На основе выполненной оценки (по средним значениям показателей) экологическое состояние около плотинного участка Кременчугского водохранилища в период исследований может быть охарактеризовано как удовлетворительное, но по отдельным показателям как посредственное или плохое и даже очень плохое [5].

Предложенный способ позволяет обнаружить факторы наиболее опасные для сохранения стойкости водных экосистем, их способности к самоочистке и саморегулированию, а также оценить условия воссоздания водных ресурсов, разработать и обосновать комплекс мероприятий по снижению уровня антропогенной нагрузки на водные экосистемы.

Использование в предложенной классификации распространенных в Европейском Союзе параметров функционирования водных экосистем особенно важно для оценки экологического состояния трансграничных поверхностных вод.

ЛИТЕРАТУРА:

- 1. Петин А.Н., Лебедева М.Г., Крымская О.В. Анализ и оценка качества поверхностных вод. Белгород: Изд-во БелГУ, 2006. 252с.
- 2. Основы экологии и природопользования. Учебное пособие / Дикань В.Л., Дейнека А.Г., Позднякова Л.А., Михайлов И.Д., Каграманян А.А. – Харьков: ООО «Олант», 2002.—384 с.

- 3. Сметанин В.И. Восстановление и очистка водных объектов. Учебник. М.: Колос, 2003. 157 с.
- Cooke G.D. Restoration and management of lakes and reservoirs. – Boca Raton: CRC Press, 2005. – 591 p.
- Методики екологічної оцінки якості поверхневих вод за відповідними категоріями (пояснення, застереження, приклади) / А.В. Яцик, В.М. Жукинський, А.П. Чернявська, К.: Оріяни, 2006. 44 с.
- 6. Романенко В.Д., Жукинський В.М., Оксіюк О.П. та ін.. Методика екологічної оцінки якості поверхневих вод за відповідними категоріями. Київ: СИМВОЛ-Т, 1998. 26 с.
- 7. Патент України на корисну модель № 11701, МПК (2006) G01N 33/18.
- 8. Методика встановлення і використання екологічних нормативів якості поверхневих вод суші та естуаріїв України. В.Д. Романенко, В.М. Жукінський, О.П. Оксіюк, А.В.Яцик та ін. К., 2001. 48 с.
- 9. Методика розрахунку антропогенного навантаження і класифікації екологічного стану басейнів малих річок України / УН-ДІВЕП, Видання 2-ге, перероблене і доповнене. К.: «Полімед». 2007. 71 с.
- 10. Методика з оцінки економічної ефективності комплексного використання водних ресурсів у сучасних умовах (на прикладі дніпровських водосховищ). Держводгосп України, УНДІВЕП Яцик А.В., Томільцева А.І., Томільцев М.Г. та ін. К. 1995, 47 с.

УДК 628.16

Эпоян С.М., Сизова Н.Д.

Харьковский национальный университет строительства и архитектуры **Душкин С.С.**

Харьковский национальный университет городского хозяйства им. А.Н. Бекетова

МОДЕЛИРОВАНИЕ ТЕХНОЛОГИЧЕСКОГО ПРОЦЕССА НАКОПЛЕНИЯ ОСАДКА В ГОРИЗОНТАЛЬНЫХ ОТСОЙНИКАХ СИСТЕМ ВОДОСНАБЖЕНИЯ ПРИ ИСПОЛЬЗОВАНИИ АКТИВИРОВАННОГО РАСТВОРА КОАГУЛЯНТА

Постановка проблемы и ее актуальность. В настоящее время уделяется внимание вопросам интенсифи-кации процесса очистки природных вод, усовершенствова-

нию его технологии, разработке новых эффективных методов интенсификации очистки воды.

Существующие методы, интенсифицирующие процесс коагуляции, предус-матривают создание эффективных условий

для быстрого и полного разделения гетерогенной системы, которой являются природные воды, что в практике водо-очистки сводится к получению легкоосе-дающих крупных хлопьев с сильно развитой поверхностью и к сокращению времени формирования их [1–4].

Целью данной работы является разработка математической модели, позволяющей прогнозировать эффективность накопления осадка в горизонтальном отстойнике систем питьевого водоснабже-ния при

использовании активированного раствора коагулянта [5, 6].

Основные материалы. При построении математической модели накопления осадка использовали зависимость, обоснование которой подробно описано в трудах К.В. Гнедина [7, 8].

Математическая модель основана на результатах исследований выполненных в производственных условиях на очистных сооружениях водопровода КПП «Краматорский водоканал»[9]. Параметры проведения экспериментов приведены в табл. 1.

Таблица 1 – Параметры проведения экспериментов в производственных условиях

	Период времени года	Показатели исходной воды					Параметры активации		
Источник водосна- бжения		t, °C	мут- ность, мг/дм ³	прозрач- ность, см	цвет- ность, град.	Д _к , мг/дм ³	напряжен- ность маг- нитного поля, кА/м	содержание ано- дно-раст- воренного железа, мг/дм ³	
	зимний	2,7–3,9	39,2–39,9	21–33	53–55	80–90	78–85	900–1000	
Канал									
Сев.До- нец-Дон- басс	весен- него па- водка	9,5–9,7	41,9–48,1	18–20	56–62	100-110	85–90	1050–1100	

Для моделирования процессов накопления осадка в отстойнике применяли зависимость:

$$y = f(x, t), \tag{1}$$

где y — высота слоя осадка, м; x — длина отстойника, м; t — время накопления осадка

При построении зависимости (1) фиксировали значение t и, полагая $t=t_0$, строили точки M(x, y), которые располагаются по кривой, имеющий вид параболы:

$$y = ax^2 + ex + c \tag{2}$$

Затем, приняв $x=x_0$, для различных значений t строили точки M (t, y). Кривая, построенная по этим точкам, проходит через начало координат, поскольку при t=0 y=0. Кроме того, она должна иметь горизонтальную асимптоту, т.к. при $t\to\infty$ y стремится к определенному пределу A ($y\to A$). Уравнение кривой имеет вид:

$$y = A(1 - e^{-kt}) \tag{3}$$

Принимаем во внимание зависимос-ти (2) и (3), делаем вывод, что функция (1),

дающая зависимость y от величины x и t, должна иметь вид:

$$y = (ax^2 + ex + c) \cdot (1 - e^{-kt}) \tag{4}$$

с введением поправки на уклон днища отстойника:

$$y=(ax^2+ex+c)\cdot (1-e^{-kt})-0.05x,$$
 (5) где a , e , c , x — коэффициенты, полученные решением уравнения (5) с использованием опытных данных.

В окончательном виде уравнение (1) описывающие процесс накопления осадка в отстойнике, принимает вид:

$$h = (al^2 + bl + c) \cdot (1 - e^{-kt})^{-0.005e}$$
 (6)

где h — высота осадка, м; l — длина отстойника от его начала, м; t — время накопления осадка, сутки; a,e,c, κ — коэ ϕ . Зависящие от l и t

По результатам табуляции уравнения (5) построены номограммы (рис. 1, рис. 2) для определения высоты слоя осадка.

В табл. 2. приведены сравнительные данные о накоплении осадка в отстойнике

очистных сооружений водопровода г. Краматорска полученные опытным и расчетными (ф-ла 6) путями при обычной коагуляции и обработке воды активированным раствором коагулянта сульфата алюминия. Анализ данных (табл. 2.) позволяет сделать

вывод о правильном математическом описании процесса накопления осадка в отстойнике и возможности использования полученных зависимостей в практических расчетах.

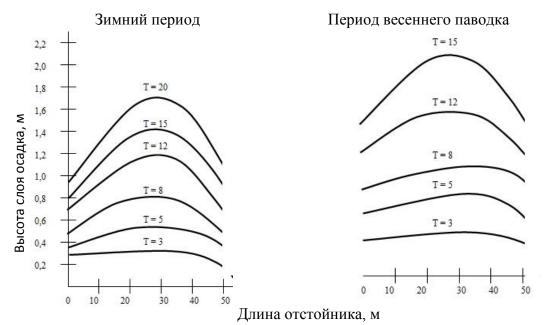


Рис. 1. Номограмма для определения высоты осадка во времени по длине отстойника при обработке воды раствором коагулянта, не подвергнутым магнитно-электрической активации

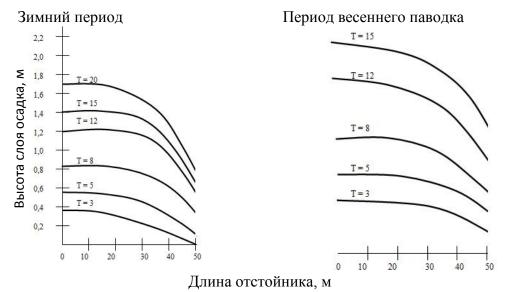


Рис. 2. Номограммы для определения высоты осадка во времени по длине отстойника при обработке воды активированным раствором коагулянта

БУДІВНИЦТВО

Таблица 2 — Сравнительные данные накопления осадка в отстойнике очистных сооружений водопровода КПП «Краматорский водоканал», полученные опытным и расчетным путями при обработке воды активированным раствором коагулянта

Период	Время на-	Высота слоя осадка h (м) по длине отстойника l (м)								
исследо-	копления	(C	3	80	50				
ваний	осадка, Т (дни)	Опытные данные	Расчетные данные	Опытные данные	Расчетные данные	Опытные данные	Расчет- ные данные			
Зимний	3	0,4	0,368	0,2	0,235	0,05	0,013			
	5	0,6	0,588	0,4	0,440	0,2	0,131			
	8	0,9	0,878	0,7	0,714	0,3	0,289			
	12	1,2	1,206	1,1	1,023	0,5	0,467			
	15	1,4	1,414	1,3	1,218	0,7	0,579			
	20	1,7	1,7	1,5	1,49	0,8	0,735			
Весен-	3	0,5	0,499	0,4	0,349	0,2	0,152			
него	5	0,8	0,8	0,6	0,628	0,3	0,357			
паводка	8	1,2	1,21	1,0	1,007	0,6	0,636			
	12	1,6	1,688	1,4	1,449	0,9	0,961			
	15	2,0	2,0	1,75	1,74	1,1	1,17			

ЛИТЕРАТУРА:

- 1. Гончарук В.В. Современные технологии подготовки питьевой воды / В.В. Гончарук, Н.А. Клименко, Л.А. Савчина и др. // Химия и технология воды. -2006. Т. 28. № 1. С. 3–10.
- 2. Эпоян С.М. Анализ существующих методов повышения эффективности работы водопроводных сооружений для подготовки питьевой воды / С.М. Эпоян, С.С. Душкин, В.А. Сташук // Науковий вісник будівництва. Харків: ХНУБА. ХОТВ АБУ, 2012. Вип. 67. С. 261–265.
- 3. Душкин С.С. Технологические испытания активатора реагентов / С.С. Душкин // Программа и тезисы докладов 36 научно-техн. конф. Харьков: ХНАГХ, 2012. С. 111–112.
- 4. Василенко А.А. Реконструкция и интенсификация сооружений водоснабжения и водоотведения: уч. пособие / А.А. Василенко, П.А. Грбовс-кий, Г.М. Ларкина и др. Киев—Одесса: КНУСА, ОГАСА, 2007. 307 с.
- Эпоян С.М. Теория и практика использования активированного раствора коагулянта сульфата алюминия для интенсификации работы очистных сооружений водопровода /

- С.М. Эпоян, С.С. Душкин // Новые достижения в области водоснабжения водоотведения, гидравлики и охраны водных ресурсов. Матер. междунар. научно-практ. конф., ПГУПС 23 апреля 2013 г. СПб.: изд-во «ОМ-Пресс», 2013. С. 72—75.
- 6. Эпоян С.М. Моделирование технологических процессов очистки питьевой воды при использовании активированных растворов коагулянта / С.М. Эпоян, С.С. Душкин, Н.Д. Сизова // Науковий вісник будівництва. Харків: ХНУБА. ХОТВ АБУ, 2014. №2(76) С. 125—129.
- 7. Гнедин К.В. Режим работы и гидравлика гори-зонтальных отстойников / К.В. Гнедин. К.: Будівельник, 1981. 52 с.
- 8. Гнедин К.В. Анализ методов исследования концентрации взвеси, ее осаждение и распределение скоростей в горизонтальных отстойниках / К.В. Гнедин // Вопросы технологии обработки воды промышленного и питьевого водоснабжения. К.: Будівельник, 1973. С. 48–56.
- 9. Повышение эффективности работы сооружений при очистке питьевой воды: монография / С.М. Эпоян, Г.И. Благодарная, С.С. Душкин, В.А. Сташук. Харків: ХНУМГ, 2013. 190 с.