
УДК 622.693

Докт. техн. наук ЗБОРЩИК М.П. (ДонНТУ), докт. техн. наук ОСОКИН В.В. (Донецкий государственный университет экономики и торговли)

ВЕЩЕСТВА НОВООБРАЗОВАНИЯ В УГЛЯХ И УГЛИСТОГЛИНИСТЫХ ПОРОДАХ, ПРЕДОПРЕДЕЛЯЮЩИЕ ОПАСНЫЕ И ВРЕДНЫЕ ПРОЯВЛЕНИЯ В НИХ

На современных глубинах разработки породы угольных месторождений находятся в восстановительных условиях. При производстве выемочных работ в углях и углисто-глинистых породах начинают протекать биохимические процессы окислительного выщелачивания содержащихся в них рудных минералов, в основном пиричем, который представлен пылевидной вкрапленностью, прослоями и линзами. Причем, прослои и линзы его состоят преимущественно из глобулей (фрамбоидов) с размерами до 50 мкм, а они в свою очередь — из совокупности микрокристаллов с размерами 0,5...2,5 мкм. Фрамбоиды находятся на поверхности микротрещин и макропор и поэтому доступны для внешних агентов выветривания. В окислительных условиях происходит обновление поровых растворов углей и углисто-глинистых пород. Появление в растворах кислода, углекислого газа и микроорганизмов тионовой группы определяет специфический характер и большую скорость окислительного выщелачивания пирита.

Авторами доказаны [1] наличие тионовых бактерий Th. ferrooxidans в поровых растворах находящихся в водно-воздушных условиях пород угольных месторождений и их решающая роль в процессах окисления и выщелачивания пирита. Биохимический процесс окислительного выщелачивания пирита является экзотермическим, сопровождается выделением элементной серы, серной кислоты и соединений железа. В связи с повышением температуры поровых растворов изменяется морфология микроорганизмов: из палочковидной формы они переходят в сферическую форму, приспосабливаясь к изменяющимся условиям среды обитания. На рисунке 1 видны при увеличении 270^x тионовые бактерии палочковидные (a) и сферической формы (δ).

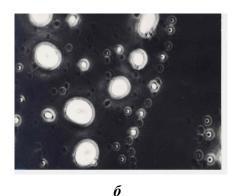


Рис. 1. Тионовые бактерии различной формы

Роль микроорганизмов в биохимическом процессе окислительного выщелачивания пирита заключается в расчленении его и увеличении вследствие этого реакционноспособной поверхности, окислении серы и двухвалентного железа в условиях, в которых невозможно их химическое окисление, в непосредственном участии в экзо-

термических реакциях. Увеличение реакционноспособной поверхности пирита и повышение температуры среды за счет биохимических процессов интенсифицирует чисто химические процессы окислительного выщелачивания этого минерала с дальнейшим повышением температуры и выделением указанных выше веществ новообразования.

Следствием повышения температуры поровых растворов является самонагревание горной породы. Выполнен нами анализ более 90 химических реакций, связанных с окислительным выщелачиванием пирита в углях и углисто-глинистых породах. По результатам этого анализа, основными веществами новообразования в самонагревающейся горной породе, определяющими характер дальнейшего протекания всех процессов, являются элементная сера и серная кислота. Экспериментально установлено, что в самонагревающейся отвальной породе при температуре 75°C и выше содержание элементной серы может быть более 4% (более 40 кг серы в 1 тг породы). С минералогической точки зрения представляет интерес анализ различных модификаций элементной серы, выделенной нами из отвальной породы в большом температурном интервале.

На ранней стадии окислительного выщелачивания пирита в горной породе специалистам не удавалось наблюдать выделение элементной серы в связи с тем, что в кислой среде она образует с ионами Fe^{3+} и SO_4^{2-} мицеллы коллоидного раствора. Такой раствор ярко бурого цвета был получен нами в лабораторных условиях при окислительном выщелачивании пирита с участием микроорганизмов Th ferrooxidans. При исследованиях раствора в диализаторе на мембране оставался осадок-коагль, состоящий из атомов серы, ионов SO_4^{2-} и Fe^{3+} .

Исследования коагеля на дериватографе позволили получить термограмму с четко выдержанными эндотермическим и экзотермическим эффектами, экстремумы которых приходятся на значения температуры, соответственно, 120 и 280°С. Эндотермический эффект обусловлен выделением влаги, плавлением и испарением серы, экзотермический эффект — горением ее паров. Потеря массы исследуемого вещества составила в эксперименте 83,3%. Следует отметить, что вообще повышение температуры поровых растворов за счет теплоты протекающих в горной породе экзотермических реакций приводит к разрушению мицелл и выпадению в осадок элементной серы.

Проведенные нами исследования с использованием электронного микроскопа JSM-T300 фирмы JEOL и рентгеновского энергодисперсионного микроанализатора LINK 860–500 показали, что в пиритсодержащей породе действующих отвалов угольных шахт и обогатительных фабрик сера находится в чистом виде или образует агрегаты и соединения с возгонами других веществ. На рисунке 2 а, б, в, г приведены полученные нами фотографии, соответственно: α — серы (ромбическая модификация) — может находится в природных условиях при температуре до 95,6°C; β — серы (моноклинная модификация) — образуется при большей температуре; пористой серы — получается при температуре около $108...110^{\circ}$ C; γ — серы — выделяется из расплавов в виде игольчатых кристаллов (при оплавлении кристаллов образуются сросшиеся фрамбоиды).

Установленное нами различие модификаций и форм нахождения серы в отвальной породе дает основание утверждать, что выделение и накопление ее происходит при значениях температуре: меньшее $95,6^{\circ}$ C (α — сера), $95,6^{\circ}$ C и выше (β — сера), $108...110^{\circ}$ C (пористая сера) и при температуре протекания термической диссоциации пирита — более 400° C (сера в возгонах).

Рис. 2. Различные модификации элементной серы

Сера — единственное горючее вещество, образующееся в горной породе при обычных условиях и имеющее низкую температуру самовоспламенения на воздухе.

В самонагревающейся горной породе образуется своеобразный химический реактор, в котором происходит выделение, плавление и испарение серы. Проведенные нами исследования показали, что при прогревании поверхностного слоя горной породы до 248...261°C выделяющиеся из нее пары серы самовоспламеняются на воздухе. При этом самонагревание породы переходит в возгорание ее.

Если воспламенение серы не происходит (например, из-за недостаточной концентрации ее в воздухе), то в действующем химическом реакторе накапливается с течением времени серная кислота. При этом в породном отвале могут образовываться серокислотные зоны, в которых содержится отбеленная горная масса (температура ее около 336,5°C, то есть близка к температуре кипения на воздухе концентрированной серной кислоты), покрытая маслянистой асфальтоподобной коркой.

При вскрытии сернокислотной зоны наблюдается интенсивное «дымление» породы вследствие образования вблизи ее поверхности тумана серной кислоты: $SO_3 + H_2O = H_2SO_4$. Горячая концентрированная серная кислота окисляет углефицированное вещество и серу, взаимодействует с пиритом и карбонатам кальция. В естественных условиях под действием серной кислоты происходит беспламенное горение пород.

По данным полученных нами термограмм, углефицированное вещество полностью выгорает с участием H_2SO_4 при температуре $560...600^0C$.

Выделение при протекании рассмотренных выше биогеохимических процессов в пиритсодержащих горных породах элементной серы и серной кислоты предопределяет целый ряд опасных и вредных проявлений в них.

Как уже отмечалось, самовозгорание горной породы обусловлено самовоспламенением на воздухе паров элементной серы, беспламенное выгорание ее окислением углефицированного вещества концентрированной серной кислотой.

Высокая реакционная способность серы проявляется при температуре более 200^{0} С в связи с наличием малоатомных молекул, поэтому углерод углефицированного вещества и продукты термической деструкции его эффективно взаимодействующей с ней.

По данным наших исследований, из очагов горения угля на аварийном складе и породы в отвале при температуре около 300^{0} C выделяются одновременно SO_{2} , $H_{2}S$, CS_{2} , COS.

Взаимодействие концентрированной серной кислоты и серного ангидрида с водой сопровождается выделением большого количества теплоты, что может быть причиной интенсивного парообразования и создания в межкусковом пространстве отвала избыточного давления пара, энергии которого может быть достаточно для выброса породы.

Опасные и вредные проявления, обусловленные окислительным выщелачиванием пирита в горных породах, рассмотрены в монографии [2].

Таким образом, разработанная нами биогеохимическая модель протекания в пиритсодержащих горных породах экзотермических процессов позволяет объяснить причины их самонагревания и возгорания, прогнозировать опасные и вредные проявления в них.

Библиографический список

- 1. **Зборщик М.П., Осокин В.В.** Предотвращение самовозгорания горных пород. Киев: Техника, 1990. 176 с.
- 2. **Зборщик М.П., Осокин В.В.** Предотвращение экологически вредных проявлений в породах угольных месторождений. Донецк, ДонГТУ, 1996. 178 с.

© Зборщик М.П., Осокин В.В., 2004

УДК 549.07+669.054.79

Докт. геол.-мин. наук КОМОВ И.Л. (Институт Геохимии окружающей среды)

ТЕХНОГЕННЫЕ МЕСТОРОЖДЕНИЯ МИНЕРАЛЬНОГО СЫРЬЯ

Техногенные месторождения минерального сырья — это скопления минеральных образований, горных масс, жидкостей и смесей, содержащих полезные компоненты, являющиеся отходами горнодобывающих и обогатительных производств, находящиеся в отвалах, терриконах [1]. Суммарное содержание полезных компонентов, которые накопились в техногенных месторождениях за 20–30 лет, сопоставимо, а иногда и превышает их количество в ежегодно добываемых рудах. Особенности техногенных месторождений: 1) расположение в промышленно развитых районах; 2) месторождения находятся на поверхности, и материал в них пречимущественно раздроблен; 3) количество искусственных минеральных форм, которые образуются в техногенных месторождениях, превышает 30000. Среди задач фундаментальной геохимии техногенных месторождений, по нашему мнению, глав-