© 2004р. П.Д. Мар'янчук, Е.В. Майструк, В.Д. Цеханський

Чернівецький національний університет ім. Ю.Федьковича, Чернівці

КІНЕТИЧНІ ВЛАСТИВОСТІ ТА ЗОННІ ПАРАМЕТРИ КРИСТАЛІВ Hg_{1-x} Mn_xTe_{1-y}S_y ТА Hg_{1-x} Mn_xSe_{1-y}S_y

В інтервалі температур 77÷300 К та в інтервалі полів 0÷5 кЕ компенсаційним методом на постійному струмі досліджено кінетичні коефіцієнти кристалів напівпровідникових напівмагнітних твердих розчинів $Hg_{1-x}Mn_xTe_{1-y}S_y$ та $Hg_{1-x}Mn_xSe_{1-y}S_y$. На основі експериментальних результатів визначено зонні параметри кристалів $Hg_{1-x}Mn_xSe_{1-y}S_y$ (x=0,1, y=0,01).

Kinetic coefficients of semimagnetic semiconductor $Hg_{1-x}Mn_xTe_{1-y}S_y$ and $Hg_{1-x}Mn_xSe_{1-y}S_y$ solid solutions have been investigated in 77–300K interval and in magnetic field region of 0-5 kE by means of compensation method at direct current. On the basis of these experimental results band parameters of $Hg_{1-x}Mn_xSe_{1-y}S_y$ (x=0,1, y=0,01) crystals have been.

Вступ

Комплексні дослідження напівмагнітних напівпровідникових твердих розчинів $Hg_{1-x}Mn_xSe$ та $Hg_{1-x}Mn_xTe_{1-y}Se_y$, проведені нами в [1-10], вказують на їх оригінальні властивості, які обумовлені різними типами обмінних взаємодій. З огляду на це, було розширено діапазон досліджень, тобто одержано і досліджено тверді розчини, які містять сірку. Зміна вмісту S повинна впливати на обмінну взаємодію і властивості кристалів.

Літературні джерела вказують на можливість існування твердих розчинів $Hg_{1-x}Mn_xTe_{1-y}S_y$, та $Hg_{1-x}Mn_xSe_{1-y}S_y$. Тверді розчини $Hg_{1-x}Mn_xSe_{1-y}S_y$ повинні існувати в досить широких областях складів ("x" і "y"), оскільки як у системі HgS– HgSe, так і в системі MnS–MnSe розчинність необмежена [11,12], а тверді розчини з марганцем, з яких утворюється $Hg_{1-x}Mn_xSe_{1-y}S_y$, існують при такому вмісті Mn: $Hg_{1-x}Mn_xSe$ (0<x≤0,385) [12] та $Hg_{1-x}Mn_xS$ (0<x≤0,375) [12].

Існування твердих розчинів $Hg_{1-x}Mn_xTe_{1-y}Se_y$ – можливе, але мабуть у менш широких областях складів ("x" і "y"), порівняно з $Hg_{1-x}Mn_xSe_{1-y}S_y$, оскільки в системі HgS–HgTe розчинність майже необмежена [11,12], а в системі MnTe–MnS розчинність обмежена (7 мол.% на основі І і менше 1 мол.% на основі II) [10], не зважаючи на те, що марганцевмісні тверді розчини, з яких утворюється $Hg_{1-x}Mn_xTe_{1-y}S_y$, також мають широку область існування: $Hg_{1-x}Mn_xTe$ (0<x≤0,35) [11] та $Hg_{1-x}Mn_xS$ (0<x≤0,375) [12].

Твердий розчин $Hg_{1-x}Mn_xTe_{1-y}S_y$, а також $Hg_{1-x}Mn_xSe_{1-y}S_y$, повинні бути напівпровідниками зі змінною, в залежності від складу, шириною забороненої зони E_g і належати до напівмагнітних напівпровідників. Наявність у кристалах атомів Mn з нескомпенсованим магнітним моментом дає можливість контролювати склад x та наявність у зразках включень другої фази магнітними методами, зокрема, за допомогою вимірів магнітної сприйнятливості кристалів.

Кристали Hg_{1-x}Mn_xTe_{1-y}S_y (0<x<0,15, y=0,01) та Hg_{1-x}Mn_xSe_{1-y}S_y (0<x≤0,22, 0,01<y≤0,1) отримані нами методом Бріджмена. При виборі температури синтезу і вирощування зазначених кристалів користувалися діаграмами стану твердих розчинів, які входять до їх складу [12].

Результати досліджень та їх обговорення

Кінетичні коефіцієнти кристалів напівпровідникових напівмагнітних твердих розчинів $Hg_{1-x}Mn_xTe_{1-y}S_y$ та $Hg_{1-x}Mn_xSe_{1-y}S_y$, досліджено в інтервалі температур 77÷300 К та в інтервалі полів 0÷5 кЕ компенсаційним методом на постійному струмі. Одержані температурні і польові залежності кінетичних коефіцієнтів кристалів $Hg_{1-x}Mn_xTe_{1-y}S_y$ та $Hg_{1-x}Mn_xSe_{1-y}S_y$ наведено на рис.1-9.

Закономірності у зміні кінетичних коефіцієнтів зразків $Hg_{1-x}Mn_xTe_{1-y}S_y$ та $Hg_{1-x}Mn_xSe_{1-y}S_y$ з температурою дозволяють зробити припущення, що, в основному, на явища переносу в цих кристалах впливають вакансії у підгратці ртуті, міжвузловинна ртуть і вакансії у підгратці Te, Se або S. Відомо, що в халькогенідах ртуті і твердих розчинах на їх основі міжвузловинні атоми ртуті і вакансії в підгратці халькогену є донорами, а вакансії в підгратці Нg – акцепторами [6].

Одержані температурні залежності електропровідності σ для Hg_{1-x}Mn_xTe_{1-y}S_y (рис.1) мають напівпровідниковий характер. Температурні залежності коефіцієнта Холла R_H (рис.8) свідчать про те, що в зразках Hg_{1-x}Mn_xTe_{1-y}S_y у досліджуваному інтервалі температур присутні і беруть

Рис.1. Температурна залежність електропровідності в Hg_{1-x}Mn_xTe_{1-y}S_y: x=0,06, y=0,01 (1), x=0,09, y=0,01 (2), x=0,1, y=0,01 (3), x=0,14, y=0,01 (4).

Pric.2. Temperatypha sanewhitts enertyponposidhotti $B Hg_{1-x}Mn_xSe_{1-y}S_y$: x=0,05, y=0,1 (1), x=0,05, y=0,01 (2), x=0,1, y=0,01 (3).

участь в явищах переносу як дірки, так і електрони (тобто провідність зразків має змішаний характер). Інверсія знаку R_H для одних зразків і прямування до інверсії при низьких температурах (T<77К) для інших свідчить про те, що для

Рис.3. Залежність термо-ЕРС від температури для зразків $Hg_{1-x}Mn_xTe_{1-y}S_y$: *x*=0,06, *y*=0,01 (1), *x*=0,09, *y*=0,01 (2), *x*=0,10, *y*=0,01 (3), *x*=0,14, *y*=0,01 (4).

зразків $Hg_{1-x}Mn_xTe_{1-y}S_y$ переважає *p*-тип провідності при низьких температурах, а при високих (*T*>77К) мають місце від'ємні значення R_H . Це можна пояснити збільшенням у зразках *p*-типу концентрації електронів при підвищенні температури, які мають рухливість набагато більшу, ніж рухливість дірок ($\mu_n >> \mu_p$), що дозволяє при *p*>*n* отримати від'ємні значення R_H

$$R_{H} = \frac{r(p\mu_{p}^{2} - n\mu_{n}^{2})}{e(p\mu_{p} + n\mu_{n})^{2}}.$$
 (1)

На відміну від $Hg_{1-x}Mn_xTe_{1-y}S_y$ електропровідність кристалів $Hg_{1-x}Mn_xSe_{1-y}S_y$ носить металічний характер, тобто зменшується з ростом температури (рис.2). Коефіцієнт Холла $R_H = 1/(en)$ для кристалів $Hg_{1-x}Mn_xSe_{1-y}S_y$ не залежить від температури (рис.9), що вказує на виродження електронів. Тому можна стверджувати, що температурна залежність електропровідності повністю визначається температурною залежністю рухливості електронів µ (рис.10).

Залежності 2, 3, 4 на рис.10 одержані за методикою описаною в [13] для Hg_{1-x}Mn_xSe (x=0,1) з параметрами, які дуже близькі до параметрів Hg_{1-x}Mn_xSe_{1-v}S_v (x=0,1, y=0,01). Тому цілком зрозуміло що в області низьких температур (Т~80 К), де повинно домінувати розсіювання електронів на п'єзоакустичних фононах, експериментальна крива $R_H \times \sigma = f(T)$ для $Hg_{1-x}Mn_xSe_{1-y}S_y$ (x=0,1, y= =0,01) (як і для Hg_{1-x}Mn_xSe (x=0,1) в [13]) знаходиться між теоретичними залежностями Upz~T-1/2 (невироджений) та $U_{pz} \sim T^{-1}$ (вироджений електронний газ) (рис.10) [15]. В області кімнатних температур експериментальна залежність U=f(T)добре узгоджується з теоретичною $U_{\text{пол}} \sim T^{-2}$, що відповідає домінуючому розсіянню електронів на полярних оптичних фононах [15] (при Т~300 К) (рис.10).

Термо-ЕРС для переважної більшості зразків $Hg_{1-x}Mn_xTe_{1-y}S_y$ змінюється від $\alpha>0$ (при 90К) до від'ємних значень (при 300К) (рис.3), що пов'язано із зростанням концентрації електронів при збільшенні температури. На відміну від цього, для кристалів $Hg_{1-x}Mn_xSe_{1-y}S_y$ термо-ЕРС збільшується з ростом температури (рис.4) внаслідок зменшення виродження електронного газу (рівень Фермі з ростом *T* зменшується аналогічно як і в $Hg_{1-x}Mn_xSe_{1-y}S_y$ в магнітному полі $\Delta\alpha=\alpha(H)-\alpha(0)$ від температури наведено на рис.5.

Рис. 7. Залежність відносного магнітоопору від магнітного поля для $Hg_{1-x}Mn_xTe_{1-y}S_y$: x=0,06, y=0,01 (1), x=0,09, y=0,01 (2), x=0,10, y=0,01 (3).

Відносний магнітоопір $\Delta \rho/\rho$, досліджуваних зразків Hg_{1-x}Mn_xTe_{1-y}S_y, має чітко виражений максимум на температурній залежності (рис.6) і майже лінійно залежить від напруженості магнітного поля (рис.7). Для кристалів Hg_{1-x}Mn_xSe_{1-y}S_y $\Delta \rho/\rho$ сягає ~8% і зменшується з ростом температури, що можна пояснити зменшенням рухливості електронів при більших *T*. Із зростанням магнітного поля відносний магнітоопір зразків Hg_{1-x}Mn_xSe_{1-y}S_y зростає як при кімнатній, так і при азотній температурі.

Рис.8. Температурна залежність коефіцієнта Холла зразків Hg_{1-x}Mn_xTe_{1-y}S_y: x=0,06, y=0,01 (1), x=0,09, y=0,01 (2), x=0,10, y=0,01 (3), x=0,14, y=0,01 (4).

Залежність R_H кристалів $Hg_{1-x}Mn_xTe_{1-y}S_y$ від Hв інтервалі температур $T=77\div300$ К і $H\approx0\div5$ кЕ можна пояснити наявністю у зразках щонайменше двох типів носіїв заряду з різною рухливістю (аналогічно як для $Hg_{1-x}Mn_xTe_{1-y}Se_y$ [6]).

Коефіцієнт Холла для досліджуваних кристалів $Hg_{1-x}Mn_xSe_{1-y}S_y$ не залежить від величини магнітного поля, а термо-ЕРС від магнітного поля залежить слабо (рис.9).

Для дослідження зонних параметрів вибирали зразки $Hg_{1-x}Mn_xSe_{1-y}S_y$ однакового складу x=0,1,y=0,01 (склад контролювався методом магнітної сприйнятливості), але з різною концентрацією електронів (*n* контролювалась на основі вимірів коефіцієнта Холла). На основі експериментальних залежностей кінетичних коефіцієнтів за методикою, описаною в [14,15], і формулою (2) була визначена ефективна маса електронів на рівні Фермі цих зразків $Hg_{1-x}Mn_xSe_{1-y}S_y$:

$$m_{\xi}^{*} = \frac{\alpha(0)(3\pi^{2}n)^{2/3}eh^{2}}{T(1+\gamma_{r})k_{\rm B}^{2}\pi^{2}}.$$
 (2)

Залежність m_{ξ}^* від концентрації n, побудована

в координатах
$$\left[\left(\frac{m_{\xi}^{*}/m_{0}}{1-m_{\xi}^{*}/m_{0}}\right)^{2}, n^{2}/3\right]$$
 має ліній-

ний характер (рис.11) для $Hg_{1-x}Mn_xSe_{1-y}S_y$, що відповідає кейнівській моделі зони провідності, і дає можливість визначити такі зонні параметри: m_0^* – ефективну масу на дні зони провідності, E_g – ширину забороненої зони, P – матричний елемент міжзонної взаємодії. Значення m_0^* визначили шляхом екстраполяції залежності $f(n^{2/3}) =$

$$\left(\frac{m_{\xi}^{*}/m_{0}}{1-m_{\xi}^{*}/m_{0}}\right)^{2}$$
 до *n*=0, а |*E*_g| і *P* визначили за

формулою

$$\left(\frac{m_{\xi}^*/m_0}{1-m_{\xi}^*/m_0}\right)^2 = 325 \cdot 10^{-32} \frac{E_g^2}{P^4} + 8,27 \cdot 10^{-30} \frac{n^{2/3}}{P^2}, \quad (3)$$

де P^2 знаходили як тангенс кута нахилу залежності $f(n^{2/3})$, а $|E_g|$ через ефективну масу на дні зони провідності. Значення визначених зонних параметрів для $\text{Hg}_{1-x}\text{Mn}_x\text{Se}_{1-y}\text{S}_y$ (*x*=0,1, *y*=0,01) такі: $m_0^*/m_0=0,009, E_g=0,16$ еВ, *P*=9·10⁻⁸ еВ/см.

Рис.10. Температурна залежність рухливості електронів в $\text{Hg}_{1-x}\text{Mn}_x\text{Se}_{1-y}\text{S}_y$ (*x*=0,1, *y*=0,01): експериментальна (1), $U_{pz} \sim T^{-1/2}$ (2), $U_{pz} \sim T^{-1}$ (3), $U_{\Pi \cap \Pi} \sim T^{-2}$ (4).

гис.11. Концентрацина залежність ефективної маси електронів на рівні Фермі для $Hg_{1-x}Mn_xSe_{1-y}S_y$. T=90 K, x=0,1, y=0,01.

Для того, щоб прослідкувати вплив сірки на зонні параметри кристалів, були досліджені температурні залежності ефективної маси електронів на рівні Фермі для зразків Hg_{1-x}Mn_xSe_{1-y}S_y з однаковим вмістом Mn (*x*=0,05), але з різним вмістом S (при цьому концентрація електронів у зразках була однаковою *n*=1,5·10¹⁸ см⁻³). Одержані залежності $m_{\xi}^{*} = f(T)$ наведені на рис.12.

Для аналізу залежностей $m_{\xi}^{*}(T)$, крім фактора $E_{g}(T)$, необхідно враховувати зміну непараболічності зонного спектру зі складом і температурою [13]. Непароболічність зонного спектру – це будь-яке відхилення закону дисперсії E(k) від

квадратичної форми [3]. Під "змінною непараболічності зони" внаслідок дії температури або вмісту *х* розуміють зміну кривизни зони провідності і валентної зони, тобто виду закону дисперсії E(k). Це, в свою чергу, змінює густину станів в зонах, а значить, і положення рівня Фермі в зоні (при *n*=const), що впливає на величину m_{ε}^{*} .

Отже, знак $d m_{\xi}^{*}/dT$ (для певного значення x) буде визначатися знаком dE_g/dT і впливом непараболічності зони провідності, що залежить від температури (при n=const). Збільшення непараболічності зони провідності при зміні T веде до зменшення густини станів у зоні, що при n=const в даному інтервалі температур приводить до збільшення рівня Фермі. Для непараболічного зонного спектра зайняття електронами станів з більшим E(k) супроводжується збільшенням їх ефективної маси. Отже, збільшення непараболічності зонного спектру призводить до зростання m_{ξ}^{*} а її зменшення – до зниження m_{ξ}^{*} .

На величину m_{ξ}^* при спаданні *T* впливають два конкуруючих фактори: зменшення E_g (аналогічно як в Hg_{1-x}Mn_xSe [3]) приводить до зменшення m_{ξ}^* , а збільшення при цьому непараболічності зони провідності – до зростання m_{ξ}^* . Отже, зміна m_{ξ}^* визначається переважаючим із вказаних конкуруючих факторів [3].

На залежностях $m_{\xi}^{*}(T)$ на рис.12, збільшення m_{ξ}^{*} з пониженням T в інтервалі 90÷190 К пояснюється переважанням фактору збільшення непараболічності зони провідності при пониженні T над фактором $dE_g/dT>0$, який повинен викликати в цьому випадку зменшення m_{ξ}^{*} . В інтервалі $T=190\div300$ К $dm_{\xi}^{*}/dT>0$ обумовлене переважанням впливу фактора $dE_g/dT>0$.

Отже зміна з температурою величини забороненої зони і непараболічності зонного спектру суттєво впливає на температурну залежність ефективної маси носіїв заряду на рівні Фермі.

На рис.12 видно, що в області низьких температур (90-190 К), де m_{ξ}^{*} визначається з більшою точністю, ефективна маса електронів на рівні Фермі у зразках $Hg_{1-x}Mn_xSe_{1-y}S_y$ (x=0,05) слабо залежить від вмісту сірки в зразках (змінюється з складом "y" в межах похибки). Тому, важко щось сказати про вплив сірки в зразках

 $Hg_{1-x}Mn_xSe_{1-y}S_y$ на m_{ξ}^* .

Висновки

1. Кристали $Hg_{1-x}Mn_xTe_{1-y}S_y$ володіють змішаним типом провідності, електропровідність має напівпровідниковий характер, а термо-ЕРС для більшості зразків з ростом температури змінюється від додатних до від'ємних значень, що пов'язано із зростанням концентрації електронів і збільшенням їх внеску в термо-ЕРС.

2. Кристали $Hg_{1-x}Mn_xSe_{1-y}S_y$ володіють *n*-типом провідності і коефіцієнт Холла не залежить від температури, що вказує на виродження електронного газу, а електропровідність зменшується з ростом температури..

3. Залежність ефективної маси електронів на рівні Фермі від їх концентрації вказує на непараболічність зони провідності в кристалах $Hg_{1-x}Mn_xSe_{1-y}S_y$. На основі цієї залежності визначено зонні параметри кристалів з x=0,1, y=0,01 при T=90 К: $m_0^*/m_0=0,009, E_g=0,16$ еВ, $P=9\cdot10^{-8}$ еВ/см.

4. Зміна вмісту сірки в $Hg_{1-x}Mn_xSe_{1-y}S_y$ на значення ефективної маси електронів на рівні Фермі (m_{ξ}^*) впливає слабо.

СПИСОК ЛІТЕРАТУРИ

- Марьянчук П.Д. О природе кластеров в кристаллах Mn_xHg_{1-x}Se_y // Изв. вузов. СССР Физика. – 1984. – 27, №1. – С.122–124.
- Марьянчук П.Д., Гавалешко Н.П., Неупорядоченные твердые растворы Mn_xHg_{1-x}Se// Изв. АН СССР. Неорган. матер. – 1987. – 23, №8. – С.1271–1274.
- 3. *Марьянчук П.Д. Гавалешко Н.П.* Влияние температуры на зонную структуру Mn_xHg_{1-x}Se // Изв. вузов. Физика. 1991. **34**, №4. С.40–44.
- Гавалешко Н.П., Марьянчук П.Д., Падалко А.М. Особенности магнитной восприимчивости монокристаллов Hg_{1-x}Mn_xTe_{1-y}Se_y // Изв. вузов. Физика. – 1991. – **34**, №4. – С.60-62.
- Гавалешко Н.П., Марьянчук П.Д., Падалко А.М Влияние термообработки на кластерную и дефектную подсистемы кристаллов Hg_{1-x}Mn_xTe_{1-y}Se_y // Изв. вузов. Физика. – 1993. – 36, №5. – С.48-51.
- Марьянчук П.Д., Падалко А.М. Вплив температури, магнітного поля та термообробки на кінетичні коефіцієнти кристалів Hg_{1-x}Mn_xTe_{1-y}Se_y // УФЖ. – 1993. – **38**, №10. – С.1554-1558.
- Крылов К.Р., Леринман Н.К., Пономарёв А.И., Сабирзянова Л.Д., Шелушинина Н.Г., Гавалешко Н.П., Марьянчук П.Д., Магнитная восприимчивость и гальваномагнитные свойства полумагнитного полупроводника Hg_{1-x}Mn_xTe_{1-y}Se_y // ФТП. – 1994. – 28, №8. – С.1382-1392.
- Кульбачинский В.А., Марьянчук П.Д., Чурилов И.А. Электрические и магнитные свойства полумагнитных полупроводников Hg_{1-x}Mn_xTe_{1-y}Se_y // ФТП. – 1995. – 29, №11. – С.2007-2014.
- Кульбачинский В.А., Чурилов И.А., Марьянчук П.Д., Лунин Р.А., Гальваномагнитные свойства полумагнитных полупроводников Hg_{1-x}Mn_xTe_{1-y}Se_y // ЖЭТФ. – 1997. – 112, вып.5(11). – С.1809-1815.
- 10. Мар'янчук П.Д., Цеханський В.Д. Залежність параметрів обмінної взаємодії від складу твердих розчинів Hg_{1-x}Mn_xTe_{1-y}Se_y // Науковий вісник ЧДУ. Вип. 50: Фізика. – Чернівці: ЧНУ, 1999. – С.61-62.
- Твёрдые растворы в полупроводниковых системах (справочник). – М.: Наука, 1978.
- Томашик В.Н., Грыцив В.И. Диаграммы состояния систем на основе полупроводниковых соединений А^{II}В^{VI}. – Киев: Наукова думка, 1982.
- Мар'янчук П.Д., Вплив температури на домінуючі механізми розсіювання в Hg_{1-х}Mn_xSe // Науковий вісник ЧНУ. Вип. 157:Фізика.Електроніка.– Чернівці: Рута. – 2003. – С.63–65.
- 14. Аскеров Б.М. Кинетические эффекты в полупроводниках. – Ленинград: Наука, 1970.
- 15. Аскеров Б.М. Электронные явления переноса в полупроводниках. М.: Наука, 1985.