МЕТОДЫ ПОВЫШЕНИЯ ПОСЕВНЫХ КАЧЕСТВ СЕМЯН ШАЛФЕЯ МУСКАТНОГО

КузнецовС.А., к.с.-х.н., доцент

ЮФ НУБиП Украины «Крымский агротехнологический университет»

Изучены водопоглотительная и адсорбционная способности семян шалфея мускатного. Установлено, что проведение ферментации семян шалфея мускатного повышает их всхожесть и энергию прорастания на 13-15%.

Ключевые слова: шалфей мускатный, семена, ферментация, всхожесть, энергия прорастания

Введение. Несмотря на то, что возделывание шалфея мускатного (Salviasclarea 1.) ведется в Крыму уже около 80 лет, технология его посева до сих пор имеет существенный недостаток — от посева до всходов проходит 5-6 месяцев. Шалфей является теплолюбивой культурой, и всходы его появляются только во второй половине апреля, а высевать его приходится с осени.

Связано это с особенностью строения его семян. Семена некоторых растений, относящихся к семейству Яснотковые (Lamiaceae), обладают интересной особенностью — они покрыты ослизняющейся оболочкой, которая впитывает много влаги. К таким растениям, например, относятся ляллеманция [1] и шалфей мускатный [2].

Назначение этой ослизняющейся оболочки точно не выяснено. Можно предположить, что она предохраняет осыпающиеся летом и осенью семена от прорастания в осенний период. Наличие данной особенности строения семян делает невозможным проведение посева шалфея весной, так как семена не прорастают. Они могут пролежать в почве целый год и прорасти весной следующего года. Работы, направленные на преодоление этого недостатка ведутся с 40-х годов прошлого столетия [3, 4, 5]. Связаны они с предварительной подготовкой семян, которая позволила бы получить гарантированные всходы шалфея при весенних и даже летних сроках посева. К сожалению проблема пока не решена полностью и до настоящего времени основным сроком посева шалфея является подзимний (в ноябре). Попытки разработать агроприемы, которые позволили бы высевать шалфей в весенний период не прекращаются и по сей день [6]. Одним из направлений в этой работе является изучение особенностей семян шалфея мускатного и разработка мероприятий, которые позволили бы обеспечить высокую полевую всхожесть семян при севе в весенние сроки.

Целью нашей работа было изучение влияния ферментации семян на такие их характеристики как энергия прорастания и всхожесть. Поскольку ферментация семян шалфея связана с их замачиванием и последующим

дражированием их песком, изучалась водопоглотительная способность семян шалфея, а также их адсорбционная способность по отношению к речному песку, с помощью которого и проводится дражирование.

Материалы и методы. В исследованиях использовался сорт шалфея мускатного С –785.

Всхожесть и энергия прорастания семян определялась в соответствии с ГОСТ – 32648-78.

Водопоглотительную способность семян шалфея мускатного весовым методом.

Адсорбционную способность семян по отношению к речному песку, просеянному сквозь сито с отверстиями 2 мм, определяли весовым методом.

Дражирование и ферментацию семян шалфея проводили общепринятым методом [2]. Заключается он в следующем: к семенам шалфея добавляют воду (в пропорции 1:0,6), семена при этом ослизняются; затем добавляют сухой просеянный песок из расчета 2 части песка на 1 часть сухих семян и тщательно перемешивают; при этом песок прилипает к семенам шалфея, образуя гранулы; увлажненные гранулы оставляют в куче до появления первых проростков (2-3 суток), следя за тем, чтобы температура в куче в процессе самосогревания не превышала 25 °C; после этого семена высушивают и хранят до проведения посевных работ.

Результаты и обсуждение. Исследования показали, что семена шалфея мускатного способны впитывать и удерживать рекордное количество влаги — до 900 % воды от массы сухих семян (табл.1).

Таблица 1 Водопоглотительная и адсорбционная способность семян шалфея мускатного, % от массы сухих семян

No ofmonio	Поглощение воды		Адсорбция песка	
№ образца	%	мл/г	%	Γ/Γ
1	839	8,4	1645	16,5
2	897	9,0	874	8,7
3	896	9,0	1434	14,3
4	844	8,4	830	8,3
Среднее	869	8,7	1196	12,0
Среднее Ошибка средней	15,9	0,17	203	2,0

Набухшие семена, покрытые слизистой оболочкой, способны связывать значительное количество минеральных частиц на своей поверхности. По отношению к речному песку (основной компонент для предпосевной подготовки семян) адсорбционная способность семян достигает 1645 % (табл.1).

После дражирования семена, превратившиеся в драже, увеличиваются в размере в несколько раз (табл.2). Их объем возрастает в 6 раз, диаметр увеличивается более чем в 2 раза, масса — более чем в 10 раз. Увеличение размера семян положительно сказывается на качестве проведения посевных работ.

Масса и диаметр семян шалфея до и после дражирования

Характеристика	До г	тескования	После пескования	
совокупности	М _{1000,} г	Диаметр, мм	М _{1000,} г	Диаметр, мм
Среднее	4,94	1.87	59,1	4,11
Стандартное отклонение	0,38	0,13	4,9	0,27
Ошибка средней	0,08	0,04	1,1	0,08

Перед нами стояла задача — выяснить, нужно ли проводить предпосевную ферментацию семян шалфея, или достаточно просто провести их дражирование с песком. Ферментация — довольно трудоемкий процесс, особенно если необходимо посеять значительную площадь.

Проведенные исследования показали, что ферментация значительно увеличивает как всхожесть семян, так и их энергию прорастания. Всхожесть возросла с 51,1% до 64,3% (табл. 3), энергия прорастания – с 43,1% до 58,9%. Причем разница в обоих случаях достоверна, что подтверждается величиной наименьшей существенной разницы.

Таблица 3 Влияние дражирования семян шалфея мускатного на их всхожесть, %

П	Вариант			HCD
Показатель	контроль	без ферментации	с ферментацией	HCP_{05}
Среднее	51,1	52,7	64,3	4.31
Стандартное	7.2	6.4	7.0	
отклонение	1,2	6,4	7,0	

Таблица 4 Влияние дражирования семян шалфея мускатного на их энергию прорастания, %

Показатан		НСР			
Показатель	контроль	без ферментации	с ферментацией	+ HCP ₀₅	
Среднее	43,1	38,2	58,9	4,34	
Стандартное					
отклонение	8,4	7,2	7,3		

Следует обратить внимание на то, что в процессе ферментации происходит значительное сближение абсолютных значений энергии прорастания (58,9%) и всхожести (64,3%). То есть, после проведения ферментации 92% всхожих семян прорастают на третьи сутки. Для неподготовленных семян этот показатель составляет всего 84% (таб. 5).

Влияние дражирования семян шалфея мускатного на долю семян, проросших через трое суток в общей массе проросших семян, %

Померожани	Вариант			
Показатель	контроль	без ферментации	с ферментацией	
Всхожесть	51,1	52,7	64,3	
Энергия прорастания	43,1	38,2	58,9	
Доля "энергичных" семян	84,3	72,5	91,6	

Другими словами, проведение ферментации повышает посевные качества семян во всех отношениях. Возрастает как энергия прорастания, так и всхожесть семян. Кроме того, возрастает доля «энергичных» семян в общей массе всхожих семян.

Второй вариант, при котором семена не ферментировались, а просто «закатывались» в песок и сразу высушивались, не столь однозначен. С одной стороны, он также повышает полевую всхожесть (табл. 3), однако это превышение статистически не доказуемо. С другой стороны, такая подготовка семян привела к заметному снижению их энергии прорастания. И эта разница статистически доказывается. Энергия прорастания снизилась на 4,9%, в то время как наименьшая существенная разница по опыту составила 4,34%.

Выводы

- 1. Водопоглотительная способность семян шалфея мускатного достигает 900 % от массы сухих семян, а адсорбционная способность по отношению к речному песку –1600%.
- 2. Дражирование семян шалфея мускатного с песком без проведения ферментации не оказывает влияния на их всхожесть и энергию прорастания.
- 3. Дражирование семян шалфея мускатного с песком и с проведением ферментации повышает энергию прорастания семян на 15% и всхожесть на 13%.

Список использованных источников

- 1. Сельскохозяйственная энциклопедия. Т.3. М, 1953. С.134-135.
- 2. Эфиромасличные культуры. М.;Колос. 1976. 336 с.
- 3. Кузнецов С.А. Адаптивная технология возделывания шалфея мускатного в Крыму/ С.А. Кузнецов// Научные труды Крымского государственного аграрного университета: Сельскохозяйственные науки. Вып. 86. Симферополь, 2004. С. 50-59.
- 4. Гунько Г.К. Возделывание эфиромасличных культур на Кубани/ Г.К.Гунько, Г.Ф. Головинов. Краснодар, 1948. 88 с.
- 5. Покрыщенко В.Н., Гулько Н.Б., Хабрат П.Г. Адаптивные приемы возделывания шалфея мускатного/ В.Н.Покрыщенко, Н.Б.Гулько, П.Г.Хабрат // Труды КГАУ: С.–х. науки.– Вып.62.– Симферополь, 1999.– С. 145-156.

6. Меркушев Е.А. Возможности весенних и летних посевов шалфея мускатного/ Е.А. Меркушев// Труды ИЭЛР.- Т. 26. – Симферополь, 2006.– С. 94-96.

Кузнецов С.А. Методи підвищення посівних якостей насіння шавлії мускатної

Досліджено водопоглинальну і адсорбційну здатність насіння шавлії мускатної. З'ясовано, що ферментація насіння шавлії мускатної підвищує її схожість і енергію проростання на 13-15%.

Ключові слова: шавлія мускатна, насіння, ферментація, схожість, енергія проростання

Kuznetsov S.A.Methods of increasing sowing qualitiesclary sage

Studied water absorption and adsorption capacity of clary sage seeds. It was found that the fermentation increases the clary sage seed germination and germination energy by 13-15%.

Keywords: clary sage, seeds, fermentation, germination, vigor