- of 18th International Conference on soil Mechanics and Geotechnical Engineering, Paris, 2013, Vol.1, pp. 2437–2440.
- 4. Зоценко М.Л. Вплив повздовжнього армування на несучу здатність паль з ґрунтоцементу/ Зоценко М.Л., Павліков А.М., Петраш О.В.// Строительство, материаловедение, машиностроение// Сб. научн. трудов. Вып. 65, -Дн-вск, ГВУЗ «ПГАСА», 2012. 726 с.
- 5. Петраш О.В. Ґрунтоцементні палі, виготовлені за бурозмішувальною технологією: дис. ... кандидата техн. наук: 05.23.02 / О.В. Петраш. Полтава, 2014. 196 с.
- 6. Петров И.А. Техническое нормирование и сметы / И.А. Петров. М.: Полиграфкнига, 1945. 190 с.

- 7. Пруссак Е.В. Техническое и тарифное нормирование труда в строительстве / Е.В. Пруссак. М.: Госстройиздат, 1934. 156 с
- 8. Петраш Р.В. Спільна робота грунту та елементів армування, які виготовленні за бурозмішувальною технологією: Дис. ...кандидата тех. наук: 01.03.03; Захищена 10.02.10; Затв. 27.05.10. К. 2009. 219 с.
- 9. «Ціноутворення у будівництві» збірник офіційних документів та роз'яснень : №1, січень 2015 [під ред. Сіренко І.М.]. К. : «ІНПРОЕКТ», 2015. 96 с.

УДК 624.21

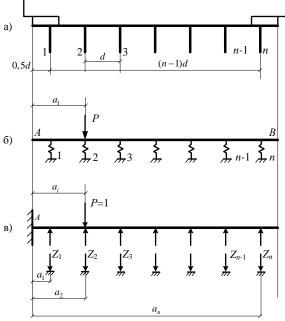
Кожушко В.П., Лысяков И.Н.

Харьковский национальный автомобильно-дорожный университет

РАСЧЕТ ПРОЛЕТНЫХ СТРОЕНИЙ АВТОДОРОЖНЫХ МОСТОВ С ПРИМЕНЕНИЕМ ПРОГРАММЫ НА ПЭВМ

Введение.

В настоящее время эксплуатируется, проектируется и строится значительное количество автодорожных мостов с различной конструкцией пролетных строений. Для определения напряженно-деформированного состояния (НДС) элементов пролетных строений мостов при воздействии на них различных временных нагрузок разработан ряд методов их пространственного расчета [1-6], однако каждый из этих методов применим только при расчете узкого круга пролетных строений. Нами предложен приближенный метод расчета всех пролетных строений автодорожных мостов [7, 8].


При реализации метода расчета необходимо решение системы уравнений, в целом ряде случаев (при значительном количестве главных несущих элементов в поперечном сечении пролетного строения) включающих десятки уравнений. Необходима кропотливая работа по определению единичных перемещений при неизвестных, так как при решении задачи о НДС пролетного строения нами предлагается смешанный метод строительной механики. Задача разработки программы расчета на ПЭВМ системы уравнений является актуальной.

Цель и задачи исследований.

Поставлена задача разработки программы расчета на ПЭВМ пролетных строений регулярной схемы различной конструкции (балочных, плитных, рамных, комбинированных, арочных и т.д.), выполненных из любого материала. Предполагается в результате использования программы расчета определять ординаты линий влияния усилий, передаваемых поперечными элементами (плитой, поперечными балками, диафрагмами, поперечинами) на главные несущие элементы пролетного строения (главные балки балочных мостов, рамы в рамных мостах, арки в арочных пролетных строениях и т.д.). При разработке программы учитывалась необходимость определения единичных перемещений при неизвестных и свободных членов, а также решение системы уравнений и выдача результатов расчета в виде распечатки значений ординат линий влияния усилий на главные элементы пролетных строений, распечатки единичного угла поворота и прогиба фиктивной заделки и графическое построение линий влияния усилий. При этом предполагается для решения задачи на ПЭВМ введение всего лишь двух параметров.

Реализация задачи.

Пролетное строение разрезается на ряд продольных и поперечных полос [7,8]. Продольные полосы следует вырезать так, чтобы продольные ребра (главные балки, продольные рамы и т.д.) располагались в пределах ширины продольной балки d (рис.1), т.е. количество продольных полос должно равняться количеству продольных ребер.

(Рис. 1. Схема поперечного сечения пролетного строения: а — истинная; б — расчетная схема поперечного элемента; в — основная схема поперечного элемента

Поперечная полоса метровой ширины вырезается в том месте по длине пролета, в котором предполагается определить распределительную способность системы. При определении изгибной жесткости продольной полосы включается в расчет как ребро, подкрепляющее плиту, так и сама плита проезжей части. Для поперечных полос вводится изгибная жесткость поперечного сечения плиты шириной

один метр (в бездиафрагменных пролетных строениях) или приведенная к одному погонному метру изгибная жесткость диафрагм или поперечных балок (в ребристых пролетных строениях). Поперечная полоса рассматривается как полоса на упруго оседающих опорах (см. рис.1,б). Основная схема поперечной полосы — это консольная полоса с фиктивным защемлением его левого конца с закреплением в точкеA, (см. рис.1,в). Для определения ординат линий влияния усилий Z_i , передаваемых поперечной полосой на продольные полосы,следует решить следующую систему уравнений (1).

$$\begin{cases} \delta_{11}z_{1} + \dots + \delta_{1n}Z_{n} + 0.5\varphi_{A} + y_{A} = \Delta_{1P}; \\ \dots \\ \delta_{n1}z_{1} + \dots + \delta_{nn}Z_{n} + (n - 0.5)\varphi_{A} + y_{A} = \Delta_{nP}; \\ Z_{1} + \dots + Z_{n} = 1; \\ 0.5Z_{1} + \dots + (n - 0.5)Z_{n} = \frac{a_{i}}{d}. \end{cases}$$

$$(1)$$

В системе (1): δ_{ik} - увеличенные в 1/y раз единичные перемещения в i-й точке от единичной силы Z_k , приложенной в точке k; Δ_{iP} - свободный член, определяемый в i-й точке поперечной полосы от единичной внешней силы P=I, приложенной над k - й точкой; ϕ_A и y_A - соответственно увеличенные значения угла поворота и прогиба фиктивного защемления поперечной полосы, т.е. угла поворота и прогиба поперечной полосы в точке A; a_i -расстояние от фиктивного защемления поперечной полосы до точки приложения силы P=I (см. рис.1).

Для определения единичных перемещений δ_{ik} предлагаются следующие формулы:

для главных единичных перемещений

$$\delta_{ii} = 1 + \alpha \omega_{ii}; \tag{2}$$

для остальных единичных перемещений

$$\delta_{ik} = \alpha \omega_{ik}, \qquad (3)$$

где α - показатель гибкости пролетного строения, ω_{ik} -вертикальное перемещение поперечной полосы в i-й точке от единичной силы Z_k =1, приложенной в точке k.

Показатель гибкости

$$\alpha = \frac{d^3 (1 - v_{\text{поп}}^2)}{6E_{\text{поп}}J_{\text{поп}}y},$$
(4)

где $V_{\rm non}$ - коэффициент Пуассона материала поперечной полосы; $E_{\rm non}J_{\rm non}$ - изгибная жесткость поперечной полосы; y прогиб продольной полосы в том сечении по длине полосы, где вырезана поперечная полоса, от единичной распределенной по всей длине нагрузки q=1. Например, под серединой продольной полосы на двух опорах

$$y = \frac{5l^4 (1 - v_{\rm np}^2)}{384 E_{\rm np} J_{\rm np}},\tag{5}$$

где l - расчетный пролет продольной полосы; $\nu_{\rm np}$ — коэффициент Пуассона материала продольной полосы; $E_{\rm np}J_{\rm np}$ - изгибная жесткость продольной полосы.

Тогда для балочных разрезных пролетных строений для середины пролета показатель гибкости α следует определять по формуле:

$$\alpha = \frac{12.8E_{\text{пр}}J_{\text{пр}}d^{3}(1-v_{\text{поп}}^{2})}{l^{4}E_{\text{поп}}J_{\text{поп}}(1-v_{\text{пр}}^{2})}.$$
 (6)

Для разрезных железобетонных пролетных строений, когда

$$1 - v_{\text{поп}}^2 = 1 - v_{\text{пр}}^2$$
, a $E_{\text{поп}} = E_{\text{пр}}$,
$$\alpha = \frac{12,8d^3}{l^4} \cdot \frac{J_{\text{пр}}}{J_{\text{поп}}}.$$
 (7)

Единичные вертикальные перемещения ω_{ik} поперечной полосы предлагается определять по формуле

$$\omega_{ik} = \left(\frac{a_i}{d}\right)^2 \left(3\frac{a_k}{d} - \frac{a_i}{d}\right),\tag{8}$$

если $k \geq i$.

Если i > k, то в формуле (8) индексы следует поменять местами.

В формуле (8): i -точка, в которой приложена единичная сила $Z_i=1\;;\;k$ -точка, в которой приложена единичная сила $Z_k=1$.

Для пролетных строений более сложных систем при определении прогиба у следует пользоваться определенными справочниками по мостам или строительной механике.

Чтобы получить ординаты линий влияния усилий Z_i , при использовании программы расчета следует ввести только два параметра: показатель гибкости системы α и количество продольных полос n.

На основании вышеизложенного была разработана программа расчета для ПЭВМ с использованием вычислительной системы MathCAD. В программе реализован алгоритм на основании формул (1), (2), (3), (8). В начале для заданного количества главных балок (продольных полос) nрассчитываются вертикальные перемещения поперечной полосы ωік, затем по заданному показателю гибкости пролетного строения α определяются единичные перемещения δ_{ik} и Δ_{iP} системы уравнений (1). Единичная нагрузка Р=1 для расчета ординат линий влияния усилий Z_i помещается не только над главными (продольными) балками, но и на концах поперечной полосы.

Для решения системы уравнений (1) вначале рассчитывается обратная матрица коэффициентов системы алгебраических уравнений (СЛАУ) с использованием стандартной процедуры системы MathCAD. Затем, используя обратную матрицу коэффициентов СЛАУ, рассчитываются ординаты линийусилий Z_i , углов поворота ϕ_A и прогибов уа.

Результаты расчета ординат линий влияния выводятся в табличном виде стандартной процедурой системы MathCAD. Также результаты расчета выводятся в виде графиков. Количество графиков и их вид можно привести с помощью системы MathCAD к любому удобному виду.

Для иллюстрации работы программы на рис.2, 3 приведены распечатки расчета регулярного пролетного строения с 8-ю главными балками и показателем гибкости системы α =0,03. Результаты расчета по программе совпадают с расчетом в [8].

Расчет регулярных балочных пролетных систем nb := 8 - число главных балок (нумерация начинается с единицы); $\alpha := 0.03 \cdot 10^0$ - показатель гибкости; a := 0.5 - свес глиты отнесеный к расстоянию между главнными балками

Матрица ординат ЛВ для nb = 8 главных балок

		1	2	3	4	5	6	7	8	9	10
Z z =	1	0.7362	0.6024	0.3466	0.152	0.0336	-0.0232	-0.0411	-0.0394	-0.031	-0.0263
	2	0.3634	0.3466	0.3026	0.2172	0.1259	0.0557	0.01	-0.0186	-0.0394	-0.0492
	3	0.1172	0.152	0.2172	0.2484	0.2084	0.1371	0.068	0.01	-0.0411	-0.0659
	4	-0.013	0.0336	0.1259	0.2084	0.2498	0.2127	0.1371	0.0557	-0.0232	-0.0623
	5	-0.0623	-0.0232	0.0557	0.1371	0.2127	0.2498	0.2084	0.1259	0.0336	-0.013
	6	-0.0659	-0.0411	0.01	0.068	0.1371	0.2084	0.2484	0.2172	0.152	0.1172
	7	-0.0492	-0.0394	-0.0186	0.01	0.0557	0.1259	0.2172	0.3026	0.3466	0.3634
	8	-0.0263	-0.031	-0.0394	-0.0411	-0.0232	0.0336	0.152	0.3466	0.6024	0.7362
	8	-0.0263	-0.031	-0.0394	-0.0411	-0.0232	0.0336	0.152	U.3466	0.6024	0.7362

Матрицы ординат ЛВ прогибов и углов поворота в начале поперечной полосы

$Yz^T =$		1	2	3	4	5	6	7	8	9	10
	1	-0.9566	-0.7362	-0.3634	-0.1172	0.013	0.0623	0.0659	0.0492	0.0263	0.0145
T											
<i>θ</i> z¹ =		1	2	3	4	5	6	7	8	9	10
	1	0.4482	0.2677	0.0336	-0.0697	-0.0933	-0.0782	-0.0498	-0.0197	0.0093	0.0237

Рис. 2. Распечатка расчета на ПЭВМ с вводом исходных данных и таблицами ординат линий влияния

После загружения линий влияния усилий внешними нагрузками определяются коэффициенты поперечной установки (КПУ). В настоящее время целый ряд авторов называют этот коэффициент коэффициентом поперечного распределения (КПР). Дальнейшая процедура определения внутренних усилий и деформаций в элементах пролетного строения изложена в литературе по мостам.

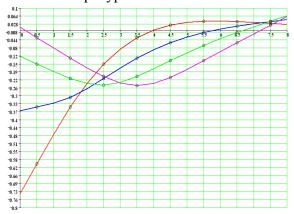


Рис. 3. Распечатка расчета на ПЭВМ с графиками линий влияния вертикальных усилий, передаваемых на главные балки

Выводы

Предложенная программа расчета позволяет определять ординаты линий влияния усилий, передаваемых поперечным элементом на продольные полосы, при любом количестве продольных полос.

ЛИТЕРАТУРА:

- 1. Пушкина Н.А. Оценка расчета приближенных методов пространственного расчета для ребристых бездиафрагменных пролетных строений / Н.А. Пушкина // Экспериментально-расчетные методы исследования задач прочности. Новосибирск: Изд-во СГ УПС, 2003. С. 83-87.
- 2. Российский В.А. Практическое применение метода упругих опор к расчету пролетных строений балочных мостов / В.А. Российский // Изв. вузов. Стр-во и архитектура. 1959. №8. С. 38-50.
- 3. Семенец Л.В. Пространственные расчеты плитных мостов: учебное пособие; под общ.ред. В.А. Российского / Л.В. Семенец. К.: Вищашк. Головное изд-во, 1976. 164 с.
- 4. CheungY.L. Finitestripanalysisofslaband-boxgirderbridges / Y.L. Cheung // HongKong. 1985. Vol.19, №6. P. 31-41.
- 5. CheungY.L. Application of spine finite-stripemetodin the analysis of curved slab bridges / Y.L. Cheung, L.G. Tham, W.Y. Ly// Proc. Inst. Civ. Eng. 1986. №81, March.– P. 111-124.
- 6. LauranguesP. Le cflculclupontportique par la method leleverqie / P. Laurangues // Ann. Trav. PublicsBelg. 1985. №1. P. 27-42.
- 7. КожушкоВ.П. Расчетпролетныхстроенийбалочныхмостовразрезнойсистемы / В.П. Кожушко // Сопротивлениематериаловитеориясооружений.- К.: Будівельник, 1980.- Вып. 36.- С. 118-122.
- 8. Кожушко В.П. Моделювання прольотних будов мостів: монографія / В.П. Кожушко. Харків: ХНАДУ, 2010. -196с.