© 2004 р. П.В. Луговий, В.М. Юзевич, В.А. Кривень*

Фізико-механічний інститут ім. Г.В. Карпенка НАН України, Львів, *Тернопільський державний технічний університет ім. Івана Пулюя

ЕНЕРГЕТИЧНІ ХАРАКТЕРИСТИКИ АДГЕЗІЙНИХ Зв'язків на границі розділу міді з кварцом

Запропоновано методику розрахунку міжфазної енергії, міжфазного натягу й енергії адгезії на границі розділу між плівкою міді та кварцовою підкладкою.

The method of interface energy, interface tension and energy of adhesion on interface between a film of copper and a quartz substrate is offered.

Для прогнозування руйнуючих напруг у системі металева плівка–діелектрична підкладка необхідно знати розподіл механічних напруг поблизу границі розділу контактуючих середовищ і характер адгезійних зв'язків [1]. Слід відзначити, що існуючі традиційні підходи фізичної хімії та механіки руйнування щодо оцінки міцності систем плівка–підкладка недостатньо точні.

Раніше проблеми (міцності) розв'язували експериментально, а теоретично описували методами фізичної хімії й механіки деформованого твердого тіла. В даний час бурхливого розвитку мікроелектроніки та нанотехнологій необхідно більш глибоко вивчати фізичні процесі у системі плівка–підкладка.

У даній праці для вивчення адгезійних зв'язків системи металева плівка–діелектрична підкладка застосовано методи фізики поверхні й термодинаміки нерівноважних процесів.

Раніше для елементної бази мікроелектроніки використовували системи алюмінієва плівкакремнієва підкладка. В даний час інтенсивно вивчають можливості створення нових композицій, зокрема, заслуговують уваги мідні плівки на діелектричних та напівпровідникових підкладках іншого складу.

Об'єкт дослідження — мідна плівка на кварцовій підкладці. Мікродеформації у тонких плівках міді і статичні спотворення гратки розглядались у праці [2]. Термодинамічний підхід для вивчення фізичних процесів на поверхні металів і діелектриків висвітлено у [3,4] відповідно.

В рамках термодинамічного підходу можливий розрахунок параметрів електричного та механічного полів на границі розділу металева плівкадіелектрична підкладка і на цій основі подальша розробка методики розрахунку міжфазної енергії, міжфазного натягу та енергії адгезійних зв'язків у системі плівка–підкладка.

Зразок діелектрика (кварцу) моделюємо півбезмежним середовищем x < 0 (область V-) у декартових координатах $\{x,y,z\}$. Нехай область $0 < x < h_m$ (шар V^+) – займає неполяризований електропровідний метал (мідь).

Уведемо означення міжфазної енергії $W_{\rm M}$ аналогічно як поверхневої W_S [3] :

$$W_m = W_E + \xi_m W_p,$$

$$W_E = \int_{-h_{\Pi}}^{h_{\Pi}^+} w_E \cdot dx, \quad W_p = \int_{-h_{\Pi}}^{h_{\Pi}^+} w_p \cdot dx.$$
(1)

де W_E , W_p – електрична та механічна (пружна) складові міжфазної енергії відповідно, ξ_m – емпіричний параметр (фізична характеристика матеріалу, яка відповідає рівноважному стану поверхні розділу S_{Γ}^S), $h_{\rm M} = h_{\Pi}^+ + h_{\Pi}^-$ – товщина міжфазного шару, складові якої h_{Π}^+ і h_{Π}^- визначимо з допомогою рівнянь

$$\sigma_y^+ + P_a = 0$$
 (для $x = h_{\Pi}^+$),
 $\sigma_y^- + P_a = 0$ (для $x = h_{\Pi}^-$). (2)

Тут *Р*_{*a*}=100 кПа – атмосферний тиск.

Приведемо вирази для w_E і w_p [3,4]

$$w_E = \frac{\varepsilon \cdot \varepsilon_0}{2} \cdot \left[\frac{d\Psi}{dx} \right]^2 = \frac{\varepsilon \cdot \varepsilon_0}{2} \cdot \left[E_x \right]^2,$$

$$w_p = \frac{\sigma_x}{2 \cdot E} \cdot \left(\sigma_x - 4 \cdot v \cdot \sigma_y \right) + \frac{1 - v}{E} \cdot \sigma_y^2.$$
(3)

Науковий вісник Чернівецького університету. 2004. Випуск 201. Фізика. Електроніка.

Параметри w_E , w_p – густини енергії електростатичного поля й поля механічних напруг відповідно, E_x – складова напруженості електричного поля, ε_0 =8,85·10⁻¹² Ф/м – універсальна електрична постійна, ε – діелектрична проникність матеріалу (ε =1 для міді, ε =4,5 для кварцу [5]), Ψ – потенціал напруженості електричного поля, σ_x , σ_y – компоненти тензора механічних напруг, E, v – механічні модулі.

Для оцінки фізичної характеристики матеріалу *ξ_m* запишемо:

$$\delta W_m / \delta C_e = \delta (W_E + \xi_m W_p) / \delta C_e = 0, \quad (4)$$

вважаючи C_e варіаційним параметром. C_e – питома електроємність матеріалу поверхневого шару (C_e^+ , C_e^- – значення C_e для фаз V^+ , V^-). Оскільки енергія W_m залежить від характеристик C_e^+ , C_e^- то в даному випадку приймемо $C_e^- = = C_e^+$ і виразимо C_e^- через C_e :

 $C_{e}^{-} = \xi_{e} \cdot C_{e}$ (якщо $\xi_{e} = C_{e}^{-} / C_{e}^{+}$). (5) Шукаючи екстремум функціонала W_{m} , вважаємо:

$$\xi_e$$
=const. (6)

Для оцінки *ξm* наближено приймемо:

$$\xi_m = (\xi_S^+ + \xi_S^-)/2, \tag{7}$$

де ξ_S^+ , ξ_S^- – характеристики контактуючих середовищ, які можна визначити для системи "тверде тіло – повітря".

Достовірність оцінки (7) було перевірено на основі методу атомних взаємодій для системи "цинк (тверде тіло) – ртуть", значення міжфазної енергії W_m =0,053 Дж/м² якої встановлено експериментально [6].

Для цього використано відповідну методику з урахуванням удосконалених міжіонних парних потенціалів для поверхневих областей простих металів [7].

Міжфазний натяг от визначимо з допомогою співвідношення

$$\sigma_{m} = \int_{h_{\Pi}^{-}}^{h_{\Pi}^{+}} \sigma_{y} \cdot dr =$$

$$= \int_{0}^{h_{\Pi}^{+}} \sigma_{y}^{+} \cdot dr + \int_{h_{\Pi}^{-}}^{0} \sigma_{y}^{-} \cdot dr = (\sigma_{m})_{1} + (\sigma_{m})_{2}.$$
(8)

Враховуємо, що σ_{v0} , σ_{v1} , σ_{v2} – нульове, перше

і друге наближення механічної напруги σ_y відповідно у металі та діелектрику, отримані з допомогою методу розкладу за малим параметром $b_+=b\cdot\Phi_0$, $b_-=b_c\cdot Z_c$, $b, b_c - фізичні постійні в рів$ $няннях стану (характеристики матеріалу), <math>\Phi_0$, Z_c – відповідно модифіковані хімічні потенціали електричних зарядів у металі і зв'язаних електричних зарядів, які для діелектриків уведено в праці [4]. Потенціал Z_c у виразі зміни внутрішньої енергії $dU=Z_c\cdot d\omega_c+...$ – спряжений параметр по відношенню до густини ω_c зв'язаних електричних зарядів [4].

Параметри σ_x і σ_y ($\sigma_{11}=\sigma_x$, $\sigma_{22}=\sigma_y$) знаходимо аналітично з допомогою рівнянь стану [3,4]:

$$\sigma_{ij+} = E(\nu e/(1+\nu) - b\varphi/3)\delta_{ij}/(1-2\nu) + Ee_{ij}/(1+\nu),$$

$$\omega_{\nu} = \rho\omega = \varepsilon_0 k^2 \varphi + bEe/(3(1+\nu)),$$
 (9)

$$\sigma_{ij-} = E(\nu e/(1+\nu) - b\varphi_0/3)\delta_{ij}/(1-2\nu) + Ee_{ij}/(1+\nu),$$

$$\omega_{c\nu} = \rho\omega_c = \varepsilon_0 k^2 \varphi_c + bEe/(3(1+\nu)),$$
 (10)

Тут співвідношення (9) для металу (індекси "+" опущені), (10) (індекси "-" опущені) для діелектрика, $\varphi = \Phi - \Phi_0$ [3], $\varphi_c = Z_c - Z_{c0}$ – відхилення потенціалу Z_c від його рівноважного значення Z_{c0} далеко від поверхні в об'ємі тіла [4], $k = (\rho C_e / \varepsilon_0)^{0.5}$ (тобто k_+ , k_-) – характеристики матеріалу, δ_{ij} – символи Кронекера, σ_{ij} , e_{ij} – компоненти тензорів механічних напруг і деформацій ($i_{,j}=1,2,3$), $e=(e_+, e_-)$ – перший інваріант тензора деформацій, $\rho=(\rho_+, \rho_-)$ – густина матеріалу, ω_v , ω_v , ω_c – густини електричного заряду, зв'язаного електричного заряду в розрахунку на одиницю об'єму і маси речовини відповідно для металу (індекси "+") і діелектрика (c) (індекси "-").

Подамо граничні умови для межі розділу середовищ, які випливають із праць [3,4]:

$$\phi_{+}=-\Phi_{0}, \quad \phi_{c-}=\phi_{c}=-Z_{c0},$$
 $\sigma_{x+}=\sigma_{x-}, \quad \sigma_{y+}=\sigma_{y-} \quad при (x=0).$
(11)

Співвідношення (1,2,4,8) з урахуванням (3,5-7,9-11) даної праці створюють систему рівнянь для визначення фізичних характеристик ξ_m , $b = =(b_+, b_-)$, $k=(k_+, k_-)$ і товщини $h_{\rm M}$ поверхневого шару ($h_{\rm M}=h_{\rm \Pi}^+$ + $h_{\rm \Pi}^-$).

Як видно з умов на границі (11), задачі визначення розподілу електричних зарядів – граничні, а задача визначення механічних напруг – контактна. Отже, співвідношення (1)–(11) є основою контактно-граничної задачі. Обгрунтування системи рівнянь (1)–(11) для системи мідь–кварц проведено чисельно аналогічно як для металів методами теорії атомних взаємодій, з урахуванням радіально симетричного потенціалу центральних сил $u_{\alpha\beta}$ за Борном– Майером [8]:

$$u_{\alpha\beta} = q^2 / R_{\alpha\beta} c_{\alpha\beta} / (R_{\alpha\beta})^6 d_{\alpha\beta} / (R_{\alpha\beta})^8 + b_{\alpha\beta} \exp(R_{\alpha\beta} / \rho_q),$$
(12)

що представляє собою суму кулонівської, вандерваальсівської і відштовхуючої складових. Тут q – електричний заряд частинок, $R_{\alpha\beta}$ – довжина вектора, що з'єднує частинки α і β , $c_{\alpha\beta}$, $d_{\alpha\beta}$, $b_{\alpha\beta}$ – постійні, ρ_q – параметр "жорсткості". В розрахунках ігнорувалась кінетична енергія атомного руху, а потенціальна складова енергії оцінювалась методами сумування по статичній гратці [8].

При цьому для зразків кварцу і міді в повітрі з допомогою (12) отримано значення поверхневої енергії

 $W_{s-}=0,737 \ \text{Дж/м}^{2}, W_{s+}=1,623 \ \text{Дж/м}^{2}.$ (13) Експериментальне значення поверхневого натягу σ_{s} і модулів v, *E* для кварцу та міді [5]:

$$σ_{s+}=2,13$$
 H/м, ν₊=0,34, $E_{+}=110$ ΓΠa.

З використанням значень W_s (13) і σ_s (14), а також співвідношень (1)–(11), для рівноважної системи мідь–кварц отримано

$$\xi_m = 18,3, b = -0,29 \text{ B}^{-1}, k_{-} = 1,14 \cdot 10^{10} \text{ m}^{-1},$$

$$\xi_{m+} = 14,9, b_{+} = -0,15 \text{ B}^{-1}, k_{+} = 1,35 \cdot 10^{10} \text{ m}^{-1}.$$
(15)

З урахуванням трьох наближень розкладу за малим параметром, оцінено потенціал зв'язаних електричних зарядів для кварцу Z_c , міжфазну енергію W_m , міжфазний натяг σ_m , а також так названу "роботу адгезії" системи мідь–кварц σ_{ad} (на основі відомого співвідношення [9])

 Z_{c} = -1,07 В, W_{m} =0,728 Дж/м², σ_{m} =0,889 Н/м,

$$\sigma_{ad} = \sigma_{s+} + \sigma_{s-} - \sigma_m = 2,236 \text{ H/M}.$$
 (16)

У монографії [8] роботу адгезії системи металдіелектрик подано так

$$\sigma_{ad} = W_{s+} + W_{s-} - W_m,$$
 (17)

але при цьому енергетичні характеристики W_{s+} , W_{s-} , W_m вважають векторними величинами і фактично ототожнюють їх із натягами σ_{s+} , σ_{s-} , $\sigma_m (W_{s+} \equiv \sigma_{s+}, W_{s-} \equiv \sigma_{s-}, W_m \equiv \sigma_m)$

Надалі ці величини ототожнювати не будемо, W_{s+}, W_{s-}, W_m вважаємо скалярами і введемо енергію адгезійних зв'язків W_{ad} аналогічно як у (17)

$$W_{ad} = W_{s+} + W_{s-} - W_m.$$
 (18)

На основі (18) для системи мідь-кварц отримано W_{ad} =1,634 Дж/м².

Аналіз отриманих даних дозволяє встановити певні відношення:

$$W_{ad}/W_{s+}=1,006, \sigma_{ad}/\sigma_{s+}=1,052, \sigma_{ad}/W_{ad}=1,368.$$

 $\Delta\sigma_{s}=\sigma_{s+}-\sigma_{s-}=1,125 \text{ H/m}, \sigma_{ad}/\Delta\sigma_{s}=0,79,$
 $\Delta W_{s}=W_{s+}-W_{s+}=0,888 \text{ Дж/m}^{2}, W_{ad}/\Delta W_{s}=0,82.$

Відношення $\sigma_{ad}/\Delta\sigma_s$ характеризує відхилення від відомого співвідношення Антонова [4], яке експериментально підтверджується для більшості незмішуваних контактуючих рідин.

На основі обчислювального експерименту для системи мідь-кварц встановлено, що термодинамічний підхід щодо оцінки енергетичних і адгезійних характеристик поверхневого шару менш громіздкий порівняно з підходом атомних взаємодій, оскільки враховує електричну складову.

Використавши запропоновану методику, можна провести розрахунок міжфазної енергії, міжфазного натягу й енергії адгезійних зв'язків на границі розділу між плівкою міді та напівпровідниковою підкладкою.

СПИСОК ЛІТЕРАТУРИ

- 1. Дерягин Б.В., Кротова Н.А., Смилга В.П. Адгезия твердых тел. М.: Наука, 1973.
- Фукс М.Я., Козьма А.А., Дудкин В.А., Аринкин А.В. Вакансии и дислокации у вакуумных конденсатах меди // ФММ. - 1974. - 38, №4. - С.773-778.
- Юзевич В.Н. Моделирование процесса адсорбции в приповерхностном слое металла // Поверхность. -1998. - №3. - С.32-37.
- Юзевич В.Н. Термодинамическое описание механоэлектротермодиффузионных процессов в деформируемых диэлектриках и соотношение Антонова / Термодинамика необратимых процессов / Под. ред. А.И.Лопушанской. - М.: Наука, 1992. - С.163-168.
- Таблицы физических величин: Справочник. М.: Атомиздат, 1976.
- Вествуд А., Прис К., Камдар М. Хрупкое разрушение в среде жидкого металла / Разрушение. Инженерные основы и воздействие внешней среды / Под ред. Г.Либовиц. - М.: Мир, 1976. - Т.3. -С. 635-691.
- Mostoller M., Rasolt M. Pair potentials at simple metal surfaces // Physics Letters. - 1982. - 88A, No.2, -P.93-96.
- Джейкок М., Парфит Дж. Химия поверхностей раздела фаз. - М.: Мир, 1984.
- Eustathopoulus N., Joud J.-C. Interfacial tension and adsorption of metallic systems // Current Topics in Material Science. - 1980. - 4. - P.281-360.

Науковий вісник Чернівецького університету. 2004. Випуск 201. Фізика. Електроніка.