УДК 621.372; 621.371

Иваницкий А.М., Рожновский М.В. Іваницький А.М., Рожновський М.В. Ivanitckiy А.М., Rozhnovskiy M.V.

КОМПЕНСАЦИЯ ПОТЕРЬ В ПЬЕЗОКЕРАМИЧЕСКОМ ФИЛЬТРЕ С ПОМОЩЬЮ ЭКСПОФУНКЦИОНАЛЬНЫХ СИГНАЛОВ

КОМПЕНСАЦІЯ ВТРАТ У П'ЄЗОКЕРАМІЧНОМУ ФІЛЬТРІ ЗА ДОПОМОГОЮ ЕКСПОФУНКЦІОНАЛЬНИХ СИГНАЛІВ

LOSSES COMPENSATION IN PIEZOCERAMIC FILTER BY MEANS OF THE EXPOFUNCTIONAL SIGNALS

Аннотация. Доказана способность экспофункциональных сигналов компенсировать потери в фильтрах, построенных на пьезокерамических резонаторах.

Анотація. Доведено здатність експофункціональних сигналів компенсувати втрати у фільтрах, побудованих на п'єзокерамічних резонаторах.

Summary. The feasibility of losses compensation in filters built on the basis of the piezoelectric ceramic resonator with the help of expolunctional signals is proved.

На современном этапе развития технологий связи и систем передачи данных отчетливо прослеживается тенденция миниатюризации приемно-передающих узлов аппаратуры связи и тенденция освоения сверхвысокого диапазона частот. Примером могут служить технологии современных беспроводных локальных вычислительных сетей Wi-Fi (Wireless Fidelity), а также система широкополосного радиодоступа WiMAX (Worldwide Interoperability for Microwave Access). Построение передатчиков и приемников, в частности для указанных выше технологий, невозможно без частотноселективных узлов. Использование громоздких схем фильтрующих цепей в современных устройствах передачи данных является недопустимым, так как это приводит к увеличению массогабаритных показателей терминалов связи. Поэтому в указанных выше системах связи применяют фильтры, которые имеют небольшие массогабаритные показатели. К таким фильтрам относятся пьезоэлектрические (пьезокерамические) фильтры.

Пьезокерамические резонаторы используются для построения фильтров, выделяющих промежуточные частоты в радиоприемных устройствах. При этом избирательность указанных фильтров зависит от величины добротности пьезокерамических резонаторов, например, в диапазоне 400...500 кГц добротность пьезокерамических резонаторов находится в пределах 70...250 [1]. Указанные величины добротности пьезокерамических резонаторов обусловлены потерями на резонансной частоте (сопротивление потерь на резонансной частоте 50...100 Ом [1]). Компенсация указанных потерь в пьезокерамических резонаторах позволит повысить их добротность, а следовательно и улучшить частотную избирательность.

На сегодняшний день применяется ряд методов уменьшения потерь, существующих в пьезокерамических резонаторах, например, добротность пьезоэлектрических резонаторов повышают путем создания искусственного кварца (танталата лития, ниобата лития, цинкита, лангасита, берлинита, тетрабората лития) [2]. Производство искусственного кварца обуславливает проблему, связанную с усложнением технологии процесса серийного производства фильтров.

Еще один способ повышения добротности пьезокерамических резонаторов основан на так называемом сигнальном способе компенсации потерь. О данном способе компенсации, применительно к пьезокерамическим материалам, впервые высказана гипотеза в работах [3, 4], где автор предполагает, что достижения в области теории *RLC*-электрических цепей (имеется в виду доказательство способности экспофункциональных сигналов компенсировать потери в реактивных элементах электрических цепей [3...5]) можно распространить и на другие динамические системы, у которых существует схема замещения в виде электрической *RLC*-цепи с помощью различных аналогий (электромеханических, электрогидравлических и др.). Позже в литературе появились работы [6...9], в которых теоретически и экспериментально на примере конкретного пьезокерамического резонатора доказано состоятельность гипотезы, высказанной в работах [3, 4], и доказана возможность компенсации потерь сигнальным способом в отдельно взятом пьезокерамическом резонаторе. Однако в указанных работах отсутствует ответ на вопрос: возможно

ли повышение добротности фильтра построенного на пьезокерамических резонаторах путем компенсации потерь в указанных резонаторах сигнальным способом (с помощью экспофункционального сигнала). Поэтому **цель данной статьи** показать возможность компенсации потерь в пьезокерамическом фильтре с помощью экспогармонического воздействия.

Для достижения поставленной цели исследуем реальный пьезокерамический фильтр ФП1П1-60,13 [1, 10] при гармоническом и экспогармоническом воздействии (указанный фильтр выпускается серийно и используется в радиоприемных устройствах для выделения промежуточной частоты (455 кГц)).

1. Методика исследования. Для проведения исследования пьезокерамического фильтра при периодических экспофункциональных воздействиях в данной работе применяется следующий метод: исследуемый фильтр моделируется в программной среде Multisim [11] трижды. Первая модель указанного фильтра представляла собой электрическую схему замещения без потерь (построенную на идеализированных элементах L и C), а две оставшихся схемы моделируются с учетом реальных потерь (причем эти две схемы абсолютно идентичны). Дальше одна из схем с потерями помещается в модель устройства, предназначенного для исследования амплитудно-частотных и временных характеристик *RLC*-цепей при периодических экспофункциональных воздействиях [12, 13]. После чего на вход указанной системы, а также на вход еще двух моделей пьезокерамического фильтра, одна из которых с потерями, а вторая – без потерь, подается один и тот же, например, синусоидальный сигнал. На следующем этапе эксперимента на экране осциллографа сравниваются отклики на выходе моделей фильтра с потерями и без потерь.

Макет [12, 13] настраивается таким образом, чтобы его соответствующие узлы формировали экспосинусоидальный сигнал с учетом предварительно рассчитанного параметра экспофункционального сигнала λ. Далее сформированный экспосинусоидальный сигнал поступает на вход исследуемого фильтра. С выхода исследуемого фильтра экспосинусоидальный сигнал поступает на соответствующий блок макета, который преобразует экспосинусоидальный сигнал в синусоидальный, а тот, в свою очередь, подается на выход макета для осуществления соответствующего анализа.

Описанный выше метод наглядно представлен в виде функциональной схемы на рис. 1 (на указанной схеме ГГС – генератор гармонических сигналов).

Рисунок 1 – Блок-схема, иллюстрирующая методику исследования

2. Исследование пьезокерамического фильтра ФП1П1-60,13 [1, 10] при гармоническом и экспогармоническом воздействии. Фильтр ФП1П1-60,13 имеет следующие параметры [1, 10]: центральная частота $455 \pm 2 \text{ к}\Gamma$ ц, полоса пропускания по уровню 6 дБ – 12 к Γ ц, затухание в полосе задерживания не менее 50 дБ, рабочее затухание в полосе пропускания не более 6 дБ. Рассматриваемый фильтр состоит из семи резонаторов: четыре резонатора из указанных семи включены в вертикальные ветви принципиальной схемы фильтра и три резонатора – в горизонтальные (рис. 2, *a*) [1]. Такой вариант включения пьезокерамических резонаторов (рис. 2, *a*) является удобным в том смысле, что принципиальная схема позволяет расположить резонаторы в одну линию, чередуясь с одинаковыми пружинящими контактами (рис. 2, *б*) [1].

Рисунок 2 – Структурная схема пьезокерамического фильтра ФП1П1-60,13 [1]

Приведем электрическую схему замещения описанного выше фильтра, собранную в среде моделирования Multisim (рис. 3). На рис. 3 каждый пьезокерамический резонатор (в соответствии с рис. 2,*a*) представлен в виде классической электрической схемы замещения пьезокерамических резонаторов [14, 15]. Между собой электрические схемы замещения пьезокерамических резонаторов соединены так, как показано на рис. 2, *a*, а слева и справа фильтр нагружен на сопротивление генератора ($Rg \equiv R_r$) и сопротивление нагрузки ($Rn \equiv R_{\mu}$) соответственно.

Рисунок 3 – Электрическая схема замещения пьезокерамического фильтра ФП1П1-60,13

Измерим амплитудно-частотную характеристику (АЧХ), представленной на рис. 3 схемы замещения пьезокерамического фильтра ФП1П1-60,13, с учетом потерь в пьезорезонаторах (на схеме рис. 3 потери отображены в виде сопротивления *R1*, *R2*, *R3*, *R4*, *R5*, *R6*, *R7*) и без учета потерь в пьезорезонаторах. При этом следует отметить, что под выражением "АЧХ" в данной работе подразумеваются измерения рабочего ослабления передачи цепи *A* (дБ). Величину рабочего ослабления передачи цепи можно получить из выражения для рабочего ослабления цепи с четырехполюсником A_p (дБ), измеренного по методу *Z* [16] ($A = A_p + 6$ (дБ) при условии, что сопротивление генератора равно сопротивлению нагрузки).

Рисунок 4 – АЧХ модели пьезокерамического фильтра ФП1П1-60,13: 1 – с потерями; 2 – без потерь

На рис. 4 кривая 1 описывает АЧХ модели рассматриваемого фильтра (ФП1П1-60,13) с потерями, а кривая 2 представляет собой АЧХ модели того же фильтра, но без потерь.

Анализ кривой 1 на рис. 4 показывает (принимая во внимание тот факт, что под выражением "AЧХ" в данной работе подразумеваются измерения рабочего ослабления передачи цепи), что в полосе пропускания исследуемого фильтра с потерями (ФП1П1-60,13) величина рабочего затухания составляет 6 дБ, что совпадает с заявленным значением рабочего затухания АЧХ в полосе пропускания для данного фильтра в литературе [10].

Компенсируем потери, существующие в пьезокерамических резонаторах исследуемого фильтра, применив экспофункциональное воздействие. С этой целью в среде моделирования Multisim включим модель исследуемого фильтра с потерями, представленную на рис. 2, в модель макета [12, 13], который предназначен для исследования АЧХ и временных характеристик *RLC*-цепей при экспофункциональном воздействии (как это описано в первом пункте). Затем рассчитаем величину параметра экспофункционального сигнала λ , необходимую для компенсации потерь, существующих в пьезорезонаторах согласно выражению полученному и экспериментально подтвержденному в работах [6...9]

$$\lambda = \frac{B}{2M} \equiv \frac{2\pi f_p}{Q_p},\tag{1}$$

где B – сопротивление поступательному движению; M – масса элемента; f_p – резонансная частота; Q_p – добротность пьезокерамического резонатора.

Зная резонансную частоту ($f_{p1} = 455$ кГц и $f_{p2} = 469$ кГц) и добротность ($Q_p \approx 127$) резонаторов [10], входящих в состав исследуемого фильтра, определим величину параметра экспофункционального сигнала λ (согласно выражению (1)), необходимую для компенсации потерь в пьезокерамических резонаторах ($\lambda = 2,25 \cdot 10^4 \text{ c}^{-1}$). На следующем этапе настроим макет [12, 13] согласно рассчитанной величины λ и проведем эксперимент согласно методике, описанной в первом пункте.

В результате проведенного эксперимента получим АЧХ исследуемого фильтра при гармоническом и экспогармоническом воздействии, показанные на рис. 5.

Рисунок 5 – АЧХ модели пьезокерамического фильтра ФП1П1-60,13: 1 – при синусоидальном воздействии; 2 – при экспосинусоидальном воздействии

На рис. 5 кривая 1 – АЧХ модели пьезокерамического фильтра ФП1П1-60,13 с потерями при синусоидальном воздействии. Кривая 2 – АЧХ модели того же пьезокерамического фильтра с потерями, но при экспосинусоидальном воздействии ($\lambda = 2,25 \cdot 10^4 c^{-1}$). Точками на кривой 2 показаны измеренные значения АЧХ макета [12, 13], который содержит в себе модель указанного выше пьезокерамического фильтра с потерями. Необходимо подчеркнуть, что кривая 2 (рис. 5 АЧХ модели пьезокерамического фильтра с потерями, но при экспосинусоидальном воздействии) с большой степенью точности совпадает с АЧХ модели пьезокерамического фильтра без потерь (рис. 4, кривая 2). Такое совпадение позволяет утверждать, что экспофункциональный сигнал компенсировал потери, существующие в пьезокерамических резонаторах фильтра ФП1П1-60,13 (при условии, что величина параметра экспофункционального сигнала $\lambda = 2,25 \cdot 10^4 c^{-1}$ рассчитана по формуле (1)), а это, в свою очередь, неизбежно привело к повышению добротности исследуемого фильтра.

Таким образом, в результате проведения описанного выше исследования еще раз получила подтверждение гипотеза, высказанная автором в работах [3, 4]. Также на примере фильтра ФП1П1-60,13 доказан тот факт, что экспофункциональный сигнал способен компенсировать потери не только в отдельно взятом пьезокерамическом резонаторе, но и в частотноселективной цепи, построенной на указанных резонаторах, что позволит повысить добротность фильтра и улучшить его частотные характеристики, например, такие как частотная избирательность. Этот факт, в свою очередь, позволяет утверждать, что пьезокерамические материалы можно использовать для построения фильтров в более высокой (мегагерцовой) области частот при условии обеспечения компенсации потерь с помощью экспофункционального воздействия.

Литература

- Дискретные пьезокерамические фильтры [Электронный ресурс] / А.Ф. Гейер // Аврора-БИНИБ. Режим доступа к статье: http://avrora-binib.ru/index.php?option=com_content&task=view&id= 80&Itemid=36
- 2. *Миленин П.* Пьезоэлектрические монокристаллы, используемые в резонаторах, генераторах, фильтрах и датчиках, на объемных акустических волнах / П. Миленин, А. Медведев, В. Грузиненко // Компоненты и технологии. 2009. № 1. С. 114 115.
- 3. *Іваницький А.М.* Явище виділення активної потужності реактивними елементами електричного кола / Диплом на відкриття НВ № 3, зареєстровано 12.01.99; пріоритет від 30.11.94 // Винахідник України. 2'1999 / 1'2000. С. 121 126.
- 4. *Иваницкий А.М.* Эффект выделения активной мощности реактивными элементами / А.М. Иваницкий // Техніка майбутнього. 1997. № 5 6. С. 29 30.

- 5. *Иваницкий А.М.* Компенсация потерь электрической энергии в электрической цепи при воздействии сигналов произвольной длительности / А.М. Иваницкий // Наукові праці УДАЗ ім. О.С. попова. 1999. №1. С. 50 52.
- 6. Иваницкий А.М. Теоретическое доказательство возможности увеличения рабочего диапазона частот пьезокерамических фильтров / А.М. Иваницкий // Электрические цепи и электромагнитные поля при экспофункциональных воздействиях: Отчет по НИР / Одесская национальная академия связи им. А.С. Попова; ГР №0105и007232. Одесса, 2007. С. 77 80.
- 7. Иваницкий А.М. Экспериментальное исследование пьезокерамических резонаторов при экспосинусоидальных воздействиях / А.М. Иваницкий, М.В. Рожновский // Практическое применение в реальных устройствах экспофункциональных сигналов: Отчет о НИР / Одесская национальная академия связи им. А.С. Попова. № ГР 0108u010947. Одесса, 2008. С. 6 12.
- Иваницкий А.М. Исследование пьезокерамических резонаторов при экспосинусоидальном воздействии / А. М. Иваницкий, М. В. Рожновский // Радиотехника. Всеукр. межвед. науч.-техн. сб. – 2010. – Вып. 161. – С. 149 – 156.
- Рожновский М.В. Исследование пьезокерамических резонаторов при экспосинусоидальных воздействиях /М.В. Рожновский, А.М. Иваницкий // Матер. IX конф. молодых ученых ["Радиофизика, электроника, фотоника и биофизика"], (Харьков, 1-3 декабря 2009). – Х., 2009. – С. 51.
- 10. Фильтры пьезокерамические ФП1П1-60 [Электронный ресурс]. Режим доступа к информации: http://avrora-binib.ru/index.php?option=com_content&task=view&id=54&Itemid=24.
- 11. *Карлащук В.И.* Электронная лаборатория на IBM PC. Лабораторный практикум на базе Electronics Workbench и Matlab / Карлащук В.И. [5-е изд., перераб. и доп.] М.: СОЛОН-Пресс, 2004. 799 с.
- 12. *Иваницкий А.М.* Устройство измерения амплитудно-частотных характеристик систем, содержащих реактивные элементы при периодических экспогармонических воздействиях / А.М. Иваницкий, Д.Г. Паску // Наукові праці ОНАЗ ім. О.С. Попова. 2005. № 2. С. 66 70.
- 13. Паску Д.Г. Модернизация макета устройства измерения АЧХ / Д.Г. Паску, М.В. Рожновский // Элементы практического применения экспосинусоидальных сигналов: Отчет по НИР (Шифр «Застосування») / Одесская национальная академия связи им. А.С. Попова; ГР 0107U001778. – Одесса, 2007. – С. 6 – 18.
- 14. *Смажевская Е.Г.* Пьезоэлектрическая керамика / Е.Г. Смажевская, Н.Б. Фельдман. М.: Советское радио, 1971. 200 с.
- 15. Яффе Б. Пьезоэлектрическая керамика / Яффе Б., Кук У., Яффе Г. М.: Мир, 1974. 286 с.
- 16. Методическое руководство к лабораторным работам по курсу ТЛЭЦ (работы № 31 35) / [Ладария А.В., Орловский О.П., Воробиенко П.П., Зелях Э.В. и др.]. Одесса: ОЭИС, 1979. 46 с.