УДК 519.876.5: 004.032.26

М.П. Дивак, д-р техн. наук, проф., Н.Я. Савка, Тернопільський національний економічний університет, м. Тернопіль, Україна mdy@tneu.edu.ua, nadya_savka@ukr.net

Метод ідентифікації вагових коефіцієнтів синаптичних зв'язків штучних нейронних мереж із радіально-базисними функціями на основі аналізу інтервальних даних

Запропоновано метод ідентифікації вагових коефіцієнтів синаптичних зв'язків ШНМ із РБФ, що трунтується на аналізі інтервальних даних. Розглянуто приклад застосування методу.

Ключові слова: штучні нейронні мережі з радіально-базисними функціями, метод ідентифікації, інтервальні дані, інтервальна модель, інтервальна система лінійних алгебричних рівнянь.

Вступ

На сьогодні штучні нейронні мережі знаходять все ширше застосування для ідентифікації нелінійних систем, апроксимації функцій, прогнозування, фільтрації даних, адаптивного управління, розпізнавання образів, кластеризації, технічної діагностики.

Як свідчать проаналізовані праці вітчизняних та зарубіжних науковців, зокрема таких, як Головко В.А., Круглов В.В., Борисов В.В. у якості архітектури, зазвичай, застосовують багатошарові штучні нейронні мережі персептронного типу з прямою передачею інформації [1, 2]. Дані штучні нейромережі характеризуються суттєвими недоліками:

громіздкість структури мережі;

- складність ідентифікації структури мережі;

- відсутністю властивості продуктивності прогнозу;

- неможливості навчання на неоднорідній вибірці даних;

низька швидкість навчання мережі.

Альтернативу багатошаровим штучним нейронним мережам персептронного типу представляють штучні нейронні мережі (ШНМ) із радіально-базисними функціями (РБФ), які набувають широкого застосування в теперішній час. Дослідженню особливостей ШНМ із РБФ присвячено праці відомих науковців Nelles O., Бодянського Є.В., Руденка О.Г., Горшкова Є. В., Колодяжного В.В., Плісс І.П. [3, 4, 5].

Штучні нейронні мережі радіального типу мають універсальні апроксимуючі властивості [3], складаються з двох шарів обробки інформації і при цьому, на відміну від багатошарових персептронів, включають лише лінійні синаптичні ваги вихідного шару для забезпечення бажаної продуктивності для нелінійного введеннявиведення інформації.

Для настроювання штучних нейромереж радіального типу, як свідчать проаналізовані праці, найчастіше застосовують алгоритми, які базуються на квадратичних критеріях функції похибки. Ці методи варіюють від найпростішого однокрокового алгоритму Відроу-Хоффа до методу найменших квадратів у різноманітних варіантах [4, 5].

У той же час існують задачі, зокрема такі, як прогнозування шкідливих викидів в атмосферу, прогнозування індикаторів економічної безпеки держави, де похибки експериментальних даних обмежені за амплітудою. У цих випадках методи ідентифікації ШНМ із РБФ на основі середньоквадратичного критерію є непридатними, оскільки потрібно ідентифікувати таку штучну нейронну мережу з радіально-базисними функціями, яка б уможливлювала одержати прогноз із заданою точністю в межах похибок обмежених за амплітудою.

Враховуючи дані умови, найбільш придатними є методи ідентифікації ШНМ із РБФ на основі аналізу інтервальних даних.

Постановка задачі

Нехай відомою є структура штучної нейронної мережі з радіально-базисними функціями, представлена на рисунку 1, де використано такі позначення: $x_1,...,x_n$ - входи нейронної мережі даного типу; $c_1,...,c_h$ - центри, нелінійні параметри прихованого шару мережі, які визначають позицію базисної функції; *dist* – блок, у якому на основі метрики Евкліда обчислюють відстань між вектором входів \vec{x} і відповідним центром \vec{c}_i ; $\sigma_1,...,\sigma_h$ - стандартні відхилення (радіуси базисних функцій) –

нелінійні параметри прихованого шару мережі, які визначають ширину базисних функцій; $f_1(x),...,f_h(x)$ - радіально-базисні функції; $w_1,...,w_h$ - ваги вихідного шару, які є лінійними параметрами і визначають "висоту" базисної функції та значення зміщення; у - вихідний нейромережевий сигнал.

Рисунок 1 - Узагальнена архітектура штучної нейронної мережі з радіально-базисними функціями

У загальному випадку ШНМ із РБФ становить нелінійне перетворення у вигляді:

$$y_{j} = F_{j}(\vec{x}) = w_{j0} + \sum_{i=1}^{h} w_{ij} f_{i}(\vec{x}) = \vec{w}_{j}^{T} \vec{f}(\vec{x}), \quad (1)$$

де y_j - *j*-ий нейромережевий вихідний сигнал (*j* = 1,2,..., *m*); $F_j(x)$ - нелінійне перетворення вхідного вектора $\vec{x} = (x_1, x_2, ..., x_n)^T$ в *j*-ий вихідний; $\vec{w}_j = (w_{j0}, w_{j1}, ..., w_{jh})^T$ представляє регульовані синаптичні ваги, і $\vec{f}(\vec{x}) = (1, f_1(x), f_2(x), ..., f_h(x))^T$ означає радіально-базисну чи центральну функцію; i = 1, ..., h, де h – кількість нейронів прихованого рівня мережі.

Оскільки відстань x_i обчислюють за допомогою центру c_i та норми матриці R_i^{-1} , які є параметрами прихованого шару, $x_i = \|\vec{x} - \vec{c}_i\|R_i^{-1}$, то рівняння (1) набуде такого вигляду:

$$y_{j} = F_{j}(\vec{x}) = w_{j0} + \sum_{i=1}^{n} w_{ij} f_{i}(\|\vec{x} - \vec{c}_{i}\|R_{i}^{-1}) = \vec{w}_{j}^{T} \vec{f}(\|\vec{x} - \vec{c}_{i}\|R_{i}^{-1}), (2)$$

де R_i^{-1} - нормована матриця або обернена коваріаційна матриця, яка визначає розмір, форму і орієнтацію так званого рецепторного поля радіально-базисної функції.

Як радіально-базисну функцію найчастіше використовують функцію Гаусса

$$f_i(\vec{x}) = f_i(\|\vec{x} - \vec{c}_i\|^2 R_i^{-1}) = \exp\left(-\frac{1}{2}\|\vec{x} - \vec{c}_i\|^2 \sigma^{-2}\right), \quad (3)$$

де σ^{-2} - стандартне відхилення, оскільки приймається, що $r_{ij} = \sigma_{ij}^{-2} = \sigma^{-2} = const$ (r_{ij} елемент норми матриці R_i^{-1}), $i, j = \overline{1, h}$ [6].

Для синтезу оптимальної структури штучної нейронної мережі радіального типу визначають кількість нейронів прихованого рівня даної нейронної мережі. Для цього, насамперед, визначають центри радіально-базисних функцій точки, через які має "проходити" апроксимована функція. Оскільки велика навчальна вибірка призводить до збільшення часу навчання ШНМ із РБФ, для визначення центрів досить часто застосовують методи кластеризації [3].

Припустимо, що для ідентифікації вагових коефіцієнтів синаптичних зв'язків штучної нейромережі радіального типу відомі вхідні дані x(k) та вихідні дані $y_i(k)$ з певними відхиленнями

 $\zeta(k)$. Тоді модель ШНМ із РБФ представляємо у вигляді:

$$y_j(k) - \zeta(k) \le \vec{w}_j^T \vec{f}(\vec{x}(k)) \le y_j(k) + \zeta(k)$$
(4)

або

$$y_{j}(k) - \zeta(k) \leq \vec{w}_{j}^{T} f(\|\vec{x}(k) - \vec{c}_{i}\| R^{-1}) \leq y_{j}(k) + \zeta(k), \quad (5)$$

де $\zeta(k)$ - відхилення, а k=1,2,...N - часова дискрета.

Для розв'язання задачі (5) пропонуємо метод ідентифікації вагових коефіцієнтів штучних нейронних мереж із радіально-базисними функціями на основі аналізу інтервальних даних.

Метод ідентифікації вагових коефіцієнтів синаптичних зв'язків ШНМ із РБФ на основі аналізу інтервальних даних

Нехай штучна нейромережа радіального типу має один вихідний сигнал. Тоді розглянемо задачу ідентифікації вагових коефіцієнтів синаптичних зв'язків штучних нейромереж радіального типу (5) у такому вигляді:

$$y^{-}(k) \le \vec{w}^{T} \vec{f} \left(\| \vec{x}(k) - \vec{c}_{i} \| R^{-1} \right) \le y^{+}(k), \quad (6)$$

Ae $y^{-}(k) = y(k) - \zeta(k), y^{+}(k) = y(k) + \zeta(k).$

Задача ідентифікації вагових коефіцієнтів ШНМ із РБФ зводиться до розв'язування інтервальної системи лінійних алгебричних рівнянь (ІСЛАР):

$$\begin{cases} y^{-}(k) \leq \vec{w}^{T} \vec{f}(\|\vec{x}(k) - \vec{c}_{i}\|R^{-1}) \leq y^{+}(k); \\ \vdots \\ y^{-}(k) \leq \vec{w}^{T} \vec{f}(\|\vec{x}(k) - \vec{c}_{i}\|R^{-1}) \leq y^{+}(k); \\ \vdots \\ y^{-}(k) \leq \vec{w}^{T} \vec{f}(\|\vec{x}(k) - \vec{c}_{i}\|R^{-1}) \leq y^{+}(k). \end{cases}$$
(7)

Розв'язки ІСЛАР достатньо досліджені методами інтервального аналізу [8]. Відомо, що при умові сумісності системи (7) її розв'язки утворюють опуклий многогранник Ω .

Введемо поняття області Ω можливих значень вагових коефіцієнтів синаптичних зв'язків ШНМ із РБФ – як результат розв'язку ІСЛАР (7). Одержана область значень вагових коефіцієнтів штучної нейромережі радіального типу Ω (7) породжує множину інтервальних моделей вихідних сигналів штучної нейронної мережі з радіально-базисними функціями. При цьому кожен із вихідних сигналів представляємо у вигляді:

$$\hat{y}(k) = w_0 + w_1 f_1(\|\vec{x}(k) - \vec{c}_1\|R^{-1}) + \dots + w_h f_h(\|\vec{x}(k) - \vec{c}_h\|R^{-1}), (8)$$

$$Ae \, \vec{w}^{T} = (w_{0}, ..., w_{h}, ..., w_{H}) \in \Omega;$$

$$\hat{y}^{-}(k) = \min_{\vec{w} \in \Omega} (\vec{f}^{T}(\|\vec{x}(k) - \vec{c}_{i}\|R^{-1}) \cdot \vec{w})$$
 Ta

 $\hat{y}^{+}(k) = \max_{\vec{w} \in \Omega} (\vec{f}^{T}(\|\vec{x}(k) - \vec{c}_{i}\|R^{-1} \cdot \vec{w}) - нижня та верхня межі коридору вихідних сигналів ШНМ із РБФ.$

Як одну модель вихідного сигналу штучної нейромережі даного типу із функціонального коридору можна використати модель, що побудована на основі будь-якого із знайдених значень вагових коефіцієнтів \vec{w} , що належить області можливих значень вагових коефіцієнтів синаптичних зв'язків ШНМ із РБФ – опуклому многограннику Ω . Для цього формуємо задачу лінійного програмування:

$$w_h \to \min(\max)$$
 (9)
за умов сумісності ІСЛАР (7).

Враховуючи відомі процедури розв'язування задачі лінійного програмування можлива втрата точності при пошуку вагових коефіцієнтів й за рахунок похибки заокруглень, що в свою чергу призведе до порушення умови належності одержаного вихідного сигналу ШНМ із РБФ допустимому коридору інтервальних вихідних сигналів. Поряд із цим точкові значення вагових коефіцієнтів синаптичних зв'язків ШНМ із РБФ не дозволяють в достатній мірі дослідити прогностичні властивості інтервальної моделі штучної нейромережі даного типу.

Зважаючи на це, доцільно знайти множинні значення вагових коефіцієнтів ШНМ із РБФ, точність яких залежить від розмірів області коефіцієнтів можливих значень вагових синаптичних зв'язків. Оскільки областю можливих значень вагових коефіцієнтів штучної нейронної мережі з радіально-базисними функціями є опуклий многогранник, як зазначалося вище, то це в певній мірі ускладнює алгоритм побудови коридорів інтервальних моделей вихідних сигналів ШНМ із РБФ. У зв'язку з цим шукаємо спрощені множини значень вагових коефіцієнтів (наприклад, у вигляді прямокутних паралелепіпедів Π^+). які максимально покривають область можливих значень вагових коефіцієнтів синаптичних зв'язків й поряд з цим є простішими при побудові інтервальних моделей вихідних сигналів штучних нейромереж радіального типу.

Щоб одержати множинні значення вагових коефіцієнтів ШНМ із РБФ, знаходимо 2h вершин опуклого многогранника Ω із розв'язку 2h задач лінійного програмування у вигляді:

$$w_h \to \min, h = 1...H$$
 (10)

$$w_h \to \max, h = 1...H$$
 (11)

за умов (7).

В результаті розв'язку задач (10), (11) за умов (7) одержуємо 2H вершин \vec{w}_s многогранника Ω , де s=1...2H. Одержана множина вагових коефіцієнтів синаптичних зв'язків ШНМ із РБФ Ω^* є також многогранником, проте містить фіксовану кількість вершин 2H і характеризується простішою процедурою обчислення.

Зважаючи на це, прогнозований коридор вихідного сигналу штучної нейронної мережі з радіально-базисними функціями матиме такий вигляд:

$$\lim_{\substack{\vec{w}_s \in \Omega \\ \vec{w}_s \in \Omega}} \left(\vec{f}^T (\|\vec{x}(k) - \vec{c}_i\|R^{-1}) \cdot \vec{w}_s \right)$$

$$\max_{\substack{\vec{w}_s \in \Omega \\ \vec{v} \in \Omega}} \left(\vec{f}^T (\|\vec{x}(k) - \vec{c}_i\|R^{-1}) \cdot \vec{w}_s \right)$$

$$(12)$$

Для знаходження коридору вихідного сигналу ШНМ із РБФ використовуємо методи лінійного програмування.

Приклад

Ілюстрацію для настроювання структури ШНМ із РБФ, а також оцінку обгрунтованості запропонованого методу ідентифікації вагових коефіцієнтів нейромережі даного типу проведено на прикладі задачі моделювання індикаторів економічної безпеки (ІЕБ) Тернопільської області, враховуючи чинники, що на них впливають.

Позначимо за $\vec{x} = (x_1, x_2, x_3, ..., x_8)$ чинники, що впливають на IEБ Тернопільської області (див. таблицю 1), як "входи" ШНМ із РБФ, а у- кількість безробітних, які зареєстровані в державній службі зайнятості, - один із IEБ, як вихідний нейромережевий сигнал.

Судячи з експериментальних даних, досліджувана штучна нейронна мережа з радіально-базисними функціями має 8 нейронів вхідного рівня та 1 нейрон вихідного рівня. Шукаємо кількість нейронів прихованого рівня штучної нейромережі даного типу. Для цього визначаємо параметри прихованого рівня - центри радіально-базисних, застосовуючи субтрактивний алгоритм, який грунтується на відомому методі кластеризації [3]. Для реалізації методу кластеризації використано пакет прикладних програм Matlab 7.1.

Суттєвий вплив на визначення кількості нейронів прихованого рівня штучної нейромережі радіального типу за методом кластеризації [3] має значення вектора, що визначає розміри кластерів. Зазвичай, надто малі значення вектора призводять до того, що утворюється багато малих кластерів й формується надто громіздка структура ШНМ із РБФ. Стандартні відхилення визначаємо емпірично, оскільки нейромережа даного типу не є критичною до їх вибору.

У результаті проведених експериментів одержано такі архітектури ШНМ із РБФ – 8:51:1, 8:16:1, 8:8:1, 8:5:1. Структура штучної нейронної мережі радіального типу, що містить 51 нейрон прихованого рівня має високі прогностичні властивості, проте є надто громіздкою, що збільшує обчислювальні витрати. Результати дослідженнь архітектур радіальних нейромереж, що містять 16 і 8 нейронів прихованого рівня показали, що дані структури мають низькі властивості. 3 прогностичні огляду на вищесказане, подальших для проведення досліджень та розв'язку поставленої задачі обрано оптимальну структуру штучної нейронної мережі радіального типу 8:5:1 (значення знайдених центрів наведено у таблиці 2). Дана структура ШНМ із РБФ наведена на рисунку 2.

Період	№ місяця	Перераховано митних платежів в держбюджет, грн.	Оформлено вантажів, тис. тонн	Кількість оформлених ВМД	Оформлено транспортних засобів	К-сть оформлених попередніх декларацій	К-сть оформлених попередніх повідомлень	Заведено справ про порушення митних правил на суму, грн.	Заведено справ про контрабанду на суму, грн.	К-сть безробітних, які зареєстровані в державній службі зайнятості, тис. осіб
	k	x_1	x_2	<i>x</i> ₃	x_4	<i>x</i> ₅	x_6	<i>x</i> ₇	x_8	$\left[y^{-}(k);y^{+}(k)\right]$
	1	5216128,14	8,86	567	451	48	227	9873441,0	23764	[30,528; 54,272]
	2	6443868,7	11,05	731	615	56	288	84588,0	-	[31,032; 55,168]
	3	7647405,08	14,46	829	687	45	307	20912364,0	9726143	[30,816; 54,784]
03	4	4790370,33	16,28	744	703	21	281	139137,0	-	[30,456; 54,144]
	5	5629560,98	19,4	771	685	29	320	46197,0	-	[30,168; 53,632]
20	6	5255195,33	18,39	849	719	30	318	155707,0	-	[29,592; 52,608]
	7	18744222,93	46,71	1081	1365	34	452	190166,0	-	[28,224; 50,176]
	8	6189293,18	22,95	864	1011	20	369	12443,0	-	[27,864; 49,536]
	9	5225720,85	20,56	879	828	15	299	214779,0	-	[27,504; 48,896]
	10	6429778,68	22,0	937	926	24	385	95512,0	-	[27; 48]
	11	7137739,58	23,02	861	919	21	325	48998,0	-	[27,792; 49,408]
	12	10227286,18	19,29	981	897	31	364	59592,0	-	[28,584; 50,816]
	13	3923498,71	8,84	560	322	23	189	11514,0	-	[30,096; 53,504]
	14	5370652,61	14,81	751	651	34	257	54677,0	-	[31,104; 55,296]
	15	8012252,82	13,19	855	694	40	310	75375,0	380000	[32,904; 58,496]

Таблиця 1. Дані про кількість безробітних, які зареєстровані в державній службі зайнятості, як одного із індикаторів економічної безпеки Тернопільської області, та чинники впливу

Наукові праці ДонНТУ Серія "Інформатика, кібернетика та обчислювальна техніка"

	продовження таблиці 1									
	16	6861988,54	11,49	797	638	38	316	69205,0	-	[34,056; 60,544]
4	17	6984819,3	29,79	812	916	24	279	92951,0	-	[32,256; 57,344]
	18	6853413,22	12,25	808	677	30	296	150510,0	48315	[30,744; 54,656]
200	19	7702523,48	14,7	811	783	42	338	6790,0	-	[28,872; 51,328]
	20	9554145,0	29,57	842	952	27	294	43772,0	-	[28,656; 50,944]
	21	9500431,79	15,77	827	786	30	321	10039,0	-	[28,152; 50,048]
	22	9027142.01	18.14	897	809	32	299	15089 69	-	[27,50, 48,04]
	23	8170620,84	16,87	995	795	54	278	6525,0	-	[28,224; 50,176]
	25	5022599,49	11,39	627	510	40	217	353342,0	146922	[28,512; 50,688]
	26	7161648,44	13,07	807	656	72	257	5649,0	-	[29,088; 51,712]
10	27	12309469,62	18,1	1134	893	80	372	186243,0	131282	[29,664; 52,736]
005	28	13007569,35	16,13	1018	867	86	456	3430,0	-	[29,448; 52,352]
(1	29	10/33286,3	16,48	882	812	100	398	2508,0	-	[28,368; 50,432]
	31	13011205,55	14,20	937	870	120	384	1290082,0	-	[28, 364; 50, 810]
	32	11043825.43	16.5	912	922	167	331	2262267.0	2246742	[27,432; 48,768]
	33	10132015,96	27,58	1020	966	174	377	33163,0	-	[26,208; 46,592]
	34	7924811,25	22,55	1023	960	126	419	33439,0	-	[24,264; 43,136]
	35	6548181,0	20,13	1029	935	141	385	61120,0	-	[25,776; 45,824]
	36	8384833,03	17,48	1016	913	203	353	1033,0	-	[29,088; 51,712]
	37	5031581,82	11,67	606	651 812	113	226	5/9401,0	336440	[30,6/2; 54,528]
	30	8888/19.67	14,67	1091	0/3	202	328 402	206078,0	90384	[31,032; 55,108]
	40	8637731.69	13,97	868	756	154	358	55263.0	_	[32,112; 57,088]
	41	8961534,13	15,23	1012	899	154	443	326620,0	-	[32,04; 56,96]
06	42	9343750,32	19,27	904	833	148	358	123685,0	-	[32,256; 57,344]
20	43	9876239,92	14,93	915	800	155	373	27813,0	-	[22,968; 40,832]
	44	13592727,48	23,63	972	1010	176	363	157280,0	-	[20,664; 36,736]
	45	14002415,71	19,73	979	911	160	417	284781,0	-	[19,728; 35,072]
	40	11063717,14	23,20	1048	987	120	448	48007,0	-	[19,308; 34,432]
	47	12767157.28	21.91	1167	1033	203	500	2176.0	-	[22,032, 39,108]
	49	7014760,0	17,46	732	686	121	281	14802,0	-	[24,48; 43,52]
	50	10081982,4	16,12	945	824	132	376	782384,0	-	[24,264; 43,136]
	51	13057968,06	21,51	1210	1106	226	481	797749,0	-	[24,624; 43,776]
	52	14066271,7	17,17	1008	908	117	437	244659,0	-	[26,928; 47,872]
2	53	13314542,75	20,71	1139	1083	119	470	116791,0	231223	[27,216; 48,384]
500	55	15760830.19	20.61	1104	1102	11/	440	127809,0	-	[25,852; 42,508]
(1	56	14473102.25	19.73	1074	995	128	481	1123801.0	-	[18,072: 32,128]
	57	15579287,24	24,39	1063	1083	134	411	66044,0	-	[17,064; 30,336]
	58	15950395,32	36,96	1209	1392	132	508	147657,0	359159	[16,344; 29,056]
	59	18205037,37	38,3	1261	1448	169	505	55362,0	-	[15,912; 28,288]
	60	21199726,08	32,64	1339	1329	208	470	33375,0	-	[16,056; 28,544]
	61	117/0356,47	25,04	1288	686	121	281	1500,0	-	[20,52; 36,48]
	63	23033373,99	13 85	1300	024 1106	226	370 /81	23248,0 398596.0	- 7891/6	[22,32; 39,08]
	64	28983929.32	39.81	1300	908	117	437	398596.0	-	[21,456: 38,144]
	65	29995740,73	42,72	1452	1083	119	470	6557,0	-	[20,448; 36,352]
08	66	29179239,08	35,46	1411	1033	117	446	12859,0	-	[18,288; 32,512]
20	67	55494159,65	37,06	1686	1102	136	488	491467,0	245675	[16,128; 28,672]
	68	42278314,48	48,38	1637	995	128	481	650,0	-	[14,904; 26,496]
	69	56531261,49	75,43	1948	1083	134	411	11909,0	-	[14,544; 25,856]
	70	41329962,64	04,87 48.41	1857	1392	132	508	38072,0	-	[14,544; 25,856]
	72	43544162.69	27 31	1258	1329	208	470	5268.0	-	[14,4,23,0] [17,424:30,976]
	73	17294990.52	9,59	606	525	127	194	24670.0	1123802	34.6
	74	15166439,17	14,02	709	703	147	219	7141,0	-	32,7
	75	29417337,31	25,38	962	556	212	248	21577,0	-	32,2
	76	28610400,3	24,57	942	929	212	279	263504,0	-	30,4
~	77	26798002,66	25,03	954	979	212	299	2682885,0	227926	26,9
600	78	25847898,49	24,98	1018	1074	198	350	2682885,0	-	21,8
5	/9 80	34034340,36	20,30	1182	1204	250	400	3480.0	-	1/,1
	81	38103957.91	44.65	1335	1493	195	377	1400.0		14,9
	82	21243943.8	35,3	1304	1289	208	404	3100.0	-	13,2
	83	25873235,43	43,28	1322	1478	212	369	81237,0	-	11,9
	84	28284474 1	35.67	1414	1346	240	410	9346.0	-	11.2

Таблиця 2. Значення	центрів	радіально-	базисних	функцій
---------------------	---------	------------	----------	---------

\vec{c}_1	0,106	0,104	0,192	0,349	0,093	0,414	0,001	0,002
\vec{c}_2	0,192	0,164	0,302	0,503	0,644	0,715	0,014	0,003
\vec{c}_3	0,463	0,403	0,615	0,874	1,000	0,693	0,003	0,002
\vec{c}_4	0,480	0,400	0,613	0,607	0,453	0,806	0,002	0,001
\vec{c}_5	0,059	0,129	0,124	0,311	0,471	0,288	0,003	0,002

Рисунок 2 - Оптимальна структура штучної нейронної мережі з радіально-базисними функціями

Поділимо експериментальні дані на навчальну вибірку (2003р.-2008р.), $k=1,2,\ldots,72$ та контрольну вибірку (2009р.), $k=73,\ldots,84$. Як показують дослідження, експериментальні дані кількості зареєстрованих безробітних у державній службі зайнятості за період із 2003 р. по 2008 р. є неточними, з похибкою 28 %, тобто $\zeta = 28\%$.

Інтервальні значення кількості безробітних, які зареєстровані в державній службі зайнятості $y^{-}(k) = y(k) - \zeta(k)$, $y^{+}(k) = y(k) + \zeta(k)$ наведено в таблиці 1.

Умови для ідентифікації вагових коефіцієнтів синаптичних зв'язків ШНМ із РБФ 8:5:1, записуємо в такому вигляді:

$$\begin{cases} y^{-}(k) \leq w_{0} + w_{1}f_{1}(\|\bar{x}(k) - \bar{c}_{1}\|R^{-1}) + \dots \\ \dots + w_{5}f_{5}(\|\bar{x}(k) - \bar{c}_{5}\|R^{-1}) \leq y^{+}(k) \\ \vdots \\ y^{-}(k) \leq w_{0} + w_{1}f_{1}(\|\bar{x}(k) - \bar{c}_{1}\|R^{-1}) + \dots \\ \dots + w_{5}f_{5}(\|\bar{x}(k) - \bar{c}_{5}\|R^{-1}) \leq y^{+}(k) \\ \vdots \\ y^{-}(k) \leq w_{0} + w_{1}f_{1}(\|\bar{x}(k) - \bar{c}_{1}\|R^{-1}) + \dots \\ \dots + w_{5}f_{5}((\|\bar{x}(k) - \bar{c}_{5}\|R^{-1}) \leq y^{+}(k) \end{cases}$$

$$(13)$$

Розв'язуючи задачі лінійного програмування (10), (11), враховуючи умови (13) та експериментальні дані, одержуємо вершини області можливих значень вагових коефіцієнтів синаптичних зв'язків ШНМ із РБФ:

 $\vec{w}_1 = (0.6539; 4.6070; 2.8899; 27.2540; -9.6643),$

$$\begin{split} \vec{w}_2 = &(1.8234; 3.3880; 27.0665; 22.6321; -9.5643), \\ \vec{w}_3 = &(0.6539; 4.6070; 2.8899; 27.2541; -9.6644), \\ \vec{w}_4 = &(3.8291; 6.5784; 28.2013; 18.9566; -8.8253), \\ \vec{w}_5 = &(0.6539; 4.6070; 2.8899; 27.2541; -9.6643), \\ \vec{w}_6 = &(3.8431; 6.5813; 4.2346; 18.9643; -8.8238), \\ \vec{w}_7 = &(3.8431; 6.5813; 3.2346; 18.9643; -8.8238), \end{split}$$

 $\vec{w}_8 = (3.8291; 6.5784; 28.2013; 18.9567; -8.8254),$

 $\vec{w}_{9} = (2.5599; 6.1957; 3.6389; 27.5541; -9.0195),$

 $\vec{w}_{10} = (3.8279; 6.5447; 4.2251; 18.9878; -2.5145).$

та гарантовані прогнозні коридори для IEБ – кількості зареєстрованих безробітних у державній службі зайнятості:

 $\left[\widehat{y}^{-}(k); \widehat{y}^{+}(k)\right] =$

$$= \left[\min_{\vec{w}_{s} \in \Omega} \left(\vec{w}_{1} \cdot f_{1}(\|\vec{x}(k) - \vec{c}_{1}\|R^{-1}) + \dots + \vec{w}_{5} \cdot f_{5}(\|\vec{x}(k) - \vec{c}_{5}\|R^{-1}) \right) \right]$$
$$\max_{\vec{w} \in \Omega} \left(\vec{w}_{1} \cdot f_{1}(\|\vec{x}(k) - \vec{c}_{1}\|R^{-1}) + \dots + \vec{w}_{5} \cdot f_{5}(\|\vec{x}(k) - \vec{c}_{5}\|R^{-1}) \right) \right]$$

На рисунку 3 наведено графік прогнозу кількості зареєстрованих безробітних у державній службі зайнятості в межах похибок експериментальних даних на основі інтервальної моделі штучної нейронної мережі з радіальнобазисними функціями з ідентифікованими ваговими коефіцієнтами, одержаними за формулою середнього:

 $\vec{w}_1 = 1/10 \cdot (0.6539 + 1.8234 + 0.6539 + 3.8291 + 0.6539 + 3.8431 + 3.8431 + 3.8291 + 2.5599 + 3.8279) = 2,5517;$

 $\vec{w}_2 = 1/10 \cdot (4.6070 + 3.3880 + 4.6070 + 6.5784 + 4.6070 + 6.5813 + 6.5813 + 6.5784 + 6.1957 + 6.5447) = 5,6268;$

 $\vec{w}_3 = 1/10 \cdot (2,8899 + 27.0665 + 2.8899 +$

+28.2013+2.8899+4.2346+3.2346+28.2013+ +3.6389+4.2251)=10.7472;

 $\vec{w}_4 = 1/10 \cdot (27.2540 + 22.6321 + 27.2541 + 18.9566 + 27.2541 + 18.9643 + 18.9643 + 18.9643 + 18.9567 + 27.5541 + 18.9878) = 22.7778;$

$$\begin{split} \vec{w}_5 = & 1/10 \cdot ((-9.6643) + (-9.5643) + (-9.6644) + \\ & + (-8.8253) + (-9.6643) + (-8.8238) + (-8.8238) + \\ & + (-8.8254) + (-9.0195) + (-2.5145)) = -8,5389. \end{split}$$

Рисунок 3 - Прогноз IEБ – кількості зареєстрованих безробітних, на основі інтервальної моделі ШНМ із РБФ

Як бачимо із рисунка 3, з 1 по 72 місяць дотримується умова включення модельованого показника в коридор експериментальних даних, ширина якого визначається шириною інтервалу. З 73 по 84 місяць наведено результат використання розробленої ШНМ із РБФ для прогнозування модельованого індексу економічної безпеки держави, а також крива (сірим кольором) реального значення цього показника.

У прогнозний період відносна максимальна похибка відхилення прогнозного значення від експериментального на 79 місяць, як наведено на рисунку 3, не більша 18 %, що засвідчує достатньо високі прогностичні властивості побудованої штучної нейронної мережі радіального типу на основі аналізу інтервальних даних, а це, в свою чергу, створює перспективи подальшого розвитку розглянутого методу ідентифікації вагових коефіцієнтів.

Висновки

Розглянуто задачу ідентифікації вагових коефіцієнтів синаптичних зв'язків штучних нейронних мереж із радіально-базисними функціями на основі аналізу інтервальних даних. У процесі розв'язання задачі отримано такі наукові та практичні результати:

1. Обгрунтовано вибір оптимальної архітектури штучної нейронної мережі радіального типу для одержання інтервальної моделі ШНМ із РБФ.

2. Вперше запропоновано та обгрунтовано метод ідентифікації вагових коефіцієнтів синаптичних зв'язків штучних нейронних мереж із радіально-базисними функціями, який на відміну від існуючих, базується процедурах лінійного на програмування і відрізняється невисокою Розроблений обчислювальною складністю. метод уможливлює одержати ШНМ із РБФ, яка забезпечує прогноз із заданою точністю в межах амплітудою обмежених за похибок експериментальних даних. Реалізацію методу проведено на конкретному прикладі i результатами підтверджено ефективність його використання.

Список використаної літератури

1. Головко В.А. Нейроинтелект: теория и применение. Кн. 2. Самоорганизация, отказоустойчивость и применение нейронных сетей / В.А. Головко. – Брест: Изд. БПИ, 1999. – 228 с.

2. Круглов В.В. Искусственные нейронные сети. Теория и практика / В.В. Круглов, В.В. Борисов. – М.: Горячая линия - Телеком, 2001. – 382 с.

3. Nelles O. Nonlinear Systems Identification / O. Nelles. – Berlin: Springer, 2001. – 785 p.

4. Rough Sets-Based Recursive Learning Algorithm for Radial Basis Function Networks / Y. Bodyanskiy, Y. Gorshkov, V. Kolodyazhniy et al. // Berlin: Springer-Verlag, 2005. – P. 59-65.

5. Рекуррентный алгоритм обучения радиально-базисных нейронных сетей, основанный на приблизительных множествах / Е.В. Бодянский, Е.В. Горшков, В.В. Колодяжный [та ін.] // Радіоелектроніка. Інформатика. Управління. – 2005. – № 1. – С. 116-122.

6. Руденко О.Г. Штучні нейронні мережі: навчальний посібник / О.Г. Руденко, Є.В. Бодянський. – Х.: ТОВ «Компанія СМІТ», 2006. – 404 с.

7. Дивак М.П. Допустиме оцінювання множини параметрів статичної системи в класі багатомірних еліпсоїдів / М.П. Дивак // Комп'ютинг. – 2002. – Т. 1. – №1. – С. 108 - 114.

8. Калмыков С.А. Методы интервального анализа / С.А. Калмыков, Ю.И. Шокин, 3.Х. Юлдашев. – Новосибирск: Наука, 1986. – 222 с.

Надійшла до редколегії 02.04.2012

М.П. ДЫВАК, Н.Я. САВКА

Тернопольский национальный экономический университет, г. Тернополь, Украина

МЕТОД ИДЕНТИФИКАЦИИ ВЕСОВЫХ КОЭФФИЦИЕНТОВ СИНАПТИЧЕСКИХ СВЯЗЕЙ ИСКУССТВЕННЫХ НЕЙРОННЫХ СЕТЕЙ С РАДИАЛЬНО БАЗИСНЫМИ ФУНКЦИЯМИ НА ОСНОВЕ АНАЛИЗА ИНТЕРВАЛЬНЫХ ДАННЫХ

Предложен метод идентификации весовых коэффициентов синаптических связей ИНС с РБФ, что основывается на анализе интервальных данных. Рассмотрен пример применения метода.

Ключевые слова: искусственные нейронные сети с радиально базисными функциями, метод идентификации, интервальные данные, интервальная модель, интервальная система линейных уравнений алгебраизма. M.P. DYVAK, N.J. SAVKA

Ternopil National Economic University, Ukraine

METHOD OF IDENTIFYING COEFFICIENTS OF SYNAPTIC CONNECTIONS OF ARTIFICIAL NEURAL NETWORKS WITH RADIAL BASIS FUNCTIONS BASED ON THE ANALYSIS OF INTERVAL DATA

The method of identification coefficients synaptic connections of ANN with RBF, based on analysis of interval data. An example application of the method.

Keywords: artificial neural networks with radial basis functions, method of identification, interval data, interval model, interval system of linear algebraic equations.