

Рис. 2. Можливості фіскального датування екологічних підприємтв

Висновок

- 1. Вивчено можливість використання умовно чистих стічних вод після локальної доочистки.
- 2. Розглянуто можливість застосування грунтових вод після кондиціювання води.
- 3. Запропоновано варіант використання рециклінгу стічних вод для теплосилових пілей.

ЛІТЕРАТУРА:

1. Tchobanoglous, G. et al. (1993) [Text]. Integrated solid waste management. NJ:

- McGraw-Hill. NCEES, FE Reference Handbook. (7th edn), (2005). 442 p.
- 2. Bedient, PR., et al. (1999) [Text]. Groundwater contamination (2nd Edn). Upper Saddle River: Prentice Hall. 287 p.
- 3. Conway, R. A., & Ross, R. D. (1980) [Text]. Handbook of industrial waste disposal. NY: Van Nostranol Rheinhold. 343p.
- 4. Viessman, W., & Hammer, M. J. (1985) [Text]. Water supply pollution control (4th ed.). New York: Harper & Row. 287 p.
- 5. Тугай А.М. Розрахунок і проектування споруд систем водопостачання [Текст]:Навч.посібник. / А.М. Тугай, В.О. Терновцев, Я.А. Тугай.- К.: КНУБА, 201. 254с.
- 6. Василенко О.А. Раціональне використання та охорона водних ресурсів [Текст]: Навч.посібник. / О.А. Василенко, Л.Л. Литвиненко, О.М. Квартенко. Рівне.: НУВГП, 2006.- 246с.
- 7. Хоружий П.Д. Ресурсозберігаючі технології водопостачання. [Текст] / П.Д. Хоружий, Т.П. Хомутецька, В.П. Хоружий. К.: Аграрна наука, 2008. 534c.

Рецензент: д-р техн. наук А.С. Карагяур

УДК 628.35

Айрапетян Т.С.

Харьковский национальный университет городского хозяйства имени А.Н. Бекетова

ТЕОРЕТИЧЕСКИЕ ИССЛЕДОВАНИЯ РАБОТЫ АЭРОТЕНКОВ СО ВЗВЕШЕННЫМ И ПРИКРЕПЛЕННЫМ БИОЦЕНОЗОМ

Введение. Очистка сточных вод является одной из актуальных проблем в вопросе охраны поверхностных водных объектов. Среди многочисленных способов и методов очистки наиболее распространены биологические методы, основанные на способности микроорганизмов использовать для своего питания находящиеся в сточных водах органические вещества.

На большинстве канализационных очистных станциях используются традиционные технологии биологической очистки, а именно удаление (биоокисление) сорбированных на хлопьях активного ила загрязнений в аэротенках [1-5]. В зависимости от гидродинамического режима

движения жидкости биореакторы-аэротенки подразделяют на аэротенки-смесители и аэротенки-вытеснители. Аэротенки получили распространение благодаря своей универсальности и эффективности.

Однако, эти технологии в современных условиях не обеспечивают эффективную и надежную очистку сточных вод от органических загрязнений (ОЗ), нормативы остаточной концентрации которых в очищенной воде значительно ужесточились. В последние годы специалисты приходят к выводу, что классические модификации аэротенков хотя и позволяют обеспечить необходимую степень очистки, но

технические возможности их практические уже исчерпаны. Сложность внесения конструктивных изменений связана с большими размерами сооружений и значительными финансовыми затратами.

Поэтому актуальными являются исследования, направленные на повышение эффективности работы аэрационных сооружений и математическое описание процессов биологической очистки сточных вод.

Проведенный анализ показал, что для интенсификации работы аэрационных сооружений наиболее оптимальным с точки зрения инженерных и технологических решений является метод увеличения массы активного ила, который берет участие в процессе очистки. Эффективность удаления загрязнений в аэротенках можно значительно повысить, если наряду со взвешенным биоценозом (активным илом) обеспечить устройство в объеме аэротенка дополнительной загрузки (сеток, перфорированных перегородок, насадок и т. п.), на поверхности которой образуется биопленка с высокой концентрацией микроорганизмов. Такая комбинированная биологическая очистка сточных вод в сооружениях с прикрепленной биомассой (биопленкой) по мнению многих специалистов, имеет ряд существенных технологических преимуществ и широко используется на практике [1, 2, 4-6].

Режим работы аэротенка может быть смоделирован с помощью системы уравнений, которые описывают закономерность изменения концентрации основных компонентов биологического очистки. Математическое моделирование позволяет получить уравнение для описания динамики роста микроорганизмов и потребления субстрата, а также рассчитать рациональные режимы процесса биологической очистки сточных вод [7, 8].

Существующие разработки основаны на реализации упрощенных подходов (моделей), в которых не учитываются параметры биопленки, гидродинамические особенности поступления органических загрязнений (ОЗ) и кислорода из движущейся жидкости в аэротенке и на поверхность биопленки, скорости кинетических

реакций в биопленке и извлечения органических загрязнений взвешенным биоценозом (активным илом) в объеме аэротенка.

Как показал проведенный анализ, неполный учет вышеперечисленных факторов значительно влияет на получение надежных и достоверных результатов расчета.

Цель и задачи. Целью исследований является теоритическое обоснование с помощью достоверной математической модели рационального варианта расположения в аэротенке насадок с прикрепленным биоценозом.

Результаты исследований. Для изучения процесса очистки в аэротенке, содержащим элементы с прикрепленным биоценозом, разработана математическая модель, в основе которой лежит уравнение переноса растворенных органических загрязнений [1, 9, 10].

$$\frac{\partial L_a}{\partial t} = D_a \frac{\partial^2 L_a}{\partial x^2} - V \frac{\partial L_a}{\partial x} - R, \tag{1}$$

$$R = \lambda_a N + \varepsilon R_a$$
, $\varepsilon = 1 - \frac{W_{\delta}}{W} = \frac{W_{\kappa}}{W}$, (2)

$$N = -D_L \frac{\partial L}{\partial z} = K_L (L_a - L|_{z=0}), \ L|_{z=0} = L_\delta, (3)$$

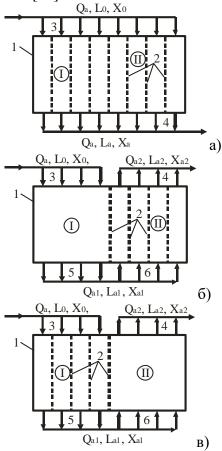
где R, R_a – соответственно, скорости общей реакции, а также утилизации ОЗ взвешенным биоценозом (активным илом); N – поток (транспорт) ОЗ через поверхность биопленки для их утилизации закрепленным биоценозом (биопленкой); L_а - концентрация ОЗ в аэротенке; Dа – коэффициент диффузии; V=Q_a/F – средняя скорость потока в аэротенке; F – площадь поперечного сечения аэротенка; Qа – расход, $\lambda_{\delta} = F_{\delta l}/Q_a$ – конструктивный параметр; $F_{\delta l}$ общая площадь поверхности биопленки; W_a – рабочий объем аэротенка; W_{π} – объем жидкости в аэротенке; W_б - объем загрузки (насадок) с прикрепленным биоценозом; L, L_δ - соответственно концентрации ОЗ в биопленке и на поверхности биопленки; D_L - коэффициент молекулярной диффузии в биопленке; K_L – коэффициент массопереноса ОЗ в жидкостной пленке.

Значение потока ОЗ через поверхность биопленки N находится с помощью уравнения, характеризующего удаление

ОЗ образованной на поверхности материала загрузки биопленкой, насыщенной микроорганизмами концентрацией X

$$D_L \frac{\partial^2 L}{\partial z^2} - R_L = 0, \qquad (4)$$

которое решается при следующих граничных условиях при z=0 N=0; при $z=\delta$ $\frac{\partial L}{\partial z}=0$.


Возможны следующие варианты расположения насадок с прикрепленным биоценозом (рис. 1) [7, 10]:

- а) элементы загрузки равномерно расположены по всему объему (длине) аэротенка:
- б) аэротенк состоит из двух частей (реактор I и II), через которые сточная вода движется последовательно: в первой части (реакторе I) извлечение ОЗ осуществляется за счет прикрепленного и взвешенного биоценоза, во второй части (реакторе II) извлечение ОЗ осуществляется только взвешенным биоценозом;
- в) первая часть (реактор I) работает как обычный аэротенк, во второй части (реакторе II) расположена загрузка с прикрепленным биоценозом, очистка осуществляется последовательно.

При разработке математической модели приняты следующие допущения:

- процесс биохимического окисления в достаточном количестве обеспечен кислородом, т.е. поступление кислорода не лимитирует кинетику биоокисления как взвешенным, так и прикрепленным биоценозом;
- 2) рассмотрен случай, когда аэротенк работает как идеальный смеситель;
- 3) количество насадок и их площадь одинакова для всех вариантов, т.е. в вариантах (б) и (в) (рис. 1) насадки расположены более концентрировано;
- 4) объемы 1-го и 2-го реактора равны;
- 5) в первом реакторе, где присутствует повышенная концентрация загрязнений, при $K_m/L_0 < 0.25$ (K_m коэффициент полунасыщения, L_0 концентрация ОЗ, поступающих в ректор) осуществляется реакция окисления нулевого порядка, а во втором, где концентрация загрязнений уже снижена и

 $K_m/L_0 > 2$ — реакция первого порядка [11]

Puc. 1. Схемы аэротенков-смесителей с прикрепленным биоценозом:

1 — аэротенк; 2 — загрузка с прикрепленным биоценозом; 3 — подача сточной воды; 4 — отвод сточной воды; 5 — отвод сточной воды после первого реактора; 6 — подвод сточной воды ко втором реактору

С учетом 2-го допущения уравнение (1) преобразуется в выражение

$$L_0-L_a-\lambda_\delta N-R_aT_a=0,$$
 (5) где $T_a=rac{W_p}{Q_a}.$

Если скорость реакции окисления принимается нулевого порядка, то для свободноплавающего биоценоза ее значение равно

$$R_a = \omega_a, \quad \omega_a = \rho_{ma} = \frac{\mu_{ma} X_a}{Y_a},$$
 (6)

где μ_{ma} — удельная максимальная скорость роста микроорганизмов в объеме аэротенка; X_a — концентрация взвешенной био-

массы микроорганизмов; $Y_a = \frac{dX_a}{dL_a}$ — сте-

хиометрический коэффициент прироста биомассы.

Аналогично если скорость реакции окисления принимается нулевого порядка для прикрепленного биоценоза, то концентрация ОЗ на поверхности биопленки равна

$$L_{\delta} = L_0 - \frac{\omega_{L0}\delta}{K_I},\tag{7}$$

где δ – толщина биопленки.

Исходя из выражения (4) поток загрязнений через поверхность биопленки равен

$$N = \omega_{L0}\delta. \tag{8}$$

С учетом зависимостей (6) и (8) уравнение (4) примет вид

$$L_0 - L_a - \lambda_\delta \omega_{L0} \delta - \omega_a T_a = 0. \tag{9}$$

Если скорость реакции окисления принимается первого порядка, то для свободноплавающего биоценоза и прикрепленного ее величина соответственно равна

$$R_a = k_a L_a, \qquad k_a = \frac{\mu_{ma} X_a}{Y_a K_{ma}} = \frac{\rho_{ma}}{K_{ma}}, \quad (10)$$

$$R_L = kL, \qquad k = \frac{\mu_m X}{YK_{mL}} = \frac{\rho_m}{K_{mL}}, \tag{11}$$

где μ_m – удельная максимальная скорость роста микроорганизмов в биопленке; X – концентрация прикрепленной биомассы микроорганизмов; K_{ma} , K_{mL} – коэффициенты насыщения (полунасыщения);

$$Y = \frac{dX}{dL}$$
 — стехиометрический коэффици-

ент прироста биомассы в биопленке.

Решение уравнения (4) получено в работе [9], что позволило определить необходимую для дальнейших расчетов концентрацию ОЗ на поверхности биопленки L_{δ}

$$L_{\delta}$$
=A L_a , (12) где
$$A = \frac{1+e^{-\varphi}}{(1+e^{-\varphi})+\lambda(1-e^{-\varphi})},$$
 $\varphi = 2\sqrt{\alpha}$, $\alpha = \frac{k\delta^2}{D_L}$, $\lambda = \frac{\sqrt{kD_L}}{K_L}$.

Согласно зависимости (4) поток ОЗ в биопленку равен

$$N = K_I L_a (1 - A)$$
 или

$$N = -D_L \frac{\partial L}{\partial z}\Big|_{z=0} = D_L \frac{th\sqrt{\alpha}}{a_0} L_{\delta} = k_1 L_{\delta}, \quad (13)$$

где
$$k_1 = \frac{th\sqrt{\alpha}}{\alpha_0}$$
, $\alpha_0 = \sqrt{\frac{D}{k}}$.

С учетом зависимостей (12) и (13) уравнение (5) в общем случае для второго ректора примет вид

 L_{a1} – L_a – $K_L\lambda_\delta L_a(1-A)$ – $k_aL_aT_a$ =0, (14) где L_{a1} – концентрация ОЗ на выходе из первого реактора.

Применяя уравнения (9) и (14) получим зависимость для определения концентрации ОЗ на выходе из аэротенка L_а для каждого из рассмотренных вариантов расположения элементов с прикрепленным биоценозом (рис. 1):

- вариант (а):

$$L_{a} = \frac{L_{0} - 0.5\lambda_{\delta}\omega_{L0}\delta - \varepsilon\omega_{a}T_{a}}{1 + 0.5K_{L}\lambda_{\delta}(1 - A) + \varepsilon k_{a}T_{a}};$$
(15)

- вариант (б):

$$L_a = \frac{L_0 - \omega_a T_a}{1 + K_L \lambda_\delta (1 - A) + \varepsilon k_a T_a}; \tag{16}$$

вариант (в):

$$L_{a} = \frac{L_{0} - \lambda_{\delta} \omega_{L0} \delta - \varepsilon \omega_{a} T_{a}}{1 + k_{a} T_{a}}.$$
(17)

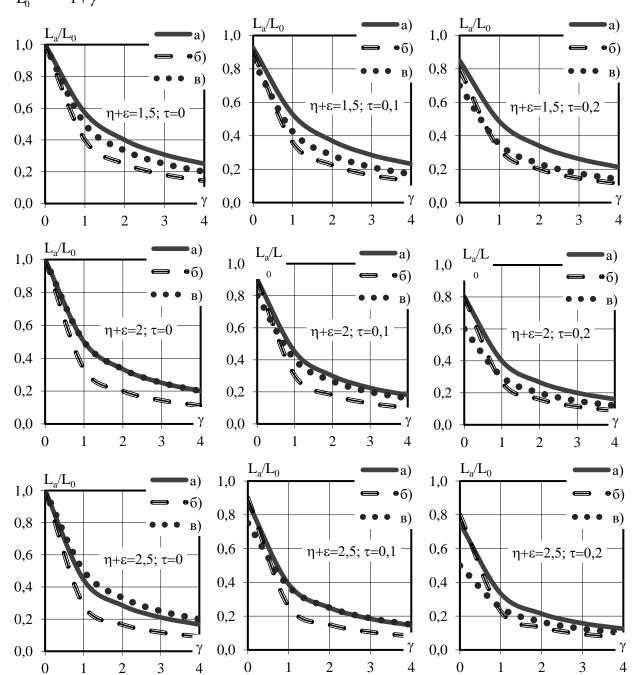
Введем обозначения $au_{\delta} = \frac{\lambda_{\delta} \omega_{L0} \delta}{L_0};$

$$au_a = \frac{\omega_a T_a}{L_0}; \ \gamma_\delta = K_L \lambda_a (1-A); \ \gamma_a = k_a T_a.$$

С учетом того, что интенсивность очистки свободноплавающим биоценозом усиливается с помощью прикрепленных микроорганизмов, введем соотношения

$$\eta_0 = \frac{\tau_\delta}{\tau_a}; \ \eta_1 = \frac{\gamma_\delta}{\gamma_a}.$$

Для упрощения расчетов примем коэффициенты η равными для реакций нулевого и первого порядков $\eta_0 = \eta_1 = \eta$.


С учетом обозначений уравнения (15)-(17) перепишутся в виде

$$\frac{L_a}{L_0} = \frac{1 - 0.5\tau(\eta + \varepsilon)}{1 + 0.5\gamma(\eta + \varepsilon)};$$
(18)

На рис. 2 представлены примеры расчетов, выполненные с помощью зависимостей (18) - (20).

$$\frac{L_a}{L_0} = \frac{1 - \tau}{1 + \gamma(\eta + \varepsilon)};\tag{19}$$

$$\frac{L_a}{L_0} = \frac{1 - \tau(\eta + \varepsilon)}{1 + \gamma}.$$
 (20)

 $\mathit{Puc.}\ 2.\ \mathit{Примеры}\ \mathit{pacчетов}\ \mathit{зависимости}\ \mathit{эффекта}\ \mathit{oчистки}\ \mathit{om}\ \mathit{napamempos}\ \mathit{\gamma},\ \mathit{\tau},\ \mathit{\eta+\varepsilon}$

Анализ графиков, представленных на рис. 2 показывает, что при принятых допущениях и значительной интенсивности работы 2-го реактора (больших значениях параметра у) преимущество имеет разме-

щение насадок с прикрепленным биоценозом по варианту (б) (рис. 1). При увеличении интенсивности работы 1-го реактора (параметра т) преимущество варианта (б) уменьшается и в сравнении с вариантом (в) реализуется при больших значениях параметра γ . При увеличении интенсивности очистки за счет прикрепленного биоценоза (параметра η) эффект очистки увеличивается, а вариант (в) при невысоких значениях τ является самым невыгодным.

Выводы. Проведенные теоретические исследования позволяют обосновать рациональный вариант расположения насадок с прикрепленным биоценозом в аэротенках-смесителях, в первом ректоре которого реакция окисления описывается уравнением нулевого порядка, а во втором реакторе — уравнением первого порядка.

ЛИТЕРАТУРА:

- Henze M., Van Loosdrecht M., Ekama V., Bzdjanovie D. Biological Wasterwater Treatment // Iwe Publishing, London., 2008 – 511 p.
- 2. Василенко О.А., Епоян С.М., Смірнова Г.М., Корінько І.В., Василенко Л.О., Айрапетян Т.С. Водовідведення та очистка стічних вод міста. Курсове і дипломне проектування. Приклади та розрахунки: Навчальний посібник. Київ—Харків, КНУБА, ХНУБА, 2012 572 с.
- 3. Горносталь С.А., Петухова Е.А., Айрапетян Т.С. Исследование влияния аэрации на показатели сточных вод и активного ила на выходе аэротенка // MOTROL. Commission of motorization and energetics in agriculture: Polish Academy of sciences Lublin Rzeszow, 2015. Vol. 17. №6. P. 77-84.
- 4. Жмур Н.С. Технологические и биохимические процессы очистки сточных вод на

- сооружениях с аэротенками. M.: AKBAPOC, 2003 512 с.
- 5. Яковлев С.В., Воронов Ю.В. Водоотведение и очистка сточных вод. М. АСВ, 2002. 704 с.
- 6. Wanner O., Ebert N., Rittan B., 2006 Mathematical modeling of biofilms // Scientific and Technical Report. – 2006 – №18 – 208 c.
- 7. Айрапетян Т.С. Підвищення ефективності біологічної очистки стічних вод в аеротенках. // Проблеми водопостачання, водовідведення та гідравліки. Науковотенх. зб. К.: КНУБА, 2014. Вип. 24.- С. 9-13.
- 8. Смирнов Н.В. Математическое моделирование процесса биологической очистки сточных вод // Ярославский педагогический вестник. Сер. «Естественные науки». 2012. Т. 3, № 3. С. 44–49.
- 9. Kolpakova O. Theoretical studies and calculations of wastewater treatment in trickling biofilters // Lublin, MOTROL, 2015. Vol. 17, N8. 165-173.
- 10. Олійник О.Я., Айрапетян Т.С. Моделювання очистки стічних вод від органічних забруднень в біореакторах аеротенках зі зваженим (вільноплаваючим) і закріпленим біоценозом // Доповіді НАНУ. 2015.—№5. С. 55-60.
- 11. Рибаченко С.О. Аеробна очистка стічних вод на затоплених фільтрах // Автореф. дис. канд. техн. наук, 05.23.04 КНУБА. 2011. 21 с.

Рецензент: д-р техн. наук А.С. Карагяур

УДК 628.336.002.8

Коваленко О.М., Коваленко А.В., Левашова Ю.С., Косенко Н.О.

Харківський національний університет будівництва та архітектури

ДОСЛІДЖЕННЯ ТЕХНОЛОГІЧНИХ СХЕМ УТИЛІЗАЦІЇ ОСАДІВ КАНАЛІЗАЦІЙНИХ ОЧИСНИХ СПОРУД

Технологічні схеми, до складу яких входить термічна обробка осадів, надають реальну можливість провести їх утилізацію з отриманням при цьому продуктів, що можуть бути реалізовані в якості товару.

Метою цієї роботи була розробка оптимальної технологічної схеми обробки та утилізації осадів, що утворюються в процесах очищення стічних вод.

Об'єктом досліджень були осади від комплексів біологічної очистки комунальних стічних вод.