их преимуществом являются простота и надежность конструкции, компактность и, связанная с этим, энергетическая эффективность. Принцип блочного вымораживания устраняет системные потери холода, которые характерны для традиционных установок криоконцентрирования. Дальнейшие исследования по совершенствованию технологий блочного вымораживания направлены на интенсификацию процессов массопереноса в процессе формирования льда. Именно кристаллизация определяет продолжительность процесса вымораживания, как в установках блочного типа, так и в традиционных криоконцентраторах.

Представляется, что перспективным методом интенсификации массопереноса при кристаллизации являются акустические волновые поля. Подтверждением являются многочисленные результаты исследований, которые не касаются непосредственно процессов кристаллизации, но свидетельствуют о положительном влиянии ультразвука на теплоперенос.

Применение ультразвуковых колебаний увеличивает межфазную поверхность реагирующих элементов, с помощью сверхтонкого диспергирования. Под действием колебаний в жидкости возникает кавитация, звуковое давление и звуковой ветер. За счет этих явлений устраняется сопротивление переносу реагирующих веществ, что позволяет интенсифицировать технологический процесс.

Отдельные опыты авторов [10] дают основание считать, что акустическими волновыми интенсификаторами (АВИ) в технологиях блочного вымораживания следует серьезно заниматься.

Возможность эффективного использования ультразвука для интенсификации процессов очистки во многом определяются достоверностью представлений о теплофизических процессах, имеющих место, поэтому актуальной является построения адекватных математических моделей.

Определение научно-технического противоречия. Физическая схема процесса кристаллизации при воздействии на пограничный слой АВИ приведена на рис.1.

Рис. 1 – Схема процесса кристаллизации

Тепловой баланс процесса изогидрической кристаллизации может быть записан в виде равенства на основе суммы соответствующих плотностей тепловых потоков. Будем полагать, что раствор квазигомогенный, а тепловым излучением в системе можно пренебречь.

Запишем уравнение теплового баланса относительно плотности теплового потока через стенку кристаллизатора (qCT):

$$qCT = qP + (\rho wY)PiP\Gamma - (\rho wY)JiJ\Gamma + Qa$$
(1)

где (pwY)P – плотность потока массы смеси из раствора к границе раздела фаз;

iPГ – энтальпия раствора на границе раздела фаз;

(рwY)Л – плотность потока массы в раствор от поверхности блока льда;

іЛГ – энтальпия льда на границе раздела фаз.

Первый член соотношения (1) представляет теплоотдачу за счет конвективного теплообмена (с учетом теплопроводности, конвекции и молекулярной диффузии) от пограничного слоя, из которого осуществляется кристаллизация льда. Второй член описывает поток теплоты, приходящей к границе раздела от раствора и обусловленный непосредственно процессом кристаллизации льда. Третий член представляет тепловой поток, переносимый от поверхности раздела внутрь пограничного слоя, а четвертый – энергию от АВИ.

Очевидны противоречия при постановке задачи: чем выше производительность вымораживающей установки, тем больше удельные энергетические затраты и ниже эффективность разделения. Действие АВИ на пограничный диффузионный слой должно привести, как к росту производительности, так и росту коэффициента эффективности разделения. Однако рост интенсивности массообмена пропорционален потоку qA, но этот поток является дополнительной нагрузкой холодильной системы, т.е. влияет на энергетическую эффективность технологии. Мощность, которая расходуется на ABИ, имеет противоречивое

влияние. Причем, особенно этот фактор существенен в системах вымораживания. Чем больше мощность, тем больше скорость продукта на границе «лед - раствор», но тем выше диссипативный тепловой поток, тем ниже скорость вымораживания. На основе этих положений можно представить параметрическую модель процесса. Параметрами качества являются массовый поток льда и концентрация раствора. Факторами, которые определяют интенсивность процесса, являются геометрические характеристики аппарата, свойства продукта, параметры холодильной системы и генератора ABИ. Следовательно, задача имеет технико-экономический оптимум. Ее решение в значительной мере связано с умением оценить влияние параметров ABИ на кинетику процесса кристаллизации.

Математическая формулировка задачи кристаллизации. Для двухфазных систем «лед - раствор» в связи с многообразием динамических структур, их сложным и неопределенным характером возможность общего математического описания кристаллизации из раствора в условиях комбинированных воздействий в настоящее время сомнительна. Поэтому, при моделировании этой задачи целесообразно максимально использовать те подходы, которые известны при анализе двухфазных потоков при отсутствии внешних воздействий, а, также, исследования по интенсификации теплообмена с помощью различных полей. Естественно, что задача усложнена фазовыми переходами с подвижной границей раздела фаз.

Определяющими в процессе направленной кристаллизации являются энергетические процессы. В общем случае дифференциальное уравнение Фурье – Кирхгофа имеет вид:

$$c_{P}\rho \frac{dt}{d\tau} = div \left(\lambda \nabla t + Q'\rho \nabla \rho_{K0}\right) + \sum_{k} i_{k}I_{Vk} + \frac{dP}{d\tau} - (\sigma : \nabla \vec{v}) + \sum_{k} c_{Pk}\vec{I}_{k}\nabla t + \sum_{k} \vec{I}_{k} \times \vec{F}_{k}$$

$$(2)$$

Левая часть соотношения (2) отражает полное изменение энтальпии продукта в данной точке. В правой части первая составляющая характеризует микрокинетический перенос теплоты (теплопроводностью и диффузионной теплопроводностью). Вторая составляющая – это теплота кристаллизации, обусловленная фазовым переходом потока массы (IVk). Третья составляющая(dP/dτ) отражает работу сил давления. Следующая составляющая является источником теплоты за счет диссипации энергии движения, т.е. за счет работы сил внутреннего трения, обусловленных тензором вязких напряжений для жидкости (σ). Предпоследняя составляющая отображает перенос теплоты за счет диффузионного потока массы, а последний член является источником теплоты, обусловленным работой внешних сил в процессе внешнего переноса массы.

Для дальнейшего анализа примем следующие допущения:

- переносом теплоты диффузионной теплопроводностью можно пренебречь (Q| = 0);
- перенос теплоты за счет диффузии ничтожно мало и им можно пренебречь;
- работу внешних сил диффузии можно не учитывать;
- работа сил давления отсутствует ($dP/d\tau = 0$);
- коэффициент теплопроводности продукта не изменяется ($\lambda = \text{const}$).

При принятых допущениях, которые корректны в условиях анализируемой задачи, уравнение Фурье – Кирхгофа упростится:

$$c_{P} \rho \frac{dt}{d\tau} = \lambda \nabla^{2} t + \sum_{k} i_{k} I_{Vk} - (\sigma : \nabla \vec{v})$$

(3)

(4)

Последняя составляющая соотношения (3) связана с диссипативной функцией Рэлея:

$$\Phi = -\frac{1}{\mu} (\sigma : \nabla \vec{v})$$

которая в декартовой системе координат равна [11]:

$$\Phi = 2\left[\left(\frac{\partial w_x}{\partial x}\right)^2 + \left(\frac{\partial w_y}{\partial y}\right)^2 + \left(\frac{\partial w_z}{\partial z}\right)^2\right] + \left[\frac{\partial w_y}{\partial x} + \frac{\partial w_x}{\partial y}\right]^2 + \left[\frac{\partial w_z}{\partial y} + \frac{\partial w_y}{\partial z}\right]^2 + \left[\frac{\partial w_x}{\partial z} + \frac{\partial w_z}{\partial x}\right]^2 - \frac{2}{3}\left[\frac{\partial w_x}{\partial x} + \frac{\partial w_y}{\partial y} + \frac{\partial w_z}{\partial z}\right]^2$$
(5)

Решение (5) связано с определенностью компонент скорости, которые находятся из уравнения движения Навье – Стокса.

Математическая модель с учетом влияния внешних массовых сил. Элементами схемы являются: горизонтальная стенка кристаллизатора, блок льда и продукт, в объеме которого перемещается со скоростью wY мембрана ABИ (рис.1). Конкретизируем массовые внешние силы, которые воздействуют на объем продукта. Мембрана ABИ перемещаясь в объеме продукта с частотой n и амплитудой A воздействует на пограничный слой у границы блока льда. При этом продукту сообщается определенное количество энергии. Частично эта энергия расходуется на возмущение пограничного слоя (что интенсифицирует массоперенос), а частично на нагрев продукта в связи с диссипацией.

Для кристаллизатора с принятым расположением осей координат (рис.1) составим систему уравнений, которая описывает сопряженные процессы тепломассопереноса и гидродинамики, при следующих допущениях:

Жидкость является несжимаемой.

Физические параметры жидкости постоянны.

Рассматриваемый процесс является квазистационарным.

Теплопроводностью жидкости вдоль пограничного слоя можно пренебречь.

Величина гидродинамического пограничного слоя равна толщине пограничного теплового и диффузионного слоев.

При этих допущениях поля температур и скоростей можно описать дифференциальными уравнениями в приближении пограничного слоя. Учтем дополнительно подъемную силу $\rho g\beta \Delta t$, считая ее соизме- $\mu \frac{\partial^2 w_x}{\partial x^2}$

римой с вязкостным комплексом ($\frac{\partial y^2}{\partial y^2}$). Влияние АВИ выразим через инерционное ускорение j, которое определяется отношением разности массовых сил (ΔF) к плотности жидкости (ρ). Введем обозначения: $\upsilon = t$ - to. Очевидно, что dt = d υ , т. к. to = const. Тогда:

уравнение энергии:

$$w_{x} \frac{\partial \upsilon}{\partial x} + w_{y} \frac{\partial \upsilon}{\partial y} = a \frac{\partial^{2} \upsilon}{\partial y^{2}}$$
(6)

уравнение движения:

$$v_x \frac{\partial w_x}{\partial x} + w_y \frac{\partial w_y}{\partial y} = v \frac{\partial^2 w_x}{\partial y^2} + g\beta \upsilon + j$$
⁽⁷⁾

уравнение сплошности:

$$\frac{\partial w_x}{\partial x} + \frac{\partial w_y}{\partial y} = 0$$
(8)

уравнение Фурье – Кирхгофа:

V

$$c_P \rho \, \frac{dt}{d\tau} = \lambda \nabla^2 t + (\sigma : \nabla \vec{v}) \tag{9}$$

Запишем граничные условия.

1. Вдали от поверхности теплообмена: $y \rightarrow s$ $\upsilon = \upsilon o = 0;$ $w \ y = 0$ 2. На поверхности кристаллизатора:y = 0 $0 \le X \le lo$ $\upsilon = \upsilon cr \equiv tcr$ to = const; $w \ x = w \ y = 0$ 3. На поверхности пограничного слоя: $w \ x = w \ y = 0$

$$y = \delta_{\mathrm{T}} \qquad \frac{dM}{d\tau} = \beta F \left[C \left(t_{kp} \right) - C \right] \\ - \alpha v_{\mathrm{cT}} = \lambda \left(\frac{\partial t}{\partial y} \right)_{y = \delta_{\mathrm{T}}}$$

где w x и w y – проекции вектора скорости на соответствующие координатные оси;

t – текущие значения температуры в некоторой точке пространства;

(10)

λ, μ, ρ, Ср – коэффициент теплопроводности, динамическая вязкость, плотность, теплоемкость продукта;

F=ρ g β Δt – подъемная сила; g – гравитационная константа;

β – коэффициент объемного расширения; δ – толщина пограничного слоя;

т – время; F – площадь поверхности фазового контакта; С – концентрация;

М – массовый расход льда; α – коэффициент теплоотдачи; β – коэффициент массоотдачи.

Таким образом, поставлена сопряженная задача гидродинамики, тепло-и массообмена в кристаллизаторе при наличии АВИ. По сути, это двумерная, нестационарная, нелинейная задача. Видно, что даже при серьезном упрощении аналитическое решение задачи слишком громоздко и в настоящее время нецелесообразно. Основная трудность в расчете поля скоростей, расчете волнового инерционного ускорения j.

Методы математического моделирования действия акустических полей. Численная модель [12] включает в себя твердые и жидкие области с тонким слоем окружающей среды. Как граничное условие давление на внешней стороне окружающей среды принимается за ноль. Для жидкостей известными свойствами материала являются плотность р и скорость звука с. коэффициент затухания а. В результате распределение звукового давления р рассчитывается в каждой точке расплава и окружающей среды и скорость на границе раздела твердое тело-жидкость:

$$\frac{1}{c^2}\frac{\partial^2 p}{\partial t^2} - \nabla^2 p = 0 \tag{11}$$

где t – время.

$$\vec{v}_{S} = -\frac{1}{2\omega} \left\{ \frac{1}{2} (\vec{v}_{A} \nabla) \vec{v}_{A} + \vec{v}_{A} (\nabla \vec{v}_{A}) + \frac{3}{2} (\vec{v}_{A} \nabla \phi) \vec{v}_{A} \right\}$$
(12)

где □ – сдвиг фаз,

ω – угловая скорость,

f – частота ультразвука.

Полученная скорость в дальнейшем была использована для численного моделирования. В работе [12] показало, что ультразвук оказывает позитивное влияние на рост кристаллов, однако не было предложено методики практического расчета кинетики процесса. Более того, отсутствует учет величины мощности звукового генератора, а этот фактор игнорировать нельзя исходя из исследований [13].

В [14] методом анализа размерностей получено критериальное уравнение, описывающее теплообмен на границе раздела фаз в присутствии звуковых волн:

$$\zeta = A \cdot \Pr^{-c} \cdot \left(\frac{\upsilon_0}{\sqrt{f\gamma}}\right)^a \cdot \left(\frac{c_0}{\sqrt{f\gamma}}\right)^k \sqrt{f\gamma}$$
(13)

Для определения величины коэффициента теплопереноса $\lambda_{a\kappa}$ через границу раздела предлагается уравнение:

$$\lambda_{a\kappa} = \rho C_V \cdot 2,014 \cdot \sqrt{f\gamma} (M)^{2/3} \operatorname{Pr}^{-2/3}$$
(14)

В приведённое выражение наряду со значениями объёмной теплоёмкости Cv, числа Прандтля Pr и кинематической вязкости у, характеризующими термодинамическое состояние среды, входят параметры

акустического поля: c0 – скорость звука в воде,
$$\upsilon_0 = \frac{p_0}{\rho c}$$
 – амплитуда колебательной скорости звуковой волны, входящие в число Маха М, а так же f – частота акустических колебаний. Однако фактор мощности генератора здесь также не учтен.

Применение метода обобщенных переменных для моделирования процесса кристаллизации в условиях АВИ. Моделированию подлежит сложная системная задача, при сопряженном протекании гидравлических, тепловых и массообменных процессов, осложненная комбинированными воздействиями на продукт. Поэтому перейдем к анализу задачи методами теории обобщенных переменных. С ростом мощности, потребляемой генератором колебаний АВИ, будет расти объемный расход, перепад давлений и скорость набегающего потока. При пульсации скорости происходит перенос механической энергии. Важно организовать этот перенос на границе гидродинамического пограничного слоя, результатом этого будет разрушение пограничного слоя. Представляется, что общую гидродинамическую ситуацию в аппарате может характеризовать суммарная осредненная скорость потока, соответствующее ей число Рейнольдса. Однако в этом случае число Рейнольдса должно вместе с числом Грасгофа характеризовать общую гидродинамическую ситуацию в криоконцентраторе.

Естественно, запись числа Рейнольдса следует модифицировать, привести его к характерным параметрам аппарата. Обычно скорость потока выражают отношением объемного расхода жидкости (V) к площади живого сечения канала (F). В поставленной задаче в явном виде эти параметры выразить сложно. Поэтому представим их как зависимость от известных параметров, которые определяют значения (V) и (F).

Представляется, что объемный расход жидкости можно выразить через ход мембраны s, частоту пульсаций f и диаметр мембраны ABИ d при помощи коррелирующих коэффициентов k:

$$V = \frac{\pi d^2}{4} sf = k_1 d^2 k_2 df = k_3 d^3 f$$
(15)

Аналогично выразим площади живого сечения как разницу между сечением аппарата (FA) и площадью мембраны АВИ (FM):

$$F = F_A - F_M = \frac{\pi d_A^2}{4} - \frac{\pi d_M^2}{4} = k_4 d^2 - k_5 d^2 = k_6 d^2$$
(16)

Таким образом, искомая скорость продукта в аппарате определится как:

$$w = \frac{V}{F} = \frac{k_3 d^3 f}{k_6 d^2} = k_7 d f$$
(17)

Приняв в качестве характерного размера системы диаметр мембраны АВИ, с учетом (13) получим модифицированное волновое число Рейнольдса:

$$\operatorname{Re}_{B} = \frac{\rho d^{2} f}{\mu}$$
⁽¹⁸⁾

Влияние энергии, сообщаемой продукту мембраной АВИ, на кинетику процесса кристаллизации учтем на основе дифференциального уравнения Фурье – Кирхгофа (9).

Применив известные из теории подобия правила получения безразмерных обобщенных чисел подобия, с учетом (9 и 18), получим:

$$c_{P} \rho \frac{dt}{d\tau} \left(\frac{dy}{dw}\right)^{2} \frac{1}{\mu} = 1$$
(19)

Вычеркиванием символов дифференцирования, выбрав в качестве определяющего параметра высоту продукта в аппарате (h) получим безразмерное число Эйлера волнового:

$$c_P \rho \frac{\Delta t h^2}{\tau \mu w^2} = E u_B \tag{20}$$

Поскольку произведение теплоемкости, плотности, разности температур отнесенное ко времени есть удельная объемная мощность qV (Вт/м3), то:

$$Eu_{B} = \frac{q_{V} h^{2}}{\mu w^{2}}$$
(21)

С учетом зависимости скорости от параметров волнового перемешивания:

$$Eu_B = \frac{q_V}{\mu f^2} \tag{22}$$

Конвективные процессы в аппарате характеризует число Грасгофа:

$$Gr = \frac{g\beta\Delta th^3}{v^2}$$
(23)

а определяемое число подобия - модифицированное число Стантона волнового:

85

$$St_B = \frac{\beta}{df}$$
(24)

Тогда искомое уравнение в обобщенных переменных примет вид:

$$StB = A (Gr)b (ReB)n (Sc)m (EuB)k$$
(25)

Определение констант A, b, n, m, k является задачей экспериментального моделирования.

Выводы. Критический анализ методов математического моделирования процесса кристаллизации в условиях акустического поля показал, что в доступной литературе отсутствуют апробированные подходы. Степень влияния мощности акустических генераторов в математических моделях не учитывается, в то время как экспериментальные исследования показывают существенное влияние этого фактора. Предложена модель в обобщенных переменных, которая позволяет учесть специфику влияния на процесс акустического поля с помощью новых, волновых чисел подобия. Кинетика процесса описывается зависимостью волнового числа Стантона от волновых чисел Рейнольдса и Эйлера и от классических чисел Грасгофа и Шмидта.

Литература

- 1. Water Quality and Health Strategy 2013-2020 [Електронный ресурс]./ Режим доступа: <u>http://www.who.int/water_sanitation_health/publications/2013/water_quality_strategy.pdf</u>
- 2. José Coca-Prados, Gemma Gutiérrez-Cervelló "Water Purification and Management", Springer, 2009-228c.
- Nikolaj Gertsen, Linus Sonderby "Water Purification" New York: Nova Science Publishers, Inc., 2009 -297c.
- 4. Б.Е.Рябчиков. Современные методы подготовки воды. Минск, 2005.
- 5. Дытнерский Ю.И. Обратный осмос и ультрафильтрация. М. Химия, 1978.
- В.Б. Чернозубов, В.Л. Подберезный, Н.К. Токманцев "Техника термического опреснения воды в системах водоподготовки и ликвидации солесодержащих промышленных стоков". //Экология и технология. Москва, 1994 г.
- Бурдо О.Г., Офатенко О.О. Анализ процессов деминерализации воды //Зб. наук. праць ОНАХТ Одеса, 2009. – Вип.35. – С. 287- 292.
- 8. Бурдо О.Г. Совершенствование процессов и аппаратов пищевой и холодильной технологий на основе автономных теплопередающих устройств. Дис. д.т.н., Одесса, 1988 526 с.
- 9. Бурдо О.Г. Холодильные технологии в системе АПК Одесса: Полиграф, 2009 288с.
- Бурдо О.Г., Милинчук С.И., Мордынский В.П., Харенко Д.А. Техника блочного вымораживания Одесса: Полиграф, 2011 – 294с.
- 11. Лыков А.В. Тепломассообмен: Справочник. 2-е изд. М.: Энергия, 1978.- 480 с.
- B. Ubbenjans, Ch. Frank-Rotsch, J. Virbulis, B. Nacke, P. Rudolph "Influence of Ultrasonic Treatment on Crystal Growth From Melt" // International Scientific Colloquium Modelling for Material Processing, Riga, 2010- C 79-84.
- 13. Тимошенко И.В. Исследование влияния акустического поля на тепло-, массоперенос. Дис. к.т.н., Таганрог 2008
- 14. Mathieu Legay, Nicolas Gondrexon, Stephane Le Person, Primius Boldo, Andre Bontemps "Enhancement of Heat Transfer by Ultrasound:Review and Recent Advances" // Hindawi Publishing Corporation International Journal of Chemical Engineering Volume 2011, Article ID 670108,17c.