2. Трупак Н.Г. Замораживание грунтов в подземном строительстве. — М.: Недра, 1974. — 278 с.

© Лисничук Н.В., Лебедева А.С., Гнездилов В.Г., 2005

УДК 622.281:691.38

Канд. техн. наук ГАМАЮНОВ В.В., инж. ЛЕБЕДЕВА А.С. (НИИОМШС, г. Харьков)

НЕОРГАНИЧЕСКИЕ СОСТАВЫ ДЛЯ ЗАКРЕПЛЕНИЯ АНКЕРОВ

Одним из эффективных способов управления деформированием породного массива вокруг выработок является упрочнение его анкерами. Для повышения устойчивости капитальных горных выработок с длительным сроком службы наиболее подходят анкера с закреплением по всей длине скважины, имеющие хорошее сцепление с породой и отличающиеся долговечностью. Технология их установки упрощается с применением патронированных неорганических связующих, разработанных в НИИОМШС [1]. Для закрепления анкеров исследованы растворы на основе быстро схватывающегося, расширяющегося цемента (БРЦ) Южгипроцемента, и напрягающих цементов (НЦ-20).

Процесс структурообразования регулировался введением в состав БРЦ и НЦ-20 химических добавок, содержание которых в смеси изменяли в пределах 1–3% от массы цемента. Наиболее характерные составы быстро схватывающихся материалов на основе БРЦ приведены в таблице 1.

Состав смеси	В/Ц	Добавки, % от массы це- мента	Сроки схватывания		Предел прочности, МПа (в возрасте 2-х час)	
			начало	конец	сжатие	изгиб
1	2	3	4	5	6	7
БРЦ (1:0)	0,35	-	5-30	8-30	0,41	1,29
БРЦ (1:0)	0,35	CaCl ₂ - 1	6-00	6-30	0,53	1,43
БРЦ (1:0)	0,35	$Al_2(SO_4)_3 - 1$	6-30	8-00	0,52	1,25
БРЦ (1:0)	0,35	NaSO ₄ - 1	5-50	7-00	0,47	1,2
БРЦ (1:0)	0,35	NaHCO ₃ - 1	5-00	7-15	0,56	1,51
БРЦ (1:0)	0,35	Алюминиевые квасцы	7-00	8-00	0,4	1,15
БРЦ (1:0)	0,35	NaOH - 1	4-00	7-30	0,72	1,85
БРЦ (1:0)	0,35	Жидкое стекло Na ₂ SiO ₃ - 1	4-15	6-55	0,68	1,68
БРЦ (1:0)	0,35	CaCl ₂ - 1 NaOH - 1	3-35	6-05	0,75	2,02

Табл. 1. Влияние добавок на прочность цементного камня

Лучшие прочностные показатели получены с добавкой NaOH в количестве 1%. Применение комплексной добавки CaCl₂ и NaOH нецелесообразно.

Рост прочностных показателей цементного камня без добавок и с добавкой NaOH во времени характеризуется данными таблицы 2.

Предел прочности, МПа в возрасте Состав це-4 часа 28 суток 2 часа 1 сутки 7 суток ментного камня сжатие изгиб сжатие изгиб сжатие изгиб сжатие изгиб сжатие изгиб БРЦ (1:0) 8 2,9 97,6 4,1 1,3 2,0 18 37,7 5,6 10,02 без добавки БРЦ (1:0) 10,2 2,7 24,6 4,3 58,4 8,4 97,7 9,97 7,2 1,7 NaOH - 1%

Табл. 2. Изменение прочности во времени

Результаты исследований свидетельствуют об ускоренном процессе твердения цементного камня с добавкой NaOH, при этом прочность его в ранние сроки твердения значительно выше, нежели без добавок. Такое действие NaOH обусловлено связыванием двуводного гипса в эттрингит, обеспечивающий повышение ранней прочности цементного камня. Линейное расширение, определенное на приборе Гидроцемента, составило 0,42%.

Повышение прочности цементного камня с добавкой NaOH позволяет в производственных условиях повышать водоцементное отношение. Так, при B/U=0,4 предел прочности на сжатие цементного камня с добавкой NaOH в возрасте двух часов равен 4,8 МПа, а без добавок — 2,6 МПа.

Прочностные показатели цементного камня при использовании напрягающего цемента ($B/\Pi=0,35$) существенно повышаются при введении NaOH в состав смеси (таблица 3). В этом случае начало схватывания смеси — 3 мин. 30 сек., конец — 5 мин. 30 сек., свободное расширение составило 1,2%.

Состав цементного	Предел прочности при сжатии, МПа в возрасте						
камня	2 часа	4 часа	1 сутки	7 суток	28 суток		
НЦ-20 (1:0) без добавок	3,4	7,1	16,5	40,5	87,5		
НЦ-20 (1:0) NaOH - 1%	6,4	8,8	27,4	57,5	90,5		

Табл. 3. Прочностные показатели напрягающего цемента

Быстросхватывающийся расширяющийся шлакопортландцемент и портландцемент М500 не обеспечили заданных сроков схватывания смеси и ранней прочности цементного камня.

Проведенные исследования позволили установить состав на основе неорганического вяжущего, обеспечивающий эффективность применения анкерной крепи в капитальных горных выработках.

Библиографический список.

1. Друцко В.П. Влияние способа закрепления анкеров на их взаимодействие с породным массивом // Технология и проектирование подземного строительства, 2003. — № 3. — C.77–85.

© Гамаюнов В.В., Лебедева А.С., 2005