УДК 546.817'824'831

В.В. Приседский, д-р хим. наук, проф. (ГВУЗ «Донецкий национальный технический университет), **О.В. Загорулько, В.М.Погибко,** канд. хим наук, **Н.Г.Кисель,** канд. хим. наук. (НТЦ «Реактивэлектрон» НАН Украины, г. Донецк)

МЕХАНИЗМ СИНТЕЗА НАНОКРИСТАЛЛИЧЕСКОГО ТВЕРДОГО РАСТВОРА ЦТС ИЗ ОКСАЛАТНОГО ПРЕКУРСОРА

Представлены результаты исследования термического разложения оксалатного прекурсора морфотропного твердого раствора ЦТС $Pb(Zr_{0.52}Ti_{0.48})O_3$ методами рентгенофазового анализа и термогравиметрии. Оксалатный прекурсор $Pb[(Ti_{0.48}Zr_{0.52})(C_2O_4)_3]$ 4H₂O получен методом осаждения, используя как стартовые материалы тетрахлорид титана TiCl4, оксихлорид циркония ZrOCl2 8H2O, нитрат свинца $Pb(NO_3)_2$, щавелевая кислота $H_2C_2O_4$ 2 H_2O и 25% водный раствор аммиака NH_3 . Согласно данным термогравиметрии потеря молекул воды из оксалатного прекурсора происходит до 200°C, скорость разложения резко возрастает после потери первой из трех оксалатных групп около 360°C, а разложение всех оксалатных лигандов завершается при 450°C.

Рентгеновские дифрактограммы образцов прекурсора, прошедших термообработку в течение 1 ч при разных температурах, подтверждают полное разложение оксалатных групп до 350 °C, после чего наблюдается появление слабо кристаллических PbO, а также $2PbO \cdot PbCO_3$ и $2PbCO_3 \cdot Pb(OH)_2$. Псевдокубическая перовскитовая фаза появляется при 450 °C. Дальнейший рост температуры одностадийной термообработки ведет к образованию хорошо кристаллизованного и высокодисперсного перовскитового твердого раствора $Pb(Zr_{0.52}Ti_{0.48})O_3$ в диапазоне 500-600°C.

Ключевые слова: синтез, цирконат-титанат свинца, оксалатный прекурсор, нанокристалл, рентгеновская дифракция.

Введение

Благодаря своим высоким электрофизическим свойствам твердые растворы ЦТС [1] на протяжении десятков лет составляют основу наиболее широко применяемых сегнето- и пьезокерамических материалов. Ниже сегнетоэлектрической температуры Кюри Тc ОНИ обладают структурой нецентросимметричной перовскитовой многие свойства обнаруживают максимум в области морфотропной фазовой границы (вблизи состава Pb(Ti_{0.48}Zr_{0.52})O₃), на которой при изменении соотношения Ti/Zr происходит переход от тетрагонального к ромбоэдрическому искажению элементарной ячейки. Другими факторами, влияющими на свойства ЦТС, являются состав и концентрация модифицирующих (легирующих) добавок. отклонения от стехиометрии, плотность и пористость керамических изделий, размер зерен и кристаллитов, особенности сырья и метода получения.

В последнее время привлекают внимание свойства нанокристаллических порошков и консолидированных объемных наноструктурных изделий из сегнетоэлектрического цирконата-титаната свинца (ЦТС) [2,3].

Традиционным методом получения пьезокерамики ЦТС является керамический синтез [4]. Для получения нанокристаллических оксидов перовскитового семейства применяют высокоэнергетическое механическое активирование [5], лазерное напыление [6], различные методы растворной химии [7-11]: соосаждение, гидротермальный синтез, золь-гель процесс, термолиз и сжигание прекурсоров [12-15] и др. Хороший потенциал получения химически чистых продуктов и регулирования состава имеет оксалатный метод [16].

Полная последовательность превращений и состав аморфных промежуточных продуктов при синтезе перовскитовых фаз в процессе

термического разложения оксалатных прекурсоров остаются дискуссионными. Сопоставление количественных результатов гравиметрических исследований термического разложения оксалатных ацидокомплексов титана и циркония с результатами для большой совокупности отдельно синтезированных вероятных промежуточных продуктов разложения привело нас к достаточно детальной схеме реакций термолиза [17], что позволило уточнить возможные пути синтеза нанокристаллических перовскитовых фаз по более низкотемператуным ветвям процесса.

В работе [18] показано, что даже небольшой (в несколько мол.%) избыток PbO в оксалатном перкурсоре приводит к значительному торможению образования однородного твердого раствора ЦТС. В настоящей работе проведено рентгенографическое изучение продуктов термолиза оксалатного прекурсора, состав которого был специально скорректирован до соответствия стехиометрии состава конечного продукта – твердого раствора Pb(Zr_{0.52}Ti_{0.48})O₃.

Экспериментальная часть

Использовались следующие исходные вещества реактивной квалификации: титан четыреххлористый $TiCl_4$, ос.ч.; цирконий оксихлорид $ZrOCl_2\cdot 8H_2O$, х.ч.; свинец азотнокислый $Pb(NO_3)_2$, х.ч.; аммиак NH_3 (25% водный раствор), х.ч.; щавелевая кислота $H_2C_2O_4\cdot 2H_2O$, х.ч.; аммония оксалат $(NH_4)_2C_2O_4\cdot H_2O$, х.ч.; бидистиллат H_2O .

Для синтеза оксалатных прекурсоров ЦТС сначала осаждали водным раствором аммиака (4,4-4,5 M) гидроксиды титана и циркония из растворов хлоридов (2-2,1 M) в требуемом молярном соотношении:

$$0.48 \text{ TiCl}_4 + 0.52 \text{ ZrOCl}_2 + 2.96 \text{ NH}_3 + 2.48 \text{ H}_2\text{O} \rightarrow \text{H}_2(\text{Ti}_{0.48}\text{Zr}_{0.52})\text{O}_3\downarrow + 2.96 \text{ NH}_4\text{Cl}.$$

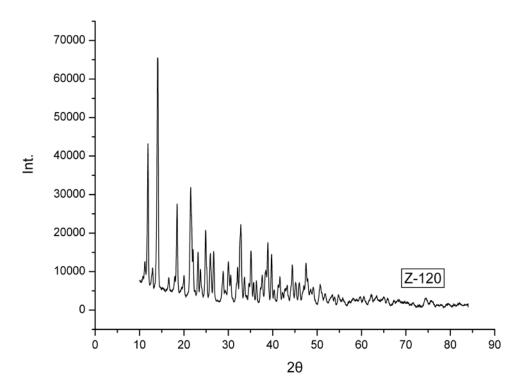
Полученный влажный осадок (содержание воды 85-90%) отмывали дистиллированной водой на воронке Бюхнера под вакуумом до отсутствия хлорид-ионов по пробе с AgNO₃, репульпировали в дистиллированной воде (Т:Ж=2:1), нагревали до 50-60°C и растворяли в 2 М растворе щавелевой кислоты с дальнейшей нейтрализацией аммиаком до pH = 2,5 при 60°C:

$$H_2(Ti_{0,48}Zr_{0,52})O_3 + 2 H_2C_2O_4 \rightarrow H_2[(Ti_{0,48}Zr_{0,52})O(C_2O_4)_2] + 2 H_2O$$

$$H_2[(Ti_{0,48}Zr_{0,52})O(C_2O_4)_2] + 2NH_3 \rightarrow (NH_4)_2[(Ti_{0,48}Zr_{0,52})O(C_2O_4)_2]$$

Полученный раствор отфильтровывали, затем при 80 °С и интенсивном перемешивании приливали 1,5 М раствор нитрата свинца, поддерживая значение pH в интервале 4-5:

$$(NH_4)_2[(Ti_{0,48}Zr_{0,52})O(C_2O_4)_2] + Pb(NO_3)_2 + 4 H_2O \rightarrow 2NH_4NO_3 + Pb[(Ti_{0,48}Zr_{0,52})O(C_2O_4)_2]\cdot 4H_2O\downarrow$$


Осадок отфильтровали и отмывали на вакуумном фильтре дистиллированной водой, после чего полученный оксалатный прекурсор ЦТС – тетрагидрат диоксалатотитаната-цирконата свинца – высушивали при 120°С и в вакууме 0,7 атм.

Навески высушенного прекурсора подвергались термообработке в течение 1 ч при выбранных температурах в диапазоне 200–900°С. Полученные

образцы подвергали рентгенографическому исследованию. Съемку рентгеновских дифрактограмм проводили на дифрактометре ДРОН-3 в отфильтрованном Cu- K_{α} излучении. Идентификацию рентгенограмм проводили по каталогу ASTM.

Результаты и их обсуждение

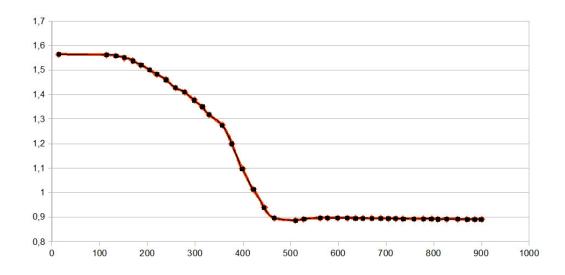
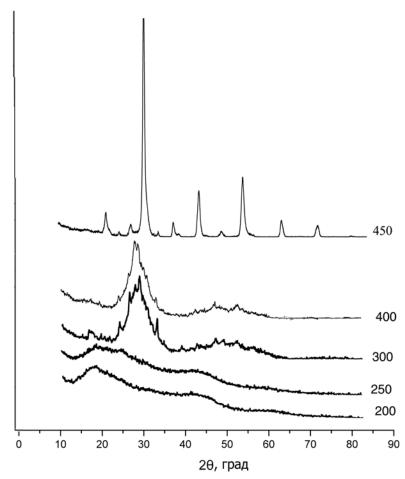

Как видно из дифрактограммы (рис. 1), синтезированный прекурсор $Pb[(Ti_{0.48}Zr_{0.52})O(C_2O_4)_2]\cdot 4H_2O$ после сушки при температуре 120 представляет собой продукт с достаточно совершенной кристалличностью. Перовскитовый твердый раствор Pb[(Ti_{0,48}Zr_{0,52})O₃ получают термическим разложением исходного прекурсора. Чтобы найти оптимальные условия термообработки, важно установить температурный интервал синтеза перовскитовой фазы. С этой целью были изучены продукты, прокаленные при разных температурах, имея в виду, что чем ниже температура синтеза, тем выше дисперсность синтезируемого продукта.

Рис. 1. Сложная дифракционная картина от синтезированного кристаллического оксалатного прекурсора ЦТС


На рис. 2 приведены результаты термогравиметрических исследований. Показано изменение массы образца в зависимости от температуры в политермическом режиме при скорости нагрева 9 °С/мин.

Из этих данных видно, что полная потеря молекул воды происходит до 200° C, скорость разложения резко возрастает после потери первой из трех оксалатных групп при температуре около 360° C, а полная потеря оксалатных групп практически завершается при 450° C.

Рис. 2. Изменение массы (%) оксалатного прекурсора ЦТС в зависимости от температуры. Скорость нагрева 9°С/мин

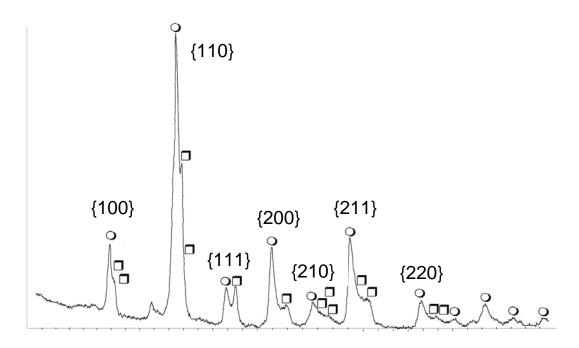
Дифрактограммы продуктов термообработки прекурсора в течение одного часа при различных температурах в диапазоне 200 – 450°C приведены на рис. 3.

Рис. 3. Рентгеновские дифрактограммы продуктов термического разложения оксалатного прекурсора при различных температурах (°C). Время выдержки 1 час

Краткая расшифровка данных рентгенофазового анализа приведена в табл. 1.

Температура, °С	Фазовый состав
Прекурсор, высушенный при 120°С	Сложная дифракционная картина от хорошо закристаллизованного порошка с низкой симметрией кристаллической решетки.
200 и 250	Аморфное состояние с несколькими слабыми и очень широкими полосами поглощения.
300	Слабо закристаллизованные 2PbO⋅PbCO₃, PbO (красный) и 2PbCO₃⋅Pb(OH)₂ (в меньших колтчествах).
400	Дифрактограмма подобна данным для образца при 300 °C, но нескодько больше PbO (красный) и меньше 2PbO·PbCO ₃ .
450	Четкие дифракционные отражения от кубического перовскитового твердого раствора с <i>a</i> ₁ = 4.13 Å. Присутствует также значительнок количество другого кубического перовскита с <i>a</i> ₂ = 3.98 Å, а также небольшое количество 2РbO⋅PbCO₃.
500	Фазовый состав практически такой же, как у предыдущего образца ($a_1 = 4.125 \text{ Å}, \ a_2 = 4.00 \text{ Å}$).
550	Две псевдокубические фазы с параметрами решетки a_1 = 4.12 Å и a_2 = 3.99 Å.
600	Две перовскитовые фазы: псевдокубическая $(a_1 = 4.12 \text{ Å})$ и в меньшем количестве тетрагональная $(a_2 = 3.96 \text{ Å}, c_2 = 4.08 \text{ Å})$
700	Однофазный псевдокубический перовскит с a = 4.10 Å.
800	Однофазный псевдокубический перовскит с a = 4.10 Å.

Таблица 1. Результаты ренгенофазового анализа


После термообработки при 200 и 250°C образцы находятся 300°C рентгеноаморфном состоянии. При появляются закристаллизованные 2PbO PbCO₃, PbO (красная модификация) и в меньших колтчествах 2PbCO₃-Pb(OH)₂. При 400 °C фазовая картина подобна состоянию при 300°C, несколько увеличивается количество PbO. Но уже всего через 50°C, при 450°C появляются четкие, хорошо сформированные дифракционные отражения от кубического перовскитового твердого раствора. Дальнейший нагрев ведет к появлению хорошо кристаллизованного псевдокубического твердого раствора Pb(Zr_{0.52}Ti_{0.48})О₃ при 500 и 600°С.

При 450 и 500°С в образцах структурно реализуются два перовскитовых твердых раствора. Их псевдокубическая симметрия (невозможная в сегнетофазе для микрокристаллических образцов в системе ЦТС) свидетельствует о высокой дисперсности — наносостоянии частиц перовскитовой фазы.

В ЦТС, синтезированном при 600°С, кроме псевдокубической появляется тетрагональная фаза, свидетельствуя как о неполой однородности ситезированого продукта, так и о большем размере частиц по сравнению с продуктами термообработки при 450 и 500°С.

Окончательая гомогенизация твердого раствора ЦТС при синтезе из оксалатного прекурсора наблюдается при 700°С и, конечно, наблюдается и при более высоких температурах синтеза (800°С).

На рис. 4 приведена дифрактограмма твердого раствора Pb(Zr_{0.52}Ti_{0.48})O₃, синтезированного термообработкой оксалатного прекурсора при 600°C.

Рис. 4. Рентгеновская дифрактограмма твердого раствора ЦТС, полученного термическим разложением оксалатного прекурсора при 600°С (1 ч). Видны рефлексы от псевдокубической (кружки) и тетрагональной (квадратики) фаз.

Отсутствуют рефлексы примесных ОТ фаз, не полностью прореагировавших оксидов или других промежуточных фаз. Наличие двух перовскитовых фаз: псевдокубической и тетрагональной может быть связано с синтезированного порошкообразного дисперсностью продукта нанометрическом уровне. Это подтверждает возможность синтеза нанокристаллического твердого раствора ЦТС при столь низких температурах как 500-600°С.

Список использованной литературы

- 1. Jaffe B. Piezoelectric properties of lead zirconate lead titanate solid-solution ceramics / B. Jaffe, R.S. Roth, and S. Marzullo // J. Appl. Phys. 1954. Vol. 25, No. 6. P. 809–810.
- 2. Приседский В.В. Нестехиометрические сегнетоэлектрики $A^{II}B^{IV}O_3$. Донецк: Ноулидж, 2011. 267 с.
 - 3. Глинчук М.Д. Наноферроики / М.Д. Глинчук, А.В. Рагуля. Киев: Наука, 2009. 275 с.
- 4. Matsuo Y. Formation of lead zirconate lead titanate solid solutions./ Y. Matsuo, H. Sasaki // J. Am. Ceram. Soc. 1965. Vol. 48. P. 289–291.
- 5. Praveenkumar B. Size effect studies on nanocrystalline Pb(Zr_{0.53}Ti_{0.47})O₃ synthesized by mechanical activation route / B. Praveenkumar, G. Sreenivasalu, H.H. Kumar, D.K. Kharat, M. Balasubramanian, B.S. Murty // Mater. Chem. Phys. 2009. Vol. 117. P. 338–342.
- 6. Craciun F. Pulsed laser deposition of annocrystalline lead zirconate titanate thin films / F. Craciun, M. Dinescu, P. Verardi, C. Galassi // Nanotechnology. 1999. Vol. 10. P. 81–85.
- 7. Q.F. Zhou, Nanocrystalline powders and fibers of lead zirconate titanate prepared by the sol-gel process / Q.F. Zhou, H.L.W. Chan, C.L. Choy // J. Mater. Process. Technol. 1997. Vol. 63. P. 281–285.

- 8. Y.Faheem, M. Shoaib Sol-gel processing and characterization of phase-pure lead zirconate titanate nano-powders // J. Am. Ceram. Soc. 2006. Vol. 89. No. 6. P. 2034–2037.
- 9. Meng J.F. Raman phonon modes and ferroelectric phase transitions in nanocrystalline lead zirconate titanate / Q.F. Zhou, H.L.W. Chan, C.L. Choy // Phys. Stat. Sol.(a). 1997. Vol. 164. P. 851–862.
- 10. Garnweitner G. Nonaqueous synthesis of amorphous powder precursors for nanocrystalline $PbTiO_3$, $Pb(Zr,Ti)O_3$, and $PbZrO_3$ / G. Garnweitner, J.Hentschel, M. Antonietti, M. Niederberger // Chem. Mater. 2005. Vol. 17. P. 4594–4599.
- 11. Zhu W. Low temperature processing of nanocrystalline lead zirconate titanate (PZT) thick films and ceramics by a modified sol-gel route / W. Zhu, Z. Wang, C.Zhao, O.K. Tan, H.H. Hng // Jpn. J. Appl. Phys. 2002. Vol. 41. P. 6969–6975.
- 12. Banerjee A. Free-standing lead zirconate titanate nanoparticles: low-temperature synthesis and densification / A. Banerjee, S. Bose // Chem. Mater. 2004. Vol. 16. P. 5610–5615.
- 13. Roy S. Metastable face-centered cubic lead zirconate titanate (PZT) and lead lanthanum zirconate titanate (PLZT) nanocrystals synthesized by auto-ignition of metal-polymer gel / S. Roy, S. Bysakh, J. Subrahmanyam // J. Mater. Res. 2008. Vol. 23, No. 3. P. 719–724.
- 14. Dash M.S. Study on phase formation and sintering kinetics of BaTi_{0.6}Zr_{0.4}O₃ powder synthesized through modified chemical route / M.S. Dash, J. Bera, S. Ghosh // Alloys and Compounds. 2007. Vol. 430. P. 212–216.
- 15. Das R.A. Low-temperature preparation of nanocrystalline lead zirconate titanate and lead lanthanum zirconate titanate powders using triethanolamine / R.A.Das, A.Pathak, P. Pramanik // J. Am. Ceram. Soc. 1998. Vol. 81, No. 12. P. 3357–3360.
- 16. W.S. Clabaugh / W.S. Clabaugh, E.M. Swiggard, R. Gilchrist // J. Res. Natl. Bur. Std. 1956. Vol. 56, No. 5. P. 289–293.
- 17. Погибко В.М. Исследование механизмов термического распада оксалатного прекурсора титаната бария / В.М. Погибко, В.В. Приседский, И.Л. Сидак // Вопросы химии и хим. технологии. 2010. № 1. С. 110–115.
- 18. An X-Ray and Gravimetric Study of Thermal Synthesis of PZT Solid Solution from Oxalate Precursor / V.V. Prisedsky, V.M. Pogibko, N.G. Kisel [et al.] // Наукові праці Донецького національного технічного університету. Серія: Хімія і хімічна технологія. 2013. Вип. 2(21). С. 77–83.

Надійшла до редколегії 17.10.2013.

В.В. Приседский, О.В. Загорулько, В.М.Погибко, Н.Г.Кисель МЕХАНИЗМ СИНТЕЗА НАНОКРИСТАЛЛИЧЕСКОГО ТВЕРДОГО РАСТВОРА ЦТС ИЗ ОКСАЛАТНОГО ПРЕКУРСОРА

Наведено результати дослідження термічного розкладу оксалатного прекурсора морфотропного твердого розчину ЦТС $Pb(Zr_{0.52}Ti_{0.48})O_3$ методами рентгенофазового аналізу і термогравиметрії. Оксалатний прекурсор $Pb[(Ti_{0.48}Zr_{0.52})(C_2O_4)_3]\cdot 4H_2O$ отримано методом осаждення з використанням у якості стартових матеріалів тетрахлориду титану $TiCl_4$, оксіхлориду цирконію $ZrOCl_2\cdot 8H_2O$, нітрату свинцю $Pb(NO_3)_2$, щавлевої кислоти $H_2C_2O_4\cdot 2H_2O$ і 25% водного розчину аміаку NH_3 . Відповідно даним термогравіметрії втрата молекул води із оксалатного прекурсора відбувається до $200^{\circ}C$, швидкість розкладу різко зростає після втрати першої з трьох оксалатних груп близько $360^{\circ}C$, а розкладення всіх оксалатних лігандів завершується при $450^{\circ}C$.

Рентгенівські дифрактограми зразків прекурсора, що пройшли термообробку протягом 1 год при різних температурах, підтверджують повний розклад оксалатних груп до 350° С, після чого спостерігається поява слабко кристалічних PbO, а також $2PbO \cdot PbCO_3$ і $2PbCO_3 \cdot Pb(OH)_2$. Псевдокубічна перовскітова фаза з'являється при 450° С. Подальший рост температури одностадійної термообробки приводить до утворення добре кристалізованого і високодисперсного перовскітового твердого розчину $Pb(Zr_{0,52}Ti_{0,48})O_3$ в діапазоні $500-600^{\circ}$ С.

Ключові слова: синтез, цирконат-титанат свинцю, оксалатний прекурсор, нанокристал, рентгенівська дифракція.

V. Prisedsky, O.Zagorul'ko, V. Pogibko, N. Kisel MECHANISM OF SYNTHESIS OF NANOCRYSTALLINE PZT SOLID SOLUTION FROM OXALATE PRECURSOR

The results of thermogravimetric and XRD studies of thermal decomposition of oxalate precursor of morphotropic PZT solid solution $Pb(Zr_{0,52}Ti_{0,48})O_3$ are presented. Oxalate precursor $Pb[(Ti_{0,48}Zr_{0,52})(C_2O_4)_3]\cdot 4H_2O$ was obtained by precipitation reaction using titanium tetrachloride $TiCl_4$, zirconium oxychloride $ZrOCl_2\cdot 8H_2O$, lead nitrate $Pb(NO_3)_2$, oxalic acid $H_2C_2O_4\cdot 2H_2O$ and ammonia

NH₃ 25% water solution as starting materials. According to thermogravimetric data, the loss of water molecules from the oxalate precursor takes place before 200°C, the decomposition rate increases sharply after the loss of first of three oxalate groups at about 360°C and the loss of all oxalate groups is practically complete at 450°C. Thermogravimetry and XRD diffraction patterns of heat treated precursor samples confirm decomposition of oxalate groups before 450°C.

In the process of decomposition first crystallization of PbO together with 2PbO·PbCO₃ and 2PbCO₃·Pb(OH)₂ is observed and pseudocubic perovskite phase appears at 450°C.

Further increase in temperature of one-stage heat treatment leads to formation of well crystallized perovskite solid solution Pb(Zr_{0,52}Ti_{0,48})O₃ in the range 500-600°C. Complete homogenization of synthesized perovskite is observed at 700°C and higher temperatures/

Keywords: synthesis, lead zirconate titanate, oxalate precursor, nanocrystal, X-ray diffraction.

Приседский Вадим Викторович – д-р хим. наук, профессор, заведующий кафедрой общей химии ГВУЗ «Донецкий национальный технический университет», Донецк, Украина, e-mail: <u>prisedsky@feht.dgtu.donetsk.ua</u>

Загорулько Олег Валериевич – научный сотрудник, Государственное учреждение Научно-технологический центр «Реактивэлектрон» Национальной Академии Наук Украины, Донецк, Украина

Погибко Владимир Михайлович – кандидат химических наук, заместитель директора по научным вопросам, заведующий отделом наноструктурных функциональных материалов, Государственное учреждение Научно-технологический центр «Реактивэлектрон» Национальной Академии Наук Украины, Донецк, Украина, e-mail: V.Pogibko@nas.gov.ua.

Кисель Николай Григорьевич – канд.хим.наук, ст.науч.сотр., Государственное учреждение Научно-технологический центр «Реактивэлектрон» Национальной академии наук Украины, Донецк, Украина.

УДК 546.85+546.311+537.312.7

В.М. Погибко (Научно-технологический центр «Реактивэлектрон» НАН Украины, г. Донецк, Украина)

МЕХАНИЗМ ТЕКСТУРИРОВАНИЯ ПОЛИКРИСТАЛЛИЧЕСКИХ СЛОЖНЫХ ОКСИДОВ СО СТРУКТУРОЙ ПЕРОВСКИТА В СЛАБОМ ПЕРЕМЕННОМ ЭЛЕКТРИЧЕСКОМ ПОЛЕ

Разработан метод формирования текстуры при спекании поликристаллической керамики в переменном электрическом поле. На основе легированного марганцем твердого раствора ($K_{0,5}$ Na_{0,5})NbO₃ получена текстурированная пьезокерамика с точкой Кюри 392°С и пьезочувствительностью g_{33} на уровне 205 мВ·м/Н, что значительно выше по сравнению с лучшими образцами промышленной пьезокерамики на основе цирконата-титаната свинца.

Ключевые слова: нанопорошок, внешнее переменное электрическое поле, спекание, диффузия, текстура, керамика, электрофизические свойства

Введение

С восьмидесятых годов прошлого века в мире ведутся интенсивные исследования, направленные на разработку методов получения пьезокерамики с упорядоченной текстурой [1]. Упорядоченная текстура приводит к повышению электрофизических свойств, например, возрастает электрострикционный эффект. Это особенно важно для систем инжекции топлива в двигателях внутреннего сгорания или для актюаторов, используемых в качестве наноманипуляторов в силовых туннельных электронных микроскопах.

Можно выделить два основных типа текстуры – морфологическую и ориентационную. Первая связана с внешней формой зерна – габитусом, а вторая – с упорядоченной ориентацией зерен или кристаллической решетки кристаллитов зерен керамики относительно друг друга.

Текстурирование поликристаллического материала может происходить под действием упругих напряжений: при горячим прессованием, прокатке, экструзии [2]; в результате воздействия градиента температуры [3] или