© 2002р. М.В. Ткач, О.М. Маханець, Г.Г. Зегря*

Чернівецький національний університет ім. Ю.Федьковича, Чернівці *Фізико-технічний інститут ім. А.Ф.Йоффе, Санкт Петербург, Росія

СПЕКТРИ ЕЛЕКТРОНІВ, ДІРОК ТА ЕКСИТОНІВ У КВАЗІДВОВИМІРНІЙ НАДГРАТЦІ ЦИЛІНДРИЧНИХ КВАНТОВИХ ТОЧОК

Методом приєднаних плоских хвиль досліджено спектр електронів, дірок та екситонів у надгратці циліндричних квантових точок (НЦКТ) з гранично слабким зв'язком квазічастинок між шарами. На прикладі НЦКТ GaAs у середовищі $Al_xGa_{1-x}As$ показано, що спектр квазічастинок є сукупністю мінізон, енергії яких добре апроксимуються квадратичною залежністю від двовимірного квазіімпульсу. Знайдено залежність спектральних характеристик від геометричних параметрів НЦКТ (радіуса і висоти квантової точки, а також відстані між квантовими точками в окремому шарі).

The electron, hole and exciton spectra in superlattice of cylindrical quantum dots (*SCQD*) are studied using the augmented plane waves method for the weak binding of quasiparticles between different shells. For the example of GaAs *SCQD* embedded into $Al_xGa_{1-x}As$ medium it is shown that the quasiparticles spectra consist of minibands. Their energies are well approximated by the square dependence on the two-dimensional quasimomentum. The spectral characteristics as functions of *SCQD* geometric parameters (radius and height of quantum dot and distance between quantum dots in separate shell) are obtained.

Вступ

Останніми роками були створені та інтенсивно досліджуються масиви напівпровідникових квантових точок (КТ), які розташовані в об'ємі матриці достатньо періодично [1,2]. У залежності від методів створення періодичних структур КТ з'явилась можливість варіювати геометричними параметрами цих утворень, і відповідно змінювати їхні фізичні характеристики.

Для того, щоб цілеспрямовано отримувати необхідні властивості об'єктів нового типу, необхідно вивчити явища, що в них відбуваються. Отже, потрібно побудувати теорію основних квазічастинок та їхньої взаємодії між собою і з різними зовнішніми полями. Теорія електронів, дірок, екситонів, фононів та взаємодії цих квазічастинок між собою, а також з електричним та магнітними полями у квантових точках [3, 4], квантових дротах (КД) [5, 6], квантових ямах [7, 8] належить до області мезофізики. Вона інтенсивно розроблялася в останнє десятиріччя і досягла не тільки якісного, але й непоганого кількісного узгодження з експериментом.

Що ж до теорії спектра квазічастинок у масивах КТ і надгратках КТ зокрема, то вона знаходиться на початковій стадії розвитку. Наскільки відомо, для таких гетеросистем поки що відсутня теорія фононного спектра, а теорія спектра електронів, дірок та екситонів вже почала розвиватися на базі декількох моделей. У роботі [9] автори отримали енергетичний спектр екситону в масиві вертикально зв'язаних самоорганізованих квантових точок, а в [10, 11] методом приєднаних плоских хвиль досліджено спектр електронів і дірок у надгратці циліндричних квантових дротів і спектр електронів у квазідвовимірній надгратці циліндричних квантових точок.

У даній роботі буде досліджено енергетичний спектр електронів і дірок, а також екситонів типу Сугано-Шінади в моделі надгратки напівпровідникових циліндричних квантових точок (НЦКТ), розташованих у шарах з такою достатньо великою відстанню між ними, що зв'язок квазічастинок у різних шарах можна вважати несуттєвим (гранично слабким).

Спектри електрона і дірки у надгратці циліндричних квантових точок із гранично слабким зв'язком квазічастинок між шарами

Розглянемо напівпровідникову надгратку, що складається з циліндричних квантових точок (ям),

Рис.1. Геометрична схема НЦКТ

розташованих у середовищі-матриці так, як показано на рис.1. Будемо вважати, що відомі всі геометричні параметри системи: радіус основи KT - a, висота – L, відстані між основами KT у двох сусідніх шарах – *h*, відстань між найближчими краями двох сусідніх КТ одного шару b, причому *h>>b*. Оскількирозрахунок спектрів електрона і дірки далі буде виконуватися в наближенні ефективних мас, а при розрахунку екситонного спектра буде використовуватися модель діелектричного континууму, то повинні виконуватися такі фізичні умови, щоб геометричні розміри квантової точки і області простору між двома найближчими КТ значно перевищували розміри постійних елементарних комірок кристалів КТ a_d і середовища a_m , тобто

$$\sqrt[3]{a^2L} \sim \sqrt[3]{b^2L} >> a_d \approx a_m. \tag{1}$$

Отже, ефективні маси електрона (легкої і важкої дірок) в КТ і середовищі-матриці (СМ) вважаються відомими $\mu_{de}(\mu_{dlh}, \mu_{dhh})$ та $\mu_{me}(\mu_{mlh}, \mu_{mhh})$ і дорівнюють масам, якими ці квазічастинки характеризуються у відповідних масивних кристалах. У декартовій системі координат з віссю *OZ* вздовж аксіальної осі однієї з КТ і площиною *XOY*, що проходить через середину висоти циліндра,

$$\mu_{e,h} = \begin{cases} \mu_{de,lh,hh} & \text{при } x, y, z \text{ B KT} \\ \mu_{be,lh,hh} & \text{при } x, y, z \text{ 330BHi KT} \end{cases}$$
(2)

Постійні гратки обох кристалів, з яких складається система, дуже близькі за величиною $a_d \approx a_m$. Тому потенціальні енергії електрона і дірки можна вважати заданими у вигляді

$$U_{e,h} = \begin{cases} -U_{de,h} \text{ при } x, y, z \text{ в KT} \\ -U_{me,h} \text{ при } x, y, z \text{ ззовні KT} \end{cases}, \quad (3)$$

де $U_{de,h}$ і $U_{me,h}$ – потенціальні енергії електрона і дірки у відповідних середовищах відносно вакууму, які вважаються відомими.

Щоб знайти спектр екситонів, спочатку необхідно отримати спектр і хвильові функції електрона та дірки. З цією метою розв'язується рівняння Шредінгера

$$H_{e,lh,hh}\psi_{e,lh,hh} = E_{e,lh,hh}\psi_{e,lh,hh} \qquad (4)$$

з гамільтоніаном

$$H_{e,lh,hh} = \frac{\hbar^2}{2} \vec{\nabla} \frac{1}{\mu_{e,lh,hh}} \vec{\nabla} + U_{e,h}.$$
 (5)

Оскільки подальші міркування еквівалентні для електрона, легкої і важкої дірок, розглянемо їх на прикладі електрона. Враховуючи, що розглядається система з гранично слабким зв'язком між квазічастинками в різних шарах, відобразимо це тим, що будемо вважати неможливим вихід електрона за межі кожного окремого шару товщиною *L*.

Хвильову функцію електрона в декартовій системі координат із віссю *ОZ* вздовж аксіальної осі КТ можна зобразити у вигляді

$$\Psi_{e} = \Psi_{\parallel}(x, y) \sqrt{\frac{2}{L}} \begin{cases} \cos \frac{\pi n}{L} z, n = 1, 3, \dots \\ \sin \frac{\pi n}{L} z, n = 2, 4, \dots \end{cases}$$
(6)

Відділивши в рівнянні Шредінгера (4) *z*-у компоненту, отримаємо рівняння для "плоскої" складової в полярній системі координат із початком у центрі однієї з КТ. Розв'язок повинен задовольняти умову періодичності Блоха з потенціалом $V_e=U_{de}-U_{me}$.

Тепер, згідно з модифікованим (на випадок плоскої системи) методом приєднаних плоских хвиль (ППХ) [11] "плоска" складова хвильової функції електрона в надгратці утворюється лінійною комбінацією функцій Бесселя, "зшитих" із плоскими хвилями, розкладеними також за функціями Бесселя

$$\psi_{n\vec{k}_{\parallel}}(\vec{p}) = \sum_{\vec{g}} \frac{c_{\vec{k}_{\parallel}-\vec{g}}}{\sqrt{\Omega}} \sum_{m=-\infty}^{\infty} i^{m} e^{im(\varphi-\varphi_{\vec{k}_{\parallel}}-g)} \times$$

$$\times \begin{cases} J_m(|\vec{k}_{\parallel} - \vec{g}|a) \\ J_m(\alpha_{ne}a) \\ J_m(|\vec{k}_{\parallel} - \vec{g}|\rho), & \rho > a. \end{cases}$$
(7)

Tyr $\alpha_{ne} = \sqrt{\frac{2\mu_{de}}{\hbar^2}(V_e + E) - \frac{\pi^2 n^2 \mu_{de}}{L^2 \mu_e}},$ $\frac{1}{\mu_e} = \frac{1}{2} \left(\frac{1}{\mu_{de}} + \frac{1}{\mu_{me}} \right), \quad m = 0, \pm 1, \pm 2, \dots,$

 $J_m(\alpha_{ne}\rho) - функції Бесселя, <math>\Omega - oб'єм плоскої еле$ $ментарної комірки, <math>\vec{k}_{||} - двовимірний хвильовий$ $вектор плоскої оберненої гратки, <math>|\vec{k}_{||} - \vec{g}|$ і $\phi_{\vec{k}_{||} - \vec{g}}$ полярні координати вектора $\vec{k}_{||} - \vec{g}$.

Коефіцієнти розкладу $c_{\vec{k}_{\parallel}-\vec{g}}$ знаходяться з умови мінімуму функціонала енергії, що приводить до системи рівнянь

$$\begin{cases} \frac{\hbar^{2}}{2\mu_{me}} (\vec{k}_{\parallel} - \vec{g})^{2} - E + \frac{\pi^{2} n^{2} \mu_{de}}{L^{2} \overline{\mu}_{e}} \end{cases} c_{\vec{k}_{\parallel} - \vec{g}} + \\ + \sum_{\vec{g}'} \Gamma_{\vec{g}\vec{g}'} c_{\vec{k}_{\parallel} - \vec{g}'} = 0, \qquad (8) \end{cases}$$

вираз для $\Gamma_{gg'}$ через свою громіздкість не наводиться.

Умова нетривіальності розв'язку системи (8) приводить до секулярного рівняння, з якого й визначається енергетичний спектр електрона $E_e(\vec{k}_{\parallel})$ у межах глибини квантової ями. Аналогічно визначається й енергетичний спектр легкої $E_{lh}(\vec{k}_{\parallel})$ і важкої $E_{hh}(\vec{k}_{\parallel})$ дірок.

Конкретні розрахунки й дослідження спектра електрона, легкої та важкої дірок виконувались для НЦКТ GaAs, розташованих у середовищіматриці Al_xGa_{1-x}As.

Числовий розрахунок енергій мінізон електрона, легкої і важкої дірок як функцій величини квазіімпульсу $|\vec{k}_{||}|$ показує, що для досліджуваної НЦКТ всі вони добре апроксимуються квадратичною залежністю

$$E_{e}(|\vec{k}_{\parallel}|) = E_{0e} + \frac{\hbar^{2} |\vec{k}_{\parallel}|^{2}}{2m_{e}};$$

$$E_{lh}(|\vec{k}_{\parallel}|) = E_{0lh} + \frac{\hbar^{2} |\vec{k}_{\parallel}|^{2}}{2m_{lh}};$$

$$E_{hh}(|\vec{k}_{\parallel}|) = E_{0hh} + \frac{\hbar^{2} |\vec{k}_{\parallel}|^{2}}{2m_{hh}}.$$
(9)

Рис.2. Залежності ефективної маси електрона від концентрації *х* Al для різних значень висоти *L* і відстані *b* між циліндричними квантовими точками

На рис.2 зображені розраховані залежності ефективної маси електрона від концетрації x Al при різних значеннях висоти L і відстані b між циліндричними квантовими точками. З рисунка видно, що збільшення x при довільних L і bзбільшує ефективну масу електрона. Це зрозуміло, оскільки збільшення x збільшує рівень (висоту) потенціального бар'єра для електрона, затруднюючи його рух у НЦКТ.

При фіксованій концентрації x збільшення висоти L чи відстані b між квантовими точками також приводить до збільшення ефективної маси електрона, оскільки обидва фактори зумовлюють ефективне збільшення "потужності" потенціального бар'єра. Дійсно, збільшення висоти КТ при x=const i b=const спричинює збільшення об'єму квантової ями, що опускає енергетичні рівні відповідних мінізон, тобто збільшує висоту бар'єра, а збільшення b при x=const i L=const еквівалентне збільшенню ширини потенціального бар'єра.

Оскільки якісних відмінностей у поведінці ефективних мас електрона, легкої та важкої дірок в залежності від геометричних параметрів НЦКТ та концентрації *х* немає, то відповідні залежності для легкої та важкої дірки не наводяться.

Екситон Сугано-Шінади в НЦКТ

Оскільки електрон, легка чи важка дірка у НЦКТ з гранично слабким зв'язком між квазічастинками в сусідніх шарах КТ здійснюють квазіплоский рух із квазіімпульсом \vec{k}_{\parallel} і у відповідних мінізонах характеризуються відомими двовимірними ефективними масами m_e , m_{lh} і m_{hh} , то це дозволяє знайти спектр і хвильові функції зв'язаних станів цих квазічастинок.

Теоретичні моделі розрахунку спектра екситона, утвореного взаємодією електрона з легкою чи важкою діркою зовсім еквівалентні. Тому подальші міркування ми приведемо на прикладі утворення зв'язаного стану електрона і легкої дірки.

Будемо вважати, що електрон і легка дірка з радіус-векторами \vec{p}_e і \vec{p}_{lh} у системі *XOY* (в площині, перпендикулярній аксіальній осі КТ) взаємодіють між собою з потенціальною енергією

$$V(\vec{p}_e - \vec{p}_{lh}) = -\frac{e^2}{\varepsilon |\vec{p}_e - \vec{p}_{lh}|}, \qquad (10)$$

де

$$\varepsilon = \begin{cases} \varepsilon_d & \text{при } x, y, z \text{ в KT} \\ \varepsilon_m & \text{при } x, y, z \text{ ззовні KT} \end{cases}$$
(11)

діелектрична проникність НЦКТ.

Тоді рівняння Шредінгера для взаємодіючих електрона і легкої дірки в НЦКТ набуває вигляду

$$\left[\frac{\hbar^{2}}{2}\sum_{i=e,lh}\frac{1}{m_{i}}\left(\frac{\partial^{2}}{\partial x_{i}^{2}}+\frac{\partial^{2}}{\partial y_{i}^{2}}\right)+\frac{e^{2}}{\overline{\epsilon}|\vec{\rho}_{e}-\vec{\rho}_{lh}|}-E_{ex}\right]F(\vec{\rho}_{e},\vec{\rho}_{lh})=0, \quad (12)$$

де $F(\vec{\rho}_{e},\vec{\rho}_{lh})$ – хвильова функція електронно-діркової пари, $\frac{1}{\varepsilon} = \frac{1}{2} \left(\frac{1}{\varepsilon_{d}} + \frac{1}{\varepsilon_{m}} \right).$

Задача про знаходження енергетичного спектра і хвильових функцій "плоского" екситону розв'язана Сугано і Шінадою. Розв'язок рівняння (12) визначає закон дисперсії двовимірного "легкого" екситону

$$E_{exl}^{p}(|\vec{k}_{||}|) = E_{exl}^{p} + \frac{\hbar^{2} |\vec{k}_{||}|^{2}}{2m_{exl}}.$$
 (13)

Тут $m_{exf}=m_e+m_{lh}$ – ефективна маса "легкого" екситону, енергія екситонного збудження E_{exl}^p у станах $p=0, 1, 2, ..., \infty$ визначається виразом

$$E_{exl}^{p} = E_{gGaAs} + E_{0e} + E_{0lh} - \Delta E_{exl}^{p}, \qquad (14)$$

де E_{0e}, E_{0lh} – енергії дна електронної і діркової

зон, відповідно визначені в попередньому параграфі,

$$\Delta E_{exl}^{p} = \frac{M_{l}e^{4}}{2\hbar^{2}\varepsilon^{2}\left(p + \frac{1}{2}\right)^{2}}$$
(15)

– енергія зв'язку двовимірного екситону у станах *p*=0, 1, 2,...,∞, а

$$M_l = \frac{m_e m_{lh}}{m_e + m_{lh}} \tag{16}$$

- приведена маса цього екситону в НЦКТ.

Аналогічно визначається енергія зв'язку ΔE_{exh}^{p} ,

ефективна маса m_{exh} і енергія збудження E_{exh}^{p} "важкого" екситону, що виникає через взаємодію електрона з важкою діркою.

Зауважимо, що якісних відмінностей у поведінці легкого і важкого екситонів у НЦКТ немає, тому далі будуть проаналізовані конкретні розрахунки (виконані на ЕОМ) енергії зв'язку ΔE_{exl}^0 (рис.3) й енергії збудження E_{exl}^0 (рис.4) легкого екситону в основному стані в залежності від концентрації х Al при різних значеннях геометричних характеристик НЦКТ GaAs у матриці Al_xGa_{1-x}As.

Рис.3. Залежності енергії зв'язку ΔE_{exl}^0 легкого екситону від концентрації х Al для різних значень висоти L і відстані b між циліндричними квантовими точками

Рис.4. Залежності енергії екситонного збудження легкого екситону від концентрації x Al для різних значень висоти L і відстані b між циліндричними квантовими точками, обчислені за трьома моделями: тривимірною моделлю Ваньє-Мотта (а), квазідвовимірною моделлю Сугано-Шінади (б), моделлю надгратки циліндричних квантових точок (с).

Збільшення концентрації x Al при b=const i L=const завжди приводить до збільшення енергії зв'язку "легкого" і "важкого" екситонів (рис.3) і їхньої енергії збудження (рис.4б). Це пояснюється тим, що збільшення х спричинює збільшення висоти (рівня) потенціального бар'єра для електрона, легкої і важкої дірок, що сприяє зближенню цих квазічастинок і більшій їх локалізації в області КТ, збільшуючи їхню енергію зв'язку в екситон. Крім того, збільшення концентрації х значно зсуває мінізони електрона, легкої і важкої дірок в область більших енергій, що зумовлює збільшення енергії екситонного збудження. З цієї ж причини зростає енергія екситонного збудження при збільшенні відстані між ЦКТ b (x=const, L= =const) і зменшення їхньої висоти L при x=const i b=const (рис.4,б).

Зменшення енергії зв'язку ΔE_{exl}^0 легкого (важкого) екситону при зменшенні *b* при *x*=const, *L*= =const і *L* при *x*=const, *b*=const зрозуміло з фізичних міркувань. Дійсно, обидва фактори приводять до ефективного зменшення "потужності" потенціального бар'єра для електрона, легкої чи важкої дірки, в першому випадку зменшуючи його ширину, а в другому – зсуваючи електронні (діркові) мінізони в область більших енергій. Це зумовлює виштовхування електронної (діркової) хвильової функції з потенціальної ями і, відповідно сприяє зменшенню локалізації цих квазічастинок в області КТ, зменшуючи у такий спосіб їхню енергію зв'язку.

На рис.4 зображено залежності від концентрації x Al енергії екситонних збуджень легких екситонів, обчислених у межах трьох моделей: тривимірної моделі Ваньє-Мотта $E_{exlAl_xGa_{1-x}As}^{03d}$ (рис.4а); квазідвовимірної моделі Сугано-Шінади $E_{exlGaAs}^{02d}$ (рис.4с); моделі надгратки циліндричних квантових точок E_{exl}^0 (рис.4б).

З рис.4 видно, що енергії легкого екситону за рівних умов розташовуються так, що $E_{exlGaAs}^{02d} < < E_{exl}^{0} < E_{exlAl_xGa_{1-x}As}^{03d}$. При цьому енергія квазідвовимірних екситонів не залежить від x, а лише від геометричних розмірів шару (висоти) цилін-дричних КТ (рис.4с), енергія екситонів Ваньє-Мотта лінійно і сильно (на 100 меВ при $\Delta x \sim 0,1$) залежить від x, а енергія екситону в НЦКТ плавно залежить від x і величина її зміни невелика (1÷10 меВ при $\Delta x \sim 0,1$). Суттєва різниця у величинах зміни енергій екситонів у моделях Ваньє-Мотта і НЦКТ зумовлена тим, що в першій моделі $E_{exlAl_xGa_{1-x}As}^{03d}$ практично визначається величиною забороненої зони $E_{gAl_xGa_{1-x}As}^{3d}$, в той час як в другій E_{exl}^0 – складною залежністю як від глибини потенціальних ям, так і від величини ефективних мас квазічастинок, що утворюють екситон у НЦКТ.

Робота частково підтримана фондом *SNSF* (грант 7*SUPJ*062181).

СПИСОК ЛІТЕРАТУРИ

- Алфёров Ж.И., История и будущее полупроводниковых гетероструктур // ФТП. - 1998. - 32, №1. -С.3-18.
- 2. Леденцов Н.Н., Устинов В.М., Щукин В.А. и др. Гетероструктуры с квантовыми точками: получение, свойства, лазеры. Обзор // ФТП. - 1998. - **32**, №4. - С.385-410.
- 3. *Ткач Н.В.* Электрон-фононное взаимодействие в сферических наногетероструктурах // ФТТ. 1997. **39**, №6. С.1109-1113.
- Schooss D., Mews A., Eychmuller A., Weller H. Quantum dot quantum well CdS/HgS/CdS: theory and experiment // Phys. Rev. B - 1994. - II.-49, No. 24. - P.17072-17078.

- Wang X.F., Lei X.L. Polar-optic phonons and highfield electron transport in cylindrical GaAs/AlAs quantum wires // Phys. Rev. B. - 1994. - 49, No.7. -P.4780-4789.
- Constantinou N.C., Ridley B.K. Guided and interface LO phonons in cylindrical GaAs/Al_xGa_{1-x}As quantum wires // Phys. Rev. B. - 1990. - 41, No.15. -P.10627-10631.
- Mori N., Ando T. Electron-optical-phonon interaction in single and double heterostructures // Phys. Rev. B. - 1989. - 40, No.9. - P.6175-6188.
- 8. *Hai G.Q., Peeters F.M., Devreese J.T., Wendler L.* Screening of the electron-phonon interaction in quasi-one dimensional semiconductor structures // Phys. Rev. B. - 1993. - **48**, No.16. - P.12016-12022.
- Andreev A.D., O'reilly E.P. A theoretical study of exciton binding energies in coupled InGaAs/GaAs self-organised quantum dots // Excitonic Processes in Condensed Matter (Electrochemical Proc. Ser. PV 98-25) ed R T Williams and W.M. Yen (Princeton, NJ: Electrochemical Society) 1998. - P.272-280.
- 10. Головач В.Н., Зегря Г.Г., Маханец А.М., Пронишин И.В., Ткач Н.В. Спектры электронов и дырок в сверхрешётке цилиндрических квантовых проволок // ФТП. - 1999. - 33, №5. - С.603-607.
- Tkach N.V., Makhanets A.M., Zegrya G.G. Energy spectrum of electron in quasiplane superlattice of cylindrical quantum dots // Semicond. Sci. Technol.-2000. – No.15. - P.395-398.