- 8. Hartwig U. Synthese und struktur eines aminstabilisierten sulfens, RHC=SO₂N(CH₂CH₂)₃CH [Text] / U. Hartwig, H. Pritzkow, W. Sundermeyer, J. Waldi // Z. Naturforsh. 1988. Vol. B43, № 3. C. 271–274.
- 9. Hartwig U. Bis-(trifluormethyl)-sulfen (CF₃)₂C=SO₂ als addukt isoliert [Text] / U. Hartwig, H. Pritzkow, K. Rall, W. Sundermeyer // Angew. Chem. 1989. Vol. 101, № 2. C. 224–225.
- 10. Bucher G. Sulfene-pyridine adducts: Lewis acid/base complexes, ylides, pyridinium sulfinate zwitterions, or carbene ylide/SO₂ complexes? [Text] / G. Bucher // Eur. J. Org. Chem. 2003. N = 19. P. 3868-3874.
- 11. Tahmassebi D. Substituent effects on the stability of sulfenes [Text] / D. Tahmassebi // Phosph., Sulfur and Silicon and Relat. Elem. 2006. Vol. 181, № 12. P. 2745–2755.
- 12. Hunt S. W. Molecular and Electronic Structure of $C_5H_5N-SO_3$: Correlation of Ground State Physical Properties with Orbital Energy Gaps in Partially Bound Lewis Acid-Base Complexes [Text] / S. W. Hunt, K. R. Leopold // J. Phys. Chem. A. 2001. V. 105, Nº 22. P. 5498–5506.
- 13. Gaussian 03, Revision C.01. / Frisch M.J., Trucks G.W., Schlegel H.B. [et al.] // Gaussian, Inc., Wallingford CT, 2004.
- 14. Nagai T. Sulfenes as chemical intermediates [Text] / T. Nagai, N. Tokura // Int. J. Sulfur Chem. (B). 1972. Vol. 7, \mathbb{N} 3. P. 207–215.
- 15. Wallace T. J. The chemistry of sulfene intermediates [Text] / T. J. Wallace // Quart. Rev. 1972. № 1. P. 67–74.

© Лящук С.Н., Дорошенко Т.Ф., 2011

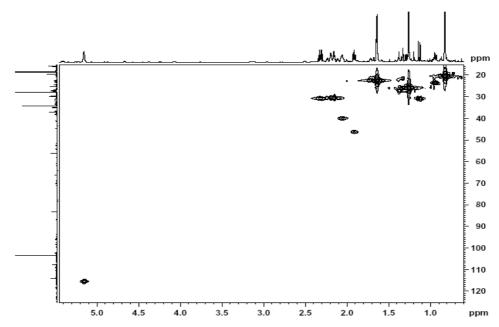
Надійшла до редколегії 23.12.2010

УДК 547.9+541.63+538.27

Т.М. Пехтерева, С.Ю. Суйков, Н.И. Коротких, В.Ф. Галат, С.П. Зимцев, Е.С. Папаянина, М.Л. Бычков (ИнФОУ им. Л.М.Литвиненко НАН Украины)

УСТАНОВЛЕНИЕ ПРОСТРАНСТВЕННОГО СТРОЕНИЯ 2,3-ПИНЕНА И 2,3-ЭПОКСИПИНАНА МЕТОДАМИ 1D И 2D ЯМР-СПЕКТРОСКОПИИ

Изучено методом 1D и 2D ЯМР-спектроскопии пространственное строение 2,3-пинена и 2,3-эпоксипинана. Сопоставлены расчетные и экспериментальные значения констант спин-спинового взаимодействия. Методом RHF G-311G рассчитана структура молекулы 2,3-эпоксипинана. Сделан вывод о плоском строении фрагмента C1C2C3C4C5 в молекулах 2,3-пинена и 2,3-эпоксипинана. Подтверждено транс-расположение гемм-диметильной группы и эпоксидного цикла.


Ключевые слова: 1D и 2D спектроскопия ЯМР, 2,3-пинен, 2,3эпоксипинан, отнесение сигналов, константы спин-спинового взаимодействия, пространственная структура.

С точки зрения развития метода ЯМР-спектроскопии, представляет интерес изучение сложных, сильно связанных спектров каркасных структур. Среди них многие годы особое внимание проявляется к производным терпенов, в частности, к пиненам и пинанам [1–4]. Несмотря на кажущуюся простоту, недостаточно. строение ЭТИХ молекул изучено Ведутся споры конформационном составе этих соединений [5, 6]. Установление деталей геометрии требует экспериментального определения углов между связями, расстояний между атомами, что в терминах ЯМР-эксперимента соответствует константам спин-спинового взаимодействия (КССВ) и ядерному эффекту Оверхаузера.

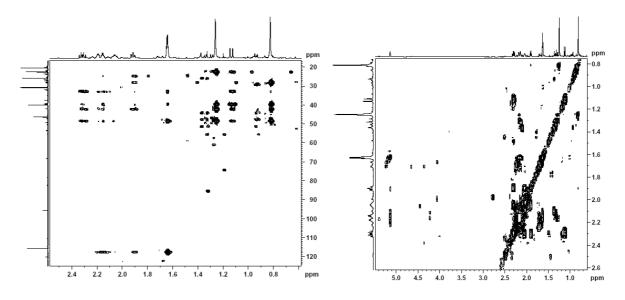
Нами был проведен анализ одномерных спектров (1D): ¹H, Dec, ¹³C, DEPT и двумерных спектров (2D): COSY, NOESY, HETCOR HSQC и HMBC 2,3-пинена (I) и 2,3-эпоксипинана (II). Соединение (I) получено многократной разгонкой скипидара. При окислении 2,3-пинена м-хлорнадбензойной кислотой нами синтезирован 2,3-эпоксипинан (II) [7]. Полученные данные приведены в табл.1, 2 и на рис.1–7. Значения химических сдвигов в спектрах ¹³C совпадают с данными, приведенными в работах [8, 9].

Протонный спектр соединения (I) слишком сложен для однозначного определения хим. сдвигов из-за значительной спиновой связанности сигналов. Использование методики Dec. упрощает спектр, но остаются неразрешенными сигналы протонов связанных одновременно геминально, вицинально и дальними спин-спиновыми взаимодействиями. Авторы работы [4] для отнесения хим. сдвигов протонов в соединении (I) ввели в положение С4 карбонильную группу, тем самым упростив спектр и убрав соответствующие протоны из цепи спин-спинового взаимодействия. Таким образом было сделано отнесение хим. сдвигов протонов, однако определение КССВ не было проведено. Полуэмпирическим методом были рассчитаны диэдральные углы в молекуле (I) [4].

Мы воспользовались методом гетероядерной корреляции ¹H-¹³C HSQC (рис.1), который позволяет провести полное отнесение сигналов в протонном спектре при условии отнесения сигналов в углеродном спектре (табл.1).

Рис. 1. Гетероядерная двумерная корреляция HSQC ¹H-¹³C 2,3-пинена

Использование методики гетероядерной корреляции $^1\text{H}-^{13}\text{C}$ HMBC позволяет обнаружить спин-спиновые взаимодействия (CCB) ^1H / ^{13}C через две и более связей (табл.1, рис.2), а также сделать предположения о месте расположения в молекуле функциональных групп и сближенности фрагментов. Двумерный гомоядерный спектр COSY позволяет установить спин-спиновые взаимодействия протонов в молекуле соединения (рис.3).


Таблица 1. Химические сдвиги ¹H, ¹³C, КССВ ¹H-¹H и корреляционные пики HMBC в спектре 2,3-пинена (I)

№ атома углерода	δ _H , м.д. ¹	δ _H , м.д. ²	δ _C , м.д. ¹	J _{нн} , Гц ²	НМВС
1	1,92	1,914	46,9	³ J _{1,6} =5,60; ⁴ J _{1,5} =5,60; ⁴ J _{1,3=} 1,48	H ^{6(e)} ; H ^{6(a)} ; H ⁸ ; H ⁹ ; H ¹⁰
2	-	-	149,9		
3	5,17	5,152	116,1	³ J _{3,4e} =3,09; ³ J _{3,4a} =2,80; ⁴ J _{3,5} =1,30; ⁴ J _{3,10} =1,80 ³ J _{4e,4a} =-17,2;	H ^{4(a,e)} ; H ¹ ; H ¹⁰
4	2,15(a) 2,22(e)	2,141 2,208	31,3	³ J _{4e,4a} =-17,2; ³ J _{4e,5} =3,09; ⁴ J _{4e,10} =2,3; ³ J _{4a,5} =2,80; ⁴ J _{4a,10} =2,2 ³ J _{5,6} =5,62	H ^{6(a,e)} ; H ⁸ ; H ⁹ ;H ¹⁰
5	2,08	2,059	40,6	³ J _{5,6} =5,62	$H^{6(a,e)}; H^{8}; H^{9}; H^{1}$
6	1,18	1,134 2,315	31,3	³ J _{6e,6a} =-8,44	H ^{4(a,e)}
7	-	-	37,9		
8	0,85	0,825	20,8		H^6 , H^9
9	1,28	1,261	26,4		H ¹ , H ⁸
10	1,68	1,6425	22,9		H ¹ , H ³

Примечание:

²⁾ Химические сдвиги ¹H и КССВ ¹H-¹H полученные из анализа формы линии экспериментального спектра с использованием библиотеки fastNMR [10].

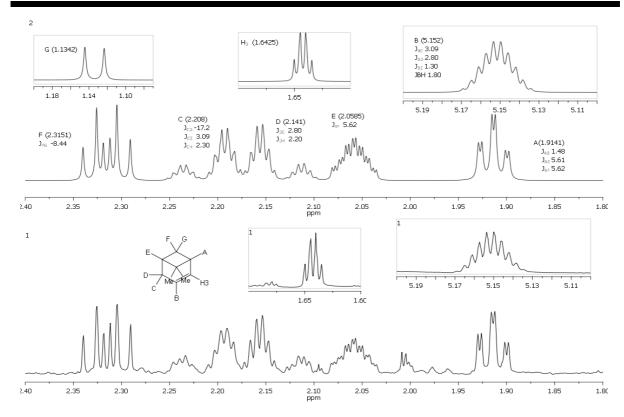


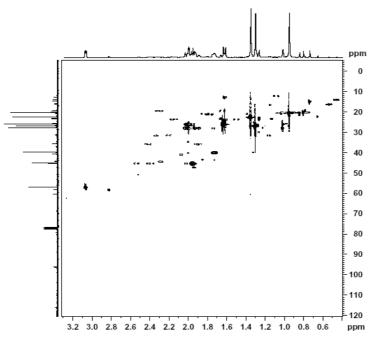
Рис. 2. Гетероядерная двумерная корреляция HMBC 2,3-пинена

Рис. 3. Гомоядерная двумерная корреляция COSY 2,3-пинена

Экспериментальные значения КССВ и хим. сдвигов сопоставлены с рассчитанными значениями (см. табл.1) для соответствующих протонов гексанового цикла. Расчеты выполнены по программе [10]. Экспериментальные и расчетные протонные спектры приведены на рис.4.

 $^{^{1)}}$ Химические сдвиги приведены в растворе DMSO (d₆) - CCI₄ Спектры записаны на спектрометре ЯМР фирмы «Bruker» Avance II 400 (1 H - 400 MHz, 13 C- 100 MHz, 5 % моль, температура 293 K)

Рис. 4. Экспериментальный (1) и рассчитанный (2) 1 H-ЯМР спектры 2,3-пинена в растворе ДМСО (d_{6}) - CCI_{4}


Спектрально мы наблюдаем значительное различие в химических сдвигах аксиального (a) и экваториального (e) протонов H6 ($\Delta \delta$ = 1,13 м.д.) (см. табл. 1). В работе [11] для циклогексанового кольца различие в хим. сдвигах протонов (а) и (е) составляет 0,5 м.д., что вызвано экранирующим влиянием С-С связей кольца. Сильнопольный сигнал соответствует Н6(а) протону. В нашем случае $\Delta \delta = 1.13-0.5 = 0.63$ (м.д.) может быть следствием экранирования H6(a) двойной связью кольца. Сигнал метильной группы С8 в протонном спектре смещен в сильное поле по сравнению с метильной группой С9, что можно объяснить экранирующим влиянием гексанового цикла на соответствующую CH₃ группу. В спектре HMBC получены КССВ ²J_{CH} H4(a,e) / C3, ³J_{CH} H1 / C3, ⁴J_{CH} Н10 / С3. Кроме указанных констант, фиксируются также константы, которые мы приводим в табл.1 и рис.4. Двумерный гомоядерный эксперимент COSY (рис.3) в случае соединения (I) наблюдаются интенсивности кросс- пики Н3 и протонов Н4(а) и (е). Расчет КССВ дает близкие значения 3 Ј $_{H3H4a}$ и 3 Ј $_{H3H4e}$ 2,8Гц. и 3,1Гц, соответственно. Исходя из зависимости Карплуса [12], эти значения соответствуют диэдральным углам ~60°. По данным [4] видно, что расчетные значения диэдральных углов $Q_{HC3C4Ha}$ и $Q_{HC3C4He}$ имеют значения -58.5° и 60,0°. Для $^3J_{H4aH5}$ и $^3J_{H4eH5}$ получены нами такие же значения констант 2,8Гц и 3,1 Гц. Расчетные значения диэдральных углов 60,0° и -58,2°. Следовательно, фрагмент C1C2C3C4C5 плоский.

Мы получили в молекуле (II) кроме гексанового два малых напряжённых цикла — эпоксидный и циклобутановый. Авторами работы [2] был получен протонный спектр 2,3-эпоксипинана на спектрометре с рабочей частотой 25,5 МГц, вследствие чего анализ протонного спектра был сильно затруднен. В работе [3] исходя из изучения спектров ПМР соединения (II) с лантаноидным сдвигающим реагентом предложено транс-расположение окисного цикла и гем-

диметильной группы, определены хим. сдвиги протонов некоторых фрагментов молекулы и значения некоторых геминальных КССВ.

ЯМР-спектральный анализ соединения (II) нами выполнен по схеме: одномерные спектры 1 H, 13 C, DEPT; двумерные гомо- (COSY,NOESY) и гетероядерные (1 H- 13 C) HSQC спектры.

Использование методики HETCOR ¹H-¹³C позволило провести отнесение сигналов и определить значения хим. сдвигов протонов соединения (II) (рис.5).

Рис. 5. Гетероядерная двумерная корреляция HSQC ¹H-¹³C 2,3-эпоксипинана

При сравнении спектров ЯМР-1H соединений (I) и (II) прослеживается значительное смещение в сильное поле хим. сдвигов H3 $\Delta \delta$ = 2.12 м.д. и метильной группы (10) $\Delta \delta$ = 0,39 м.д. В слабое поле смещается сигнал от H6(a) протона. Разница в хим. сдвигах Н6(е) и Н6(а) составляет 0,48 м.д., что классикой для экваториальных И аксиальных является циклогексанового кольца. Оксирановый цикл не оказывает на Н6(а) своего влияния. Расчет структуры соединения (II) ограниченным методом Хартри-Фока (RHF) G-311G [13] позволяет установить, что протон H6(a) сближен с атомом кислорода (2,3 A°) и выходит из экранирующего влияния оксиранового цикла. В спектре ¹H не наблюдается спин-спиновое расщепление сигнала метильной группы (10) характерного для соединения (I).

В спектре гомоядерной корреляции COSY на наличие спин-спинового взаимодействия между протонами H5 / H4(e), H5 / H4(a), H6(a) / H6(e), H4(a) / H4(e) указывают кросс- пики между соответствующими сигналами. Кросс-пики от сигналов H4(a,e), H1, H6(e) накладываются. В спектре ЯМР- 1 Н не наблюдаются спин-спиновые взаимодействия для CH $_3$ (8), CH $_3$ (9), CH $_3$ (10) и выше приведенных протонов. Возможно их значения небольшие. У эпоксидированного соединения (II) константы 3 Ј $_{H3H4a}$ и 3 Ј $_{H3H4e}$ различны 3,4Гц и 0 Гц. Это следует как из проведенных расчетов значений КССВ (см. табл.2), так и наблюдаемых кросс-пиков в двумерном эксперименте COSY (рис.6). Как видно из рисунка 6 наблюдаются кросс-пики H3 с H4(a) и нет для H3 с H4(e), сохраняются два кросс-пика у H5 с H4(e) и H4(a).

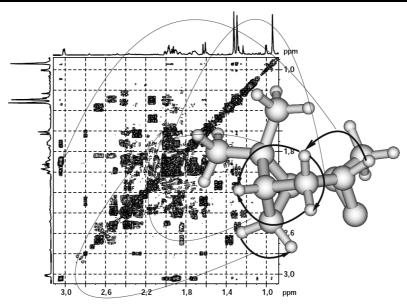


Рис. 6. Гомоядерная двумерная корреляция COSY 2,3-эпоксипинана

Расчетные значения констант $^3J_{H4H5a}$ и $^3J_{H4H5e}$ равны 2,8 Гц и 3,1 Гц. При расчете структуры соединения (II) методом RHF G-311G получены диэдральные углы $Q_{HC3C4Ha}$ и $Q_{HC3C4He}$ 30,6° и - 86,1° и $Q_{HC5C4Ha}$ $Q_{HC5C4He}$ равные 58,0° и 58,0°, соответственно. Диэдральные углы хорошо согласуются с указанными величинами КССВ.

Таблица 2. Химические сдвиги ¹H, ¹³C и КССВ ¹H-¹H в спектре 2,3-эпоксипинана (II)

№ атома С	δ _H , м.д. ¹	δ _H , м.д. ²	δ _C , м.д. ¹	J _{нн} , Гц ²
1	1,95	1,946	45,2	$^{3}J_{1,6}=5,6; ^{4}J_{1,5}=5,6; ^{3}J_{1,6e}=5,6^{1}$
2	-	-	60,4	
3	3,05	3,066	56,9	$^{3}J_{3,4a} = 3,1; \ ^{3}J_{3,4} = 3,4^{1}$
4	1,91(a) 2,20(e)	1,900(a) 2,010(e)	27,8	$^{2}J_{4a,4e} = -15,2; \ ^{3}J_{4e,5} = 2,9; \ ^{4}J_{4e,6e} = 0,6; \ ^{3}J_{4a,5} = 2,8; \ ^{3}J_{4a,6e} = 0,5; \ ^{2}J_{4e,4e} = 15,0^{1}$
5	1,74	1,730	39,9	$^{3}J_{5,6e} = 1,7$
6	1,62(a) 2,00(e)	1,620(a) 1,989(e)	26,0	$^{2}J_{6e,6a} = -9,3; ^{2}J_{6e,6a} = 9,4^{1}$
7	-	-	25,9	
8	0,93	0,942	20,3	
9	1,26	1,295	26,9	
10	1,29	1,344	22,5	

Примечание:

¹⁾ Химические сдвиги приведены в растворе DMSO (d₆) -CCl₄

²⁾ Химические сдвиги ¹H и КССВ ¹H-¹H получены из анализа формы линии экспериментального спектра в растворе CDCl₃ с использованием библиотеки fast NMR [10].

Для подтверждения конформации 2,3-эпоксипинана был выполнен также двумерный фазовочувствительный эксперимент NOESY (рис.7).

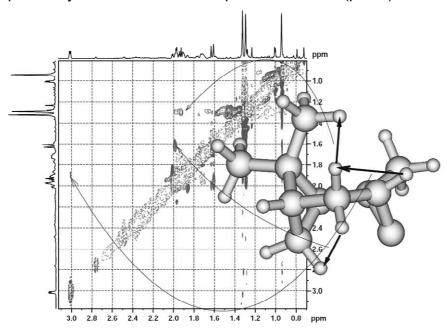


Рис. 7. Гомоядерная двумерная корреляция NOESY 2,3-эпоксипинана

В спектре наблюдаются кросс-пики $CH_3(9)$ с H1, H3 с H4(a), H6(a) с H4(e), H4(a) с H4(e) сигналов. Расчет структуры соединения II подтверждает сближенность этих атомов. Наличие кросс-пиков между атомами H3 и H4(a) подтверждает транс-расположение гемм-диметильной группы и эпоксидного цикла. Проведенные исследования согласуются с конформацией молекулы с плоским полуциклом C1C2C3C4C5.

Таким образом, в работе:

- выполнено полное отнесение сигналов в спектрах ¹Н ЯМР 2,3-пинена и 2,3-эпоксипинана;
 - определены значения КССВ НСН, НССН;
 - установлено пространственное строение 2,3-пинена и 2,3-эпоксипинана.

Литература

- 1. Арбузов. Б.А. Электронографическое исследование строения молекулы α-пинена / Б.А. Арбузов, В.А. Наумов // Доклады АН СССР. 1964. Т. 158, № 2. С. 376–378.
- 2. Арбузов . Б.А. Исследование бициклических терпенов и их окисей методом протонного магнитного резонанса / Б.А. Арбузов, З.Г. Исаева, Ю.Ю. Самитов // Доклады АН СССР. 1961. Т. 137, № 3. С. 589–592.
- 3. Арбузов Б.А. О конфигурации и конформациях окисей бициклических терпенов на основе псевдоконтактных химических сдвигов в спектрах П.М.Р. / Б.А. Арбузов, Ю.Ю. Самитов, Ш.С. Бикеев // Доклады АН СССР. 1974. Т. 216, № 3. С.550–553.
- 4. Milss N.S. Complete Assignment of Proton Chemical Shifts in Terpenes. An Experiment Combining 2D NMR Spectroscopy with Molecular Modeling / J.of Chemical Education. 1996. Vol. 73, № 12. P 1190–1192.
- 5. Ткачёв А.В. Химия возобновляемого растительного сырья: исследование терпеноидов растений Сибири и дальнего востока: дисс докт. хим. наук. 1996. РФ. Новосибирск, ИОХ СО РАН.
- 6. Пехтерева Т.М. Установление конформации и изомерного состава 3,4-эпоксикарана методами 1D и 2D ЯМР спектроскопии / Т.М.Пехтерева, С.Ю.Суйков, В.Ф.Галат, Е.С. Папаянина, С.П.Зимцев, Г.Б.Зернова // Наукові праці Донецького національного технічного університету. Серія: Хімія і хімічна технологія. 2010. № 15(163). С. 55–60.

- 7. Козина М.П. Энтальпии образования α и β -3,4—эпоксикаранов / М.П.Козина, В.А.Алешина, Г.Л.Гальченко, Г.В.Дещиц, И.И.Бардышев // ДАН БССР Сер. Хим. 1977, № 6. С. 94—96.
- 8. Пехк Т.И. Химические сдвиги ядер 13С производных бицикло [4.1.0] гептана / Т.И. Пехк, Х.Э.Кооскора, Э.Т.Липпмаа // Доклады АН БССР. Сер. Хим. 1977. № 1. С. 96–103.
- 9. Coxon J. M. Carbon-13C Nuclear Magnetic Resonance Spectra of pinane monoterpenoids / J. M.Coxon, J.Hydes, P.J.Steel // J.Chem.Soc. Perkin Trans. II. 1984. № 8. P. 1351–135.
- 10. Galat V.F. Fast NMR: A Prigh performance NMR simulation tool / Book of Abstracts: Methods and applications of computational chemistry. 2nd International symposium. Kyiv, Ukraine, 2-4 july 2007. Kyiv-Kharkiv, 2007. P. 43 в подзаг: NAS UKRAINE, stc Institute of molekular biology and genetics NAS Ukraine.computational center of molekular structure and internationals, Jackson state university.USA, Technology park» Institute for single crystals». Ukrainian-American laboratory of computational chemistry.
 - 11. Гюнтер. Х. Введение в курс спектроскопии ЯМР / Гюнтер. Х. М.: Мир, 1984. 478 с.
- 12. Karplus H. Vicinal proton Coupling in Nuclear Magnetic Resonance / J.Amer.Chem.Soc. 1963. Vol. 85, № 18. P. 2870–2871.
- 13. Schmidt M.W., Baldridge K.K., Boatz J.A., Elbert S.T., Gordon M.S., Jensen J.H., Koseki S., Matsunaga N., Nguyen K.A., Su S.J., Windus T.L., Dupuis M., Montgomery J.A. / J.Comput.Chem. 1993. № 14. P. 1347–1363.

© Пехтерева Т.М., Суйков С.Ю., Коротких Н.И., Галат В.Ф., Зимцев С.П., Папаянина Е.С., Бычков М.Л., 2011

Надійшла до редколегії 02.02.2011

УДК 547.728.1'892'23

А.С. Толкунов, С.Л. Богза (ИнФОУ им. Л.М. Литвиненко НАН Украины)

НОВЫЙ УДОБНЫЙ МЕТОД СИНТЕЗА 11H-1,2,4-ТРИАЗОЛО[4,3-В][1,2]БЕНЗОДИАЗЕПИНОВ

Предложен новый метод синтеза 11H-1,2,4-триазоло[4,3-b][1,2]бензодиазепинов, основанный на взаимодействии 4-амино-3-R-5-(3,4-диметоксибензил)-1,2,4-триазолов с карбонильными соединениями в соляной кислоте.

Ключевые слова: реакция Пикте-Шпенглера, 4-амино-3-R-5-(3,4-диметоксибензил)-1,2,4-триазол, 11H-1,2,4-триазоло[4,3-b][1,2]бензодиазепины, циклизация, соляная кислота.

2,3-Бензодиазепины обладают разнообразными биологическими свойствами [1]. Например, препарат тофизопам проявляет анксиолитическое действие, а также используется для лечения болезни Паркинсона [2]. Препарат «Talampanel» применяется для лечения синдрома Паркинсона и эпилепсии [3].

Гетероконденсированные производные бензодиазепинов, такие как триазоло[4,3-b]- и имидазо[1,2-c][1,2]бензодиазепины, проявляют высокую антиконвульсивную активность, в некоторых тестах превосходящую активность известного лекарственного препарата Talampanel [4,5].

11H-1,2,4-триазоло[4,3-b][1,2]бензодиазепины (**2**) получают исходя из 3,5-дигидро-4H-2,3-бензодиазепин-4-онов (**1**) в две стадии (схема 1) [5-10]. Метод трудоёмок и не позволяет варьировать заместители в положении 1 бензодиазепинового цикла.