© 2009р. М.Д. Раранський

Чернівецький національний університет ім. Ю. Федьковича, Чернівці

ЯВИЩЕ МАЯТНИКОВОЇ ОСЦИЛЯЦІЇ Х-ХВИЛЬ У РЕАЛЬНИХ МОНОКРИСТАЛАХ

До 50-річчя експериментального відкриття явища "Pendellösung" і 60-річчя кафедри фізики твердого тіла ЧНУ.

Up to 50 years of experimental discovery of "Pendellösung" and the 60th anniversary of the Department of Solid State Physics Chernovtsy National University.

Вступ

Успіхи у розвитку динамічної теорії дифракції Х-хвиль стали однією з основних передумов розробки унікальних методів дослідження структури реальних кристалів. Уже у перших працях Дарвіна [1] врахована інтерференційна взаємодія розсіяних кристалом Х-хвиль і введено поняття "первинної екстинкції" - послаблення заломлених хвиль внаслідок багатократного розсіяння атомними площинами при проникненні їх всередину кристала. Пізніше Евальд [2] при розгляді розповсюдження і заломлення короткохвильового випромінювання в кристалах врахував динамічну взаємодію Х-хвиль і передбачив явище осциляції хвильових полів в кристалі, назване ним "Pendellösung" – маятниковий розв'язок інтерференції Х-хвиль. Водночас Евальд вважав, що "навіть не уявляється можливим колинебудь виявити експериментально явище осциляції" Х-хвиль внаслідок структурної недосконалості реальних кристалів.

Вперше маятникові осциляції Х-хвиль були виявлені при дифракції електронів [3], а в діапазоні довжин Х-хвиль – Н.Като і А.Р.Лангом в 1959 році [4]. Пропорційність періодів маятникових смуг структурній амплітуді дозволили авторам праці [4] запропонувати принципово новий прецизійний метод визначення структурних амплітуд F_{hkl} , а відповідно і атомних амплітуд f_a без вимірювання енергетичних параметрів розсіяння. У СРСР маятникові осциляції Х-хвиль були вперше отримані на кафедрі ФТТ ЧНУ в 1967 році [5,6]. Маятникові осциляції Х-хвиль, виявлені Н.Като [4] зосередженні у вузькій області кристалу (~10 мкм), мають форму гіпербол і виникають при розсіянні сферичних хвиль у геометрії, так званої, секційної топографії. Маятникові осциляції, виявлені нами [5,6], отримані в широкому фронті падаючих монохроматичних Х-хвиль (~1 см), мають форму паралельних смуг і формуються у наближенні розсіяння плоских хвиль у геометрії проекційної топографії.

Вивчення явища осциляції електромагнітного поля в кристалі само по собі є фундаментальною проблемою фізики твердого тіла. Висока чутливість маятникових смуг до деформацій, механічних і температурних градієнтів дозволила запропонувати низку оригінальних методів дослідження фізичних властивостей кристалів.

Дана праця не претендує на всеохоплююче висвітлення всіх наукових досягнень у цій галузі, а зосереджена на поданні основних досягнень кафедри ФТТ і присвячена 50-річчю відкриття явища і 60-річчю кафедри ФТТ.

Подальший розвиток на кафедрі ФТТ метода маятникових смуг дозволив провести систематичні дослідження впливу поглинання, температури, поляризації і дисперсійних ефектів на періоди маятникових смуг, їх місцеположення і видність. Запропоновано новий прецизійний метод визначення періодів маятникових осциляцій, структурних і атомних амплітуд розсіяння – метод циліндричного зразка [7]; визначені структурні амплітуди F_{hkl}, атомні амплітуди розсіяння і екстинкційні товщини для монокристалів Si, Ge, GaAs, GaP, CaF₂, LiF, NaCl, KCl в широкому інтервалі кутів дифракції [8]. У двохвильовому наближенні вперше отримано співвідношення для періодів маятникових смуг в околі краю поглинання і запропоновано новий метод визначення показників заломлення *n* і дисперсійних поправок $\Delta f'$ [9]. На кафедрі ФТТ розроблена оригінальна експериментальна методика отримання маятникових смуг в широкому інтервалі температур і тисків. Вперше отримані співвідношення для періодів маятникових осциляцій в залежності від температури і тиску $\Lambda(P, T)$. Вперше запропоновано і розроблено принципово новий метод дослідження ангармонійності коливань атомів у кристалічній ґратці, визначені характеристичні температури θ_{Π} , їх залежності від температури і тиску $\theta(P, T)$ і параметри Грюнайзена у для вказаних вище монокристалів [8,10-14]. На основі термодинамічного аналізу залежності $\theta(P, V, T)$ оцінена ангармонійність коливань атомів досліджуваних монокристалів і запропоновано розміщення їх в певній послідовності – ряд ангармонійності кристалів. Були проведені також систематичні дослідження поведінки маятникових смуг при термічному і механічному вигині кристалів, проведено математичне моделювання дифракційного контрасту пружних полів деформацій у реальних монокристалах [15-18]. При теоретичному та експериментальному вивченні багатохвильової дифракції [17-25] було вперше виявлено новий інтерференційний ефект – повертання площини поляризації Х-хвиль в залежності від товщини кристалу [20]. Показано, що в діапазоні довжин Х-хвиль всі кристали є оптично активними, а ефект гіротропії зумовлений не тензором діелектричної проникливості, а динамічним характером взаємодії хвиль у кристалі. Пізніше ефект гіротропії був виявлений експериментально при двохвильовому розсіянні Х-хвиль [26].

На кафедрі ФТТ були вперше отримані маятникові смуги при багатохвильовому розсіянні Х-хвиль [19,23]. Ефект розщеплення маятникових смуг в області просвітлення дозволив відтворити вигляд дисперсійних поверхонь і визначити екстинкційні віддалі при багатохвильовому розсіянні. Переважна більшість теоретичних і експериментальних робіт по динамічному розсіянню виконана в наближенні падаючих плоских Х-хвиль. Водночас перша праця Н. Като і Р. Ланга [4] виявила, що в більшості випадків експериментально реалізується наближення падаючих сферичних хвиль. Тому Н. Като розробив динамічну теорію розсіяння в наближенні сферичних хвиль [27, 28]. Пізніше Афанасьєв О.М. і Кон В.Г. побудували узагальнену теорію дифракції сферичних хвиль [29], в якій теорія Н. Като є частковим випадком. Особлива увага в даних працях зосереджувалася на динамічні ефекти фокусування Х-хвиль і оригінальну форму маятникових смуг. Експериментально ефект фокусування сферичних X-хвиль був виявлений незалежно В.В. Аристовим [30] і В.Д. Козьмиком [31,32]. Особливості формування маятникових смуг в наближенні сферичних хвиль описані в [33].

Визначення структурних і атомних амплітуд розсіяння

Експериментальне визначення величин структурних F_{hkl} і атомних f_a амплітуд має особливо важливе значення для вивчення структури реальних кристалів, а також для перевірки основних положень теорії розсіяння випромінювань речовиною. Великі зусилля у цьому напрямку були вжиті багатьма авторами як в рамках кінематичної, так і динамічної теорій розсіяння. Традиційні методи визначення F_{hkl} і f_a , ґрунтуються на вимірюванні інтегральної інтенсивності розсіяння, залежать від цілого ряду факторів, потребують достатньо складної апаратури і мають низьку точність вимірювання (~5÷7 %). Числові методи розрахунку атомних амплітуд розсіяння із застосуванням сучасних комп'ютерних систем дозволяють розрахувати f_a з достатньою точністю. Із множини методів розрахунку fa найбільш надійним вважається метод Хартрі-Фока, водночас він не враховує релятивістських ефектів. Навіть найбільш сучасні методи розрахунків, які враховують релятивістські хвильові функції [39] не володіють високою точністю і надійністю при розрахунку дисперсійних поправок Δf поблизу країв поглинання і можуть бути використані лише для легких елементів. З появою метода маятникових смуг [4-6] і його широким застосуванням для різних кристалів з'явилася надія на успішне розв'язання цієї проблеми. Вимірюючи періоди маятникових осциляцій Л можна з високою точністю (~0,1%) визначити величини структурних і атомних амплітуд без виміру енергетичних параметрів розсіяння:

$$\Lambda = \frac{\left(\gamma_0 \gamma_m\right)^{1/2}}{c \frac{e^2}{mc^2} \frac{\lambda}{\pi v} F_{hkl}}.$$
 (1)

На рис. 1, для прикладу, наведена система маятникових смуг, отримана від атомних площин (220) в Cu $K_{\alpha 1}$ -випромінюванні від монокристала Ge, вирощеного методом Чохральського. Тут використане монохроматичне поляризоване випромінювання, тому поляризаційне затухання в зображенні маятникових смуг не спостерігається.

Запропонований нами новий метод спостереження маятникових осциляцій від циліндричних зразків [7] дозволяє вдвоє збільшити кількість маятникових смуг, що значно підвишує точність визначення атомних амплітуд розсіяння Х-хвиль.

Рис. 1. Система маятникових смуг в Ge, (220)

Рис. 2а. Атомні амплітуди розсіяння для Si визначені:
- методом виміру інтегральних інтенсивностей [40] і методом маятникових кривих [41]; ▲ методом Хартрі-Фока з врахуванням дисперсійних поправок [42]; Δ – методом маятникових кривих; \circ – методом маятникових смуг [6-10]

 $\sin\theta/\lambda$

Уже перші роботи [4-7, 10, 34, 35,41-43] показали, що при розрахунку f_a необхідно врахувати лисперсію, поляризацію і поглинання Х-хвиль. а також вплив температури (фактор Дебая-Валлера) на розташування маятникових смуг. На рис. 2 наведені залежності розрахованих теоретично f_T і експериментально виміряних f_e величин атомних амплітуд від $\sin\theta/\lambda$ для монокристалів Si і Ge. Суцільна крива ілюструє теоретично розраховану залежність $f_T(\sin \theta/\lambda)$, проведену авторами [36-38] методом Хартрі-Фока-Слетера із врахуванням релятивістської хвильової функції [39]. Величини f_T порівнюються з експериментальними f_e, які отримані різними авторами.

Розбіжність теоретичних і експериментальних величин f_a пояснюється точністю визначення періодів маятникових осциляцій та інтегральних інтенсивностей, поляризацією і поглинанням Х-хвиль та несферичністю атомних хвильових функцій, яка виникає внаслідок перерозподілу валентних електронів у кристалах. Детальний аналіз наведено у праці [8].

Для прецизійного визначення величин fa необхідно особливу увагу звернути на вплив дисперсійних ефектів, які виникають при розсіянні у широкому діапазоні довжин Х-хвиль λ. Величини дисперсійних поправок $\Delta f'$ до атомних амплітуд поблизу країв поглинання становлять ~2-5%. Класичні експериментальні методи визначення величин $\Delta f'$ мають низьку точність (30÷50%). Запропонований нами новий метод визначення коефіцієнтів заломлення *n* і дисперсійних поправок $\Delta f'$ [9] дозволяє вимірювати вказані величини з точністю 0,1-0,5%. Метод грунтується на визначенні періодів маятникових осциляцій у широкому діапазоні довжин хвиль. Проведені систематичні дослідження дисперсійних ефектів для монокристалів Si, Ge, CaF₂, SiO₂ та ін. Отримані співвідношення, які описують поведінку маятникових осциляцій поблизу країв поглинання:

$$\Lambda(\omega) = \Lambda_0 \frac{\cos \theta_0}{\cos \theta} \frac{\lambda}{\lambda_0} \left(\frac{F_{hkl} + \Delta F_{hkl}}{F_{hkl}} \right), \quad (2)$$

де ω – частота падаючого випромінювання, Λ₀ – еталонне значення періоду маятникових смуг при визначеній довжині хвилі λ₀ і куту дифракції θ_0 .

На рис. 3, для прикладу, наведена залежність величин $\Delta f'$ від λ/λ_K для германію, де λ_K – довжина хвилі К-краю поглинання. Експерименталь-

маятникових смуг [6-10]

ні результати добре узгоджуються з теорією Кромера [45]. Зауважимо також, що запропонований нами метод знайшов широке застосування. Наприклад, значно пізніше Като і Такеда [46] використали даний метод маятникових осциляцій для визначення дійсної частини структурної амплітуди ($F_{hkl}+\Delta F_{hkl}$) монокристалів Si у діапазоні довжин хвиль Cu–Ag_{Ka}-випромінювань.

Співробітниками кафедри ФТТ були визначені дисперсійні поправки $\Delta f'$ і одиничні декременти показника заломлення δ (*n*=1– δ) для Si, Ge, GaAs, Ni, Cu, NaCl, KCl методом X-хвильової дифракційної інтерферометрії [47-49]. Як зазначено в роботі У. Бонзе [50] величини $\Delta f'$, отримані нами в роботі [48] є "напевне найбільш вірогідними" і краще всього узгоджуються з релятивістською теорією Кромера [45].

Оскільки величини одиничного декремента показника заломлення δ однозначно пов'язані з коефіцієнтом поглинання, густиною речовини і електронною структурою атомів, слід очікувати періодичну залежність величини δ від порядкового номера елементів Z у таблиці Д.І. Менделєєва. Нами вперше експериментально і теоретично підтверджена така періодична залежність $\delta(Z)$ [51]. Оригінальною є також праця співробітників кафедри ФТТ [25], в якій вперше проведено аналіз дисперсійних ефектів при багатохвильовому розсіянні Х-хвиль. Експериментальні і теоретичні результати, пов'язані з дисперсійними ефектами при динамічному розсіянні Х-хвиль детально обговорюються в праці [8].

Маятникові смуги в недосконалих монокристалах

У реальних кристалах при утворенні різноманітних дефектів або при дії на кристал зовнішніх сил виникають як статичні, так і динамічні зміщення атомів із вузлів ґратки. Відомо, що ефекти теплових коливань або статичних зміщень не руйнують дифракційну картину в цілому, а приводять тільки до зменшення інтегральної інтенсивності на множники exp(-M), exp(-L) і появи дифузного розсіяння. Для протяжних дефектів (дислокації, дефекти пакування, механічні і температурні градієнти і т.п.) хвильове поле в кристалі виявляється просторово модульованим не тільки за амплітудою, а й за фазою. Більшість експериментальних досліджень спрямовані на визначення інтегральних інтенсивностей основних і дифузних максимумів, побудові карт розподілу інтенсивності поблизу вузлів оберненої гратки. Не применшуючи успіхів у розробці алгоритмів і програм числових методів моделювання дифракційних зображень різного типу дефектів, все ж таки неоднозначність у виборі теоретичних параметрів, фазова проблема та похибки у визначенні інтегральних інтенсивностей приводять, як правило, до констатації тільки якісного узгодження теорії з експериментом. Метод маятникових смуг дає можливість отримувати надійні кількісні результати і з високою точністю визначити наступні важливі фізичні параметри недосконалих кристалів: поля пружних деформацій і напружень, середньоквадратичні зміщення атомів з вузлів у кристалічній ґратці, характеристичні температури Дебая, параметри Грюнайзена тощо.

На кафедрі ФТТ ЧНУ розроблена оригінальна методика отримання маятникових смуг у широкому інтервалі температур (100–700°K) і тисків (0–50 кбар) [10, 23, 14]. Вперше отримані співвідношення для періодів маятникових смуг у залежності від температури $\Lambda(T)$ [10]:

$$\Lambda_T = \Lambda_0 \exp(\Delta M) \times \exp\left\{\beta \Delta T \left[1 + \Delta M \left(\gamma - \frac{1}{3}\right)\right]\right\},$$
(3)

де M – показник у множнику Дебая-Валлера, $\Delta M = =(M_{T2} - M_{T1})$, причому $T_2 > T_1$, Λ_0 – період маятникових смуг при низьких температурах, β – коефіцієнт об'ємного розширення.

Дослідження температурної залежності $\Lambda(T)$ проведено для монокристалів Si, Ge, GaAs, SiO₂, CaF₂, LiF, NaCl i KCl.

никових смуг для різних монокристалів

На рис. 4 наведена температурна залежність $\ln(\Lambda_T/\Lambda_0)$ для різних монокристалів. Характерно, що $\ln(\Lambda_T/\Lambda_0)$ складається з двох доданків

$$\ln(\Lambda_T / \Lambda_0) = \Delta M + \beta \Delta T \left[1 + \Delta M \left(\gamma - \frac{1}{3} \right) \right].$$
 (4)

Величина $\left[1 + \Delta M\left(\gamma - \frac{1}{3}\right)\right] \approx 1$ для більшості до-

сліджуваних монокристалів. Перший фононний доданок залежить від характеристичної температури і параметра Грюнайзена, другий потенціальний – в основному від коефіцієнта термічного розширення. Внесок кожного із них може виявитись визначальним і суттєво залежить від пружних і термічних властивостей кристалів, ангармонічності коливань атомів, фононного спектру тощо. Наприклад, нехтування множника

$$\exp\left\{\beta\Delta T\left[1+\Delta M\left(\gamma-\frac{1}{3}\right)\right]\right\} \text{ B poforti H. Kato [52]}$$

привело до похибки 1,5–2% у визначенні $\Lambda(T)$.

На основі проведених досліджень запропоновано принципово новий метод дослідження ангармонічності коливань атомів у кристалічній ґратці. Використовуючи отримані співвідношення (3), (4) з високою точністю (±5%) визначені характеристичні температури θ , їх температурні залежності $\theta(T)$ і параметри Грюнайзена для вказаних вище кристалів та інтервалів температур. На основі термодинамічного аналізу $\theta(V,T,P)$ проведена оцінка ангармонічності коливань атомів монокристалів. Показано, що досліджувані кристали можна розмістити в "ряд ангармонічності" у наступній зростаючій послідовності: Si, Ge, GaAs, SiO₂, CaF₂, LiF, NaCl, KCl. Вперше отримано співвідношення, яке описує в наближенні Дебая–Грюнайзена

$$\left(\frac{d\theta}{dP}\right)_T = \left(\frac{d\theta}{dV}\right)_T \cdot \left(\frac{dV}{dP}\right)_T$$

залежність періодів маятникових осциляцій від тиску $\Lambda(P)$ [13,14]:

$$\Lambda(P) = \Lambda_0 \exp\left\{-\chi P \left[1 + 2M\left(\gamma - \frac{1}{3}\right)\right]\right\}, \quad (5)$$

де χ – ізотермічна стисливість.

Була виготовлена апаратура, яка дозволяє проводити X-променеві дифракційні дослідження при високих тисках ~50÷100 кбар. Показано, що основний внесок у залежність $\Lambda(P)$ вносить потенційний множник $\exp(-\chi P)$. Водночас для високих тисків (P>20 кбар) необхідно враховувати $\gamma(P)$, а також нелінійність у залежності періоду гратки a(P).

Групою авторів кафедри [15,16] проведено систематичне дослідження впливу термічних і механічних градієнтів та зосереджених сил на маятникові смуги у монокристалах Si, Ge, GaAs, SiO₂ і CaF₂. Виявлено зміну періодів Л і зсув маятникових осциляцій у тонку частину клиновидних кристалів, а також появу маятникових смуг в областях поляризаційного затухання, що пояснюється фазово-екстинкційним механізмом формування дифракційного контрасту. Комп'ютерне моделювання дифракційних зображень проведено на основі геометричної теорії Пенінга-Полдера-Като і рівнянь Такагі. Аналіз дифракційних зображень дозволяє отримати кількісну інформацію про величину деформації, амплітуди і фази хвиль та отримати функцію локальних розорієнтацій $\alpha(x,y,z)$ атомних площин [61].

Маятникові смуги при багатохвильовому розсіянні X-хвиль

Динамічна теорія Евальда-Лауе описує багатохвильову дифракцію Х-хвиль у кристалі. Ще на початку XX століття були відкриті оригінальні багатохвильові ефекти: підсилення і просвітлення дифракційних максимумів (Майер, 1923 р.), обхідне збудження заборонених відбивань (Ренінгер, 1937 р.), поява косселівських ліній (див. бібліографію в [54]). Інтерес до багатохвильової дифракції значно зріс після експериментального відкриття ефекту підсилення аномального проходження хвиль (багатохвильовий ефект Бормана), ефектів зменшення екстинкційних довжин і звуження багатохвильових областей розсіяння та дифракційної гіротропії Х-хвиль. Аналіз вказаних вище ефектів показує, що багатохвильова дифракція повинна бути чутливішою до деформацій кристалічної гратки у порівнянні з двохвильовою. Зі всіх ефектів динамічного розсіяння Х-хвиль маятникові осциляції містять в собі найбільш повну інформацію про поведінку хвильових полів у кристалі і надають можливість отримати кількісну інформацію про реальну структуру кристалів.

Перші дослідження багатохвильових маятникових смуг були проведені у працях [19-23]. Розроблені алгоритми і проведено комп'ютерне моделювання розподілу маятникових осциляцій в залежності від геометрії багатохвильової дифракції, виду дисперсійної поверхні і співвідношення між структурними амплітудами. Отримані аналітичні вирази для амплітуд D_n та розраховані залежності коефіцієнтів відбивання К_п дифрагованих хвиль всередині кристалу від глибини [20]. Проведено порівняння відстаней між маятниковими смугами Л у багатохвильовому і двохвильовому випадках для різних трихвильових конфігурацій: рівнобедрений, рівносторонній і різносторонній трикутники. Виявлено новий інтерференційний ефект, пов'язаний із специфічною поведінкою площин поляризації дифрагованих хвиль у кристалі. Показано, що площини поляризації векторів D_n обертаються в залежності від глибини кристалу. Кут повороту площини поляризації залежить від поляризованості кристалу, періоду ґратки та довжини хвилі. Отже, в області довжин Х-хвиль всі кристали повинні бути оптично активними. Характерно. що на відміну від гіротропії в області довжин хвиль видимого світла, яка пов'язана з просторовою дисперсією діелектричної проникливості, виявлений нами ефект має суто дифракційний динамічний характер. Аналогічні результати були підтверджені експериментально у двохвильовому випадку [26]. Виявлено, що ефект дифракційного повороту площин поляризації Х-хвиль обумовлений просторовою модуляцією когерентних σ- і π-компонент вектора електричної індукції всередині кристалу.

Рис. 5. Багатохвильові маятникові смуги в монокристалі Ge в Cu $K_{\alpha 1}$ -випромінюванні, трихвильова дифракція (000, 111, $\overline{1}$ 11)

Рис. 6. Багатохвильові маятникові смуги в Ge при еквідистантній деформації атомних площин

Вперше маятникові смуги при багатохвильовій дифракції були експериментально виявлені нами на кафедрі ФТТ [23]. На рис.5 наведено маятникові смуги в монокристалі Ge в CuK_{α1}випромінюванні, отримані у випадку трихвильової дифракції (000,111, 11). На топограмі спостерігається трихвильова область просвітлення, яка перетинається двохвильовими маятниковими смугами. На границях області просвітлення двохвильові маятникові смуги розщеплюються на дві. Розщеплення маятникових смуг у багатохвильовій області якісно і кількісно підкреслює геометрію дисперсійної поверхні у трихвильовому випадку [56]. Багатохвильові маятникові смуги були отримані також для конфігурацій $(000, 111, 200), (000, 111, \overline{1}11), (000, 220, 202),$ (000, 220, 400, 220). Детальний аналіз особливостей багатохвильових маятникових смуг проведений у праці [55].

Багатохвильова дифракція Х-хвиль в кристалах з акустичним полем зміщень вперше розглянута у праці [57], а з еквідистантно зігнутими атомними площинами у [58]. Співробітниками кафедри [17, 58-60] проведено дослідження впливу періодичного поля зміщень та еквідистантної деформації атомних площин на багатохвильові маятникові смуги. На рис.6 наведено комп'ютерне моделювання дифракційних топограм $R_n(\alpha,z)$ для випадку еквідистантної деформації атомних площин у трихвильовому випадку (000, 111, $\overline{1}$ 11) в широкій області кутів а при постійній деформації $P/\chi_{111}=10^{-5}$. Зі збільшенням товщини кристалу *z* багатохвильова область зміщується ліворуч, збільшується кількість маятникових смуг. Виявлено, що форма, період і місцеположення маятникових смуг суттєво залежить від деформації *P* і орієнтації вектора зміщень $\vec{U}(r)$ по відношенню до векторів дифракції. Проведений аналіз багатохвильової дифракції Х-хвиль у недосконалих кристалах наочно демонструє перспективу практичного застосування багатохвильових маятникових смуг для отримання кількісних параметрів деформації досліджуваних кристалів.

На закінчення зауважимо, що наведені вище дослідження проведені у наближенні падаючої плоскої монохроматичної хвилі. У більшості випадків експериментально реалізується наближення падаючої сферичної хвилі [4, 27-33] і маятникові смуги Евальда, які розташовані паралельно вхідній поверхні кристалу (рис.1), реалізовані експериментально нами для монохроматичних плоских хвиль [5-10] суттево змінюють свою форму і вироджуються у гіперболи - маятникові смуги Като. Критерії застосування наближення сферичної або плоскої хвилі введені Н. Като у праці [27]: Ω≥∆θ – для сферичної хвилі і $\Omega < \Delta \theta$ – для плоскої хвилі, де Ω – кутова ширина первинного пучка хвиль, а $\Delta \theta$ – кутова ширина на половині дифракційного максимуму. Маятникові осциляції для випадку сферичних хвиль у наближенні Н. Като [4] спостерігаються при падінні на кристал вузьких пучків ~10–15 мкм і мають вид гіпербол (рис.7).

Узагальнена динамічна теорія Афанасьєва [29] відрізняється від теорії Като наявністю у фазі Х-хвиль множника $t_s = \frac{\lambda L}{2\Lambda_s \sin^2 \theta}$, де L – від-

даль між джерелом випромінювання і щілиною, Λ_s – період маятникових осциляцій, t – товщина кристала. У даній теорії при t << t_s задовольняється наближення падаючої плоскої хвилі і маятникові смуги мають вигляд гіпербол, вершини яких направлені до товстої частини кристалу аномальний пендельлозунг-ефект, який вперше виявлений експериментально у праці [30]. Характерно, що ступінь вигину маятникових смуг залежить від L і при збільшенні цієї віддалі маятникові смуги перетворюються у прямі лінії. При $t < t_s$ спостерігається звуження пучка – дифракційне фокусування, яке спостерігалось одночасно і незалежно авторами праць [30-32]. При досягненні товщини кристалу $t >> t_s$ маятникові осциляції спостерігаються у вигляді гіпербол, вершини яких орієнтовані в тонку частину клиновидного кристалу (рис.7). Залежність форми маятникових смуг від віддалі між зразком і фотоплівкою розглянуто у праці [33]. Секційна топографія знаходить широке застосування для дослідження дефектів структури (дислокацій, дефектів пакування тощо), а також для удосконалення динамічної теорії розсіяння Х-хвиль у реальних монокристалах.

Рис. 7. Маятникові смуги в монокристалі Si. Секційна топограма.

СПИСОК ЛІТЕРАТУРИ

- 1. *Darvin C.G.* The theory of X-ray reflection // Phil. Mag. 1914. –27, No.158. P. 315-333.
- 2. *Ewald P.P.* Zur Begründung der Kristalloptik. Teil II. Theorie der Reflexion und Brechung // Ann. Phys. – 1916. – **49**, No.4. – S. 117-143.
- Хайденрайх Р. Основы просвечивающей электронной микроскопии. – М.: Мир. – 1966. – 471с.
- Kato N., Lang A.R. A study of Pendellösung fringes in X-ray diffraction. // Acta Cryst. – 1959. – 12, No.4. – P. 787-793.
- 5. Бояджян Г.С., Кушта Г.П., Михайлюк И.П., Раранский Н.Д. Определение структурных амплитуд Ge и Si при помощи полос маятникового решения рентгеновских интерференций // IX научно- техническое совещание по применению рентгенов-

ских лучей. – Ленинград, 1967. – С.8.

- Михайлюк И.П., Раранский Н.Д. Некоторые результаты экспериментального изучения маятниковых полос рентгеновских интерференций // УФЖ. – 1968. – 12, вып.5. – С. 856-859.
- Михайлюк И.П., Раранский Н.Д., Кшевецкий С.А. Получение маятниковых полос рентгеновских интерференций от монокристаллов с цилиндрической выходной поверхностью // УФЖ. – 1970. – 15, №10. – С. 1742-1744.
- Раранский Н.Д. Маятниковые и муаровые полосы в реальных монокристаллах: Дис. ... докт. физ.мат. наук. – Черновцы, 1987.
- 9. Дроздовский В.Б., Кшевецкая М.Л., Михайлюк И.П., Раранский Н.Д. Исследование аномального рассеяния рентгеновских лучей вблизи К-края по-

глощения методом маятниковых полос // УФЖ. – 1970. – **15**, №9. – С. 1562-1565.

- Раранский Н.Д. Рентгенографическое исследование совершенных монокристаллов методом маятниковых полос: Дис. ... канд. физ.-мат. наук. – Черновцы, 1970.
- 11. Бояджян Г.С., Михайлюк І.П., Раранський М.Д. Температурна залежність періодів маятникових смуг монокристалів GaAs // УФЖ. – 1973. – 18, вып.2. – С. 327-329.
- Михайлюк И.П., Михальченко В.П., Раранский Н.Д. Определение констант тензора Грюнайзена α-SiO₂ методом маятниковых полос // Тез. докл. Выездной сессии научного Совета АН СССР по проблеме "Образование и структура кристаллов". – Ереван, 1974. – С.43.
- 13. Бояджян Г.С., Раранский Н.Д. Влияние давления и температуры на период маятниковых полос // Тез. докл. XIII Всесоюзного совещания по применению рентгеновских лучей... – Черноголовка, 1982. – С.181.
- 14. *Раранский Н.Д., Бояджян Г.С.* Влияние давления на период маятниковых полос // ФТТ. 1983. **25**, вып.1. С.298-300.
- 15. Бояджян Г.С., Раранский Н.Д. Влияние термоупругих деформаций на маятниковые полосы // Тез. докл. II Всесоюзного совещания по методам и аппаратуре для исследований когерентного взаимодействия излучения с веществом. – Ереван, 1982. – С.21-22.
- 16. Раранский Н.Д., Фодчук И.М., Бояджян Г.С. Маятниковые полосы в упруго-деформированных монокристаллах. – Рукопись № 1458 Ук – 85 Деп. в ВИНИТИ 1985, № 12(170) № 997.
- 17. Остапович М.В., Тихонова Е.А., Михайлюк И.П., Остапович В.Н. Рассеяние плоских рентгеновских волн при трехволновой дифракции в кристаллах с эквидистантно изогнутыми отражающими плоскостями // Металлофизика. – 1985. –7, №5. – С.17-24.
- Раранский Н.Д., Остапович М.В., Фодчук И.М., Остапович В.Н. Трехволновые маятниковые осцилляции в кристаллах с эквидистантно изогнутыми отражающими плоскостями // УФЖ. – 1986. – 31, №7. – С.1080-1088.
- 19. Кшевецкий С.А., Кшевецкая М.Л., Михайлюк И.П., Раранский Н.Д. Маятниковые полосы рентгеновских интерференций в трехволновом случае // Х совещание по применению рентгеновских лучей к исследованию материалов. – М., 1971. – С.134.
- 20. Кшевецька М.Л., Кшевецький С.А., Михайлюк І.П., Раранський М.Д. Дифракція рентгенівських променів у випадку трьох сильних хвиль // УФЖ. – 1973. – 18, №4. – С.578-587.
- Кшевецька М.Л., Кшевецький С.А., Михайлюк І.П., Раранський М.Д. Дифракція Лауе-Брегга у випадку трьох сильних хвиль // УФЖ. – 1973. – 18, №7. – С.1171-1177.

- 22. Козьмик В.Д., Кшевецька М.Л., Кшевецький С.А., Михайлюк І.П., Раранський М.Д. Компланарна трьохвильова дифракція рентгенівських променів // УФЖ. – 1974. – 19, №10. – С.1640-1644.
- 23..,Кшевецький С.А., Михайлюк І.П., Раранський М.Д. Вивчення трихвильових ефектів дифракції методом маятникових смуг // УФЖ. – 1975. – 20, №.3. – С.497-498.
- 24. Козьмик В.Д., Кшевецька М.Л., Михайлюк І.П., Раранський М.Д. Рентгенівська інтерферометрія в багатохвильовому випадку // УФЖ. – 1976. – 21, №10. – С.1628-1632.
- 25. Кшевецька М.Л., Раранський М.Д., Фодчук І.М., Шафранюк В.П. Дисперсійні ефекти при багатохвильовому розсіянні рентгенівських променів // УФЖ. – 1983. – 28, №12. – С.1846-1850.
- 26. Михайлюк І.П., Кшевецький С.А., Остапович М.В., Шафранюк В.П. Дифракційне обертання площини поляризації рентгенівських променів // УФЖ. – 1977. – 22, №1. – С.60-64.
- 27. *Kato N.* A theoretical study of pendellösung fringes.
 I. General consideration // Acta Cryst. 1961. 14, No.5. P.526-533.
- Kato N. A theoretical study of pendellösung fringes. II. Detailed discussion based upon a spherical wave theory // Acta Cryst. - 1961. - 14, No.6. - P.627-636.
- 29. Афанасьев А.М., Кон В.Г. Динамическая теория дифракции сферической рентгеновской волны. Общий формализм // ФТТ. 1977. 19, вып.6. С.1775- 1783.
- 30. Аристов В.В., Половинкина В.И., Шмытько И.М., Шулаков Е.В. Обнаружение фокусировки дифрагированных совершенным кристаллом рентгеновских лучей // Письма в ЖЭТФ. – 1978. – 28, вып. 1. – С.6-9.
- 31. Козьмик В.Д., Михайлюк И.П. Дифракционная фокусировка сферической рентгеновской волны // УФЖ. – 1978. – 23, №9. – С.1570-1571.
- 32. Козьмик В.Д., Михайлюк И.П. Экспериментальное обнаружения эффекта дифракционной фокусировки сферической рентгеновской волны // Письма в ЖЭТФ. – 1978. – 28, в.11. – С.673-674.
- 33. Козьмик В.Д., Раранский Н.Д., Фодчук И.М. Зависимость формы маятниковых полос от расстояния между образцом и пленкой // УФЖ. – 1980. – 25, №5. – С.852-853.
- 34. Hart M., Lang A.K. The influence of X-ray polarisation of the visibility of pendellösung fringes // Acta Cryst. – 1965. – 9, No.1. – P.73-77.
- 35. Tahemura S., Kato N. Absolute Measurement of Structure Factor of Si by using X-Ray Pendellösung and Interferometry fringes // Acta Cryst. – 1972. – A28, No.1. – P.69-80.
- Clementi E. Ab initiocomputations in atoms and molecules // IBM.J.Res. and developm. – 1965. – 9, No.1. – P.2-19.
- 37. Dewson B. The covalent bond in Silicon // Proc. Roy. Soc. – 1967. – A298, No.1455. – P.379-394.
- 38. Heuson H.K., Hewman P., Lea J.D., Shillman S.

HPS atomic scattering factors // Acta Cryst. – 1964. – **17**. – P.1040-1044.

- Doyle P.A., Turner P.S. Relativistic Hartree-Fock Xray and electron scattering factors... // Acta Cryst. – 1968. – A24. – P.390-393.
- 40. Götlicher S., Kupkal K., Nagoresen G., Wölfel E. Röntgenographische Bestimung der Elektronendichte-ferteilung in Kristallen. VI. Die Elektronen Ferteilung in Silicium // J. Phys. Chem. (BRD). – 1969. – 21, No.1-2. – S.133-145.
- 41. Kato N. Pendellösung fringes in X-ray diffraction // Acta Geol. Et Geogr., Bratislava. – 1969. – No.14. – P.43-74.
- Aldred J.E., Hart M. The electrondistribution in Silicon. I. Experiment // Proc. Roy. Soc., London. 1973. A332, No.1589. P.223-238.
- Batterman B.W., Pattel J.K. Pendellösung measurement of the atomic Scattering factor of Ge. // J. Appl. Phys. – 1968. – 39, No.3. – P.1882-1887.
- 44. International tables for X-ray crystallography / General Editor Lonsdale K. Birmingam, England: Kynoch Press, 1972. V.1-3.
- Cromer D.T. Anomalous dispersion corrections computed from Self-consistent field relativistic Dirac-Slater Wave functions // Acta Cryst. – 1965. – 18, No.1. – P.17-23.
- 46. *Kato N., Takeda T.* The real part of the anomalous dispersion of Si // J. Cryst. Soc. Japan. 1977. No.2. P.95-98.
- 47. Дроздовский В.Б., Михайлюк И.П., Раранский Н.Д. Определение показателей преломления методом рентгеновской интерферометрии // УФЖ. – 1972. – 17, №7. – С.1212-1214.
- 48. Дроздовський В.Б., Михайлюк І.П., Раранський М.Д. Дослідження аномального розсіяння рентгенівських променів поблизу К-краю поглинання // УФЖ. – 1974. – 19, №7. – С.1215-1216.
- 49. Раранский Н.Д., Дроздовский В.Б. Исследование дисперсии рентгеновских лучей методом рентгеновской интерферометрии // Материалы Выездной сессии Научного Совета АН СССР по проблеме "Образование и структура кристаллов". – Ереван. – 1975. – С.96-100.
- 50. Bonse U., Materlik G. Precisik interferometric measurement of the Ni K-edge for word scattering amplitude with synchrotron X-ray // Z. Phys. – 1976. – 24, No.191. – P.189-191.
- 51. Раранский Н.Д., Шафранюк В.П., Фодчук И.М., Михайлов В.А. О периодическом изменении единичного декремента показателя преломления // Субструктурное упрочнение металлов и дифракционные методы исследования. – Киев: Наукова думка, 1985. – С.216-217.
- 52. Hattori H., Kuriyama H., Katagawa T., Kato N. Absolute measurement of structure factor of Si single crystal by means of X-ray pendellösung fringes // J. Phys. Soc. Japan. 1965. 20, No.6. P.988-996.

- 53. Бояджян Г.С., Раранский Н.Д. Влияние термоупругой деформации на маятниковые полосы в Ge // Материалы юбилейной конференции молодых ученых Буковины. – Черновцы, 1970. – С.132-133.
- 54. *Чжан Ш.* Многоволновая дифракция рентгеновских лучей в кристаллах // Пер. с англ. под ред. Афанасьева А.М. – М.: Мир. – 1987. – 334с.
- 55. Кшевецкий С.А. Многоволновая рентгенография кристаллов. Дис... доктора физ.-мат. наук. Черновцы. 1987.
- 56. Кшевецкая М.Л. Рассеяние рентгеновских лучей кристаллами в трехволновом приближении: Дис... канд. физ.-мат. наук. – Черновцы. – 1974.
- 57. Энтин И.Р. О динамической дифракции рентгеновских лучей на кристалле с периодическим полем смещений // ЖЭТФ. – 1979. – 77, вып.1. – С.214-222.
- 58. Остапович М.В., Михайлюк И.П., Остапович В.Н. Многоволновая дифракция плоских волн в кристаллах с эквидистантно изогнутыми атомными плоскостями // Тез. докл. II Всесоюзного совещания по методам и аппаратуре для исследований когерентного взаимодействия излучения с веществом. – Ереван, 1982. – С.25-26.
- 59. Раранский Н.Д., Остапович М.В., Фодчук И.М. Многоволновые маятниковые осцилляции в кристаллах с эквидистантно изогнутыми опережающими плоскостями / Черновицкий госуниверситет. – 1984. – 30с. – Деп. В Укр. НИИНТИ 10.10.84 №1691 Ук-84. Деп.
- 60. Раранский Н.Д., Фодчук И.М. Многоволновое рассеяние рентгеновских лучей в кристалле с периодическим полем смещений // Тез. докл. Всесоюзного совещания"Проблемы рентгеновской диагностики несовершенства кристаллов". – Ереван, 1985. – С.60-61.
- 61. Струк Я.М., Бобровник С.В. Товщинні осциляції інтенсивності у деформованих кристалах Si // Науковий вісник ЧНУ. Вип. 52: Фізика. Електроніка. – Чернівці: ЧНУ, 1999. – С.41-44.