УДК 544.15: 544.183.5:544.182.24

© Баб'юк Д.П.¹, Корховіц Я.², 2014

¹Чернівецький національний університет імені Юрія Федьковича, Україна ²Ягелонський університет, Краків, Польща

АВ INITIO РОЗРАХУНОК ПАРАМЕТРІВ ПЕРЕХІДНИХ СТАНІВ ДЛЯ СИСТЕМИ H₂Cl

Методами MRCI+Q та UCCSD(T) розраховано параметри перехідних станів в триатомній системі H_2Cl . Дані одержані в базисах aug-cc-pVnZ з n=D, T, Q, 5, 6 екстраполювались на повний базисний набір. Встановлено, що висоти потенціальних бар'єрів нижчі від відомих в літературі даних для такої системи.

Ключові слова: поверхня потенціальної енергії, H₂Cl, метод MRCI+Q, метод UCCSD(T).

Детальне вивчення динаміки хімічних реакцій для конкретної системи потребує в першу чергу адіабатичної поверхні потенціальної енергії (ППЕ). Головна трудність тут – це вимога високої точності ППЕ не лише для області перехідного стану, але й на відстанях, де проявляються далеко діючі Ван-дер-ваальсові сили. Для відносно малих систем з легкими атомами такі ППЕ розраховано для багатьох різноманітних комбінацій трьох і чотирьох атомів [1]. Включення атомів третього і вищих періодів періодичної системи представляє складнішу розрахункову задачу. Однак для цих систем також існує ряд робіт, де отримано глобальну ППЕ [2]. Прогрес в обчислювальній техніці робить можливим підвищення точності розрахунків. Тому вдосконалення наявних ППЕ дозволить вирішити деякі розбіжності між теоретичними і експериментальними результатами для таких систем.

Мета цієї роботи полягає в *ab initio* розрахунках перехідного стану при різних конфігураціях атомів для триатомної системи H₂Cl. Раніше динаміка реакцій у такій системі розраховувалася нами [3] з використанням ППЕ BW2 роботи [4]. Для її розрахунку використовувався метод мультиреференсної конфігураційної взаємодії (MRCI+Q) 3 використанням базисів aug-cc-pV5Z для атомів Гідрогену та aug-cc-pVQZ атомів Було встановлено, Хлору. що висота потенціального бар'єру повільно сходиться з ростом базису, а тому одержану в такий спосіб ΠΠΕ названою авторами BW1, трансформовано масштабованої шляхом зовнішньої кореляції в ППЕ ВW2.

У нашій роботі ми не користуємось цією технікою, а проводимо послідовні розрахунки від нижчого до вищого базису з подальшою екстраполяцією на повний базисний набір (CBS) [5]. Крім того, в цій роботі розрахунки проводитимуться як аналогічним до роботи [4] методом MRCI+Q, так і методом зв'язаних кластерів (UCCSD(T)). Останній метод характеризується вищою точністю і меншою затратою комп'ютерних ресурсів.

Постановка задачі

Будемо розглядати лінійне розташування трьох атомів у системі H₂Cl. Саме за таких конфігурацій реалізується мінімальна висота потенціального бар'єра. Можливі два типи конфігурацій, які позначатимемо літерами А та Б (рис.1). Конфігурація А веде до реакції заміщення, конфігурація Б – до реакції відщеплення. Перехідний стан (TS – конфігурація із сідлоподібною точкою на ППЕ) для конфігурації А реалізується при симетричному

розташуванні атомів Н відносно атома Cl. Тому оптимізація цього стану проходить простіше, оскільки накладаються дві обмежувальні умови – замороження кута H-Cl-H до 180° та рівності $r_1 = r_2$. Пошук перехідного стан для конфігурації Б відбувається лише за обмежувальної умови \angle Cl-H-H= 180° . Висота потенціального бар'єра E_{barr} для конфігурації А шукається як

$$E_{barr} = E_{TS} - \left(E_{HCl} - E_H\right),\tag{1}$$

де E_{TS} – енергія перехідного стану H-Cl-H, E_{HCl} – рівноважна енергія молекули HCl, E_H – енергія одиничного атома H. Маючи E_{HCl} , можна знайти також енергію дисоціації HCl, як $D_e = E_H + E_{Cl} - E_{HCl}$. Цей параметр разом із рівноважною відстанню r_{eq} для молекули HCl можна порівнювати з літературними експериментальними даними. Узгодження останніх свідчитиме про ступінь точності розрахунків.

Для конфігурації Б аналог формули (1) буде

$$E_{barr} = E_{TS} - (E_{H_2} - E_{Cl}), \qquad (2)$$

де E_{TS} – енергія перехідного стану СІ-Н-Н, E_{H_2} – рівноважна енергія молекули H₂, E_{Cl} – енергія одиничного атома СІ. Енергія дисоціації молекули H₂ буде $D_e = 2E_H - E_{H_2}$.

Розрахункова частина

Усі розрахунки проводилися з використанням програмного пакета Molpro2012 [6] на комп'ютерному ресурсі PlGrid [7]. При цьому однакові завдання виконувалися незалежно двома методами: MRCI+Q та UCCSD(T). У першому випадку первинні орбіталі добувались методом CASSCF шляхом усереднення трьох найнижчих станів, два з яких симетрії A', а один – A".

У другому – початкові орбіталі знаходились методом НF. Базисний набір aug-ccpVnZ поступово розширювався збільшенням дзета експоненти (n=D,T,Q,5,6). Такий підхід дозволяє екстраполювати результати до повного базисного набору CBS, використовуючи формулу [5]

$$E(\infty) = E(n) - Be^{-(n-1)} - Ce^{-(n-1)^2}$$
, (3)

де n – номер базису (2, 3, 4, 5, 6 для n=D, T, Q, 5, 6 відповідно), $E(\infty)$ екстрапольоване значення в граничному випадку CBS, B і C – постійні. Така екстраполяція може проводитись не лише для енергій, але й для геометричних параметрів за умови їх монотонної зміни з ростом базису. У рівнянні (1) ϵ 3 невідомих параметри $E(\infty)$, A, B. Для їх однозначного визначення потрібно лише 3 значення E(n). Екстраполяція проводилась для двох випадків з n=T,Q,5 (CBS^{*}) та n=Q,5,6 (CBS^{**}). З двох значень CBS^{*} i CBS^{**} отримували середнє арифметичне, позначене CBS (див. табл.1-3).

Обговорення результатів

У табл.1 наведено дані розрахунку, одержані для конфігурації А методом MRCI+Q. Цей випадок цікавий тим, що він містить і результати роботи [4], згідно з якою (випадок немасштабованої ППЕ ВW1) висота бар'єра складає E_{harr} =18.46 ккал/моль при відстанях $r_1 = r_2 = 2.800$ ат.од., а енергія дисоціації HCl D_e=106.29 ккал/моль і рівноважна відстань r_{ea}=2.411 ат.од. У цій роботі використовувався базис для Гідрогену aug-ссpV5Z, а для Хлору - aug-cc-pVQZ без hфункцій. Тому ці результати мали б узгоджуватися з нашими, якщо вони знаходитимуться в інтервалі між результатами базисів aug-cc-pVQZ та aug-cc-pV5Z. З табл.1 видно, що цей факт має місце.

Із підвищенням базису, енергія дисоціації наближаючись зростає, до експериментального значення в 107.36 ккал/моль [8]. Зокрема, для найвищого можливого базису вона складає 107.09 ккал/моль, а якщо проводити екстраполяцію, то отримаємо значення в 107.26 ккал/моль, яке лише на 0.09% відрізняється від експериментального. стосується висоти потенціального Що бар'єра, то вона спадає, але навіть екстрапольоване значення досягає не величини одержаної в роботі [4] шляхом масштабування поверхні ВW1 у поверхню BW2. Отже, можна зробити висновок, що метод MRCI+Q має обмежені можливості щодо цієї системи, оскільки підвищення базису не веде до поліпшення результату. Аналогічний результат одержується і для випадку конфігурації Б (дані тут не наводяться).

Цікаве порівняння результатів, отриманих методом зв'язаних кластерів. Спочатку проаналізуємо конфігурацію А.

Таблиця 1

	aug-cc-pVDZ	aug-cc-pVTZ	aug-cc-pVQZ	aug-cc-pV5Z	aug-cc-pV6Z	CBS*	CBS**	CBS
Рівноважна відстань молекули HCl, ат.од.	2.444	2.419	2.416	2.413	2.413	2.411	2.413	2.412
Енергія дисоціації молекули HCl, ккал/моль	100.81	104.70	106.29	106.96	107.09	107.34	107.18	107.26
Висота потенціального бар'єра Е _{barr} , ккал/моль	20.81	19.19	18.69	18.35	18.29	18.15	18.24	18.20
Геометрія перехідного стану (r ₁ = r ₂)								
r ₁ , ат.од.	2.851	2.814	2.806	2.799	2.797	2.795	2.796	2.796

Результати розрахунків для конфігурації А методом MRCI+Q у різних базисах

Таблиця 2

Результати розрахунків для конфігурації А методом UCCSD(T) у різних базисах

	aug-cc-pVDZ	aug-cc-pVTZ	aug-cc-pVQZ	aug-cc-pV5Z	aug-cc-pV6Z	CBS*	CBS**	CBS
Рівноважна відстань молекули HCl, ат.од.	2.442	2.417	2.414	2.412	2.412	2.411	2.412	2.412
Енергія дисоціації молекули HCl, ккал/моль	100.89	104.94	106.37	107.04	107.18	107.43	107.26	107.34
Висота потенціального бар'єра Е _{barr} , ккал/моль	20.69	18.82	18.20	17.83	17.76	17.61	17.71	17.66
Геометрія перехідного стану (r ₁ = r ₂)								
r ₁ , ат.од.	2.848	2.811	2.804	2.797	2.796	2.793	2.795	2.794

Екстрапольоване на CBS значення енергії дисоціації 107.34 ккал/моль лише на 0.02% менше за експериментальне. Це вказує на те, що і висота бар'єра повинна бути близькою до істинного значення. У роботі [4] через незадовільний збіг результатів MRCI+Q зниження висоти досягалося масштабуванням, у ході якого одержано E_{barr} =17.89 ккал/моль. Як видно з табл.2, одержане методом зв'язаних кластерів екстрапольоване значення висоти ще менше і складає E_{barr} =17.66 ккал/моль.

Для конфігурації Б параметри, отримані з масштабованої ППЕ ВW2, складають: енергія дисоціації H₂ – 109.67 ккал/моль, висота бар'єра – 7.61 ккал/моль [4]. Експеримен-

тальна величина енергії лисоціації 109.47 ккал/моль, що дає 0.18% відносної похибки. Наші розрахунки, як видно з табл.3, дають 109.43 ккал/моль, що відрізняє від експериментального лише на 0.04%. На жаль, поки не існує прямих експериментальних методів визначення висоти потенціального бар'єра, тому розраховані значення можна порівнювати лише між собою. У нашому випадку його висота нижча від висоти в BW2 на 2.15%. Про можливість нижчої висоти, ніж у ППЕ ВW2, припускалося на підставі аналізу результатів дослідження реакційної динаміки в роботі [9].

Таблиця 3

Результати розраху	унків для конфігу	рації Б методом U	CCSD(T) у різних базисах
--------------------	-------------------	-------------------	--------------------------

	aug-cc-pVDZ	aug-cc-pVTZ	aug-cc-pVQZ	aug-cc-pV5Z	aug-cc-pV6Z	CBS*	CBS**	CBS
Рівноважна відстань молекули H ₂ , ат.од.	1.439	1.404	1.402	1.401	1.401	1.400	1.401	1.401
Енергія дисоціації молекули H ₂ , ккал/моль	104.31	108.55	109.17	109.35	109.41	109.45	109.41	109.43
Висота потенціального бар'єра Е _{barr} , ккал/моль	8.45	8.52	7.87	7.55	7.54	7.36	7.53	7.45
Геометрія перехідного стану								
r ₁ , ат.од.	2.723	2.696	2.701	2.709	2.711	2.714	2.712	2.713
r ₂ , ат.од.	1.889	1.880	1.867	1.851	1.848	1.842	1.846	1.844

Висновок

Розраховано параметри перехідного стану в системі H₂Cl, використовуючи методи мультиреференсної конфігураційної взаємодії та зв'язаних кластерів. Установлено, що останній метод дає ліпші результати. Це підтверджено порівнянням енергій дисоціації молекул HCl i H₂ з експериментальними значеннями. До того ж метод зв'язаних кластерів швидший і використовує менше пам'яті ніж MRCI+Q. Одержані висоти потенціальних бар'єрів нижчі порівняно з ППЕ BW2. Це впливатиме на динаміку хімічних реакцій за участі двох атомів Гідрогену й одного атома Хлору. Тому є сенс розрахувати поліпшену глобальну ППЕ для такої системи. Однак перешкодою до цього є проблема збіжності в методі зв'язаних кластерів для великих відстаней між атомами. Розв'язком може служити гібридна методика, в якій залучаються різні методи розрахунку залежно від відстаней між атомами з наступним згладжуванням ППЕ.

Подяка

Ця робота виконана за рахунок стипендіальної програми EMERGE. Автори також вдячні інфраструктурі PL-GRid за наданий доступ до комп'ютерних ресурсів і програмного забезпечення.

Перелік літератури

 Althorpe S. Quantum scattering calculations on chemical reactions / S. C. Althorpe, D. C. Clary // Annu. Rev. Phys. Chem. – 2003. – V.54. – P. 494 – 529.

- Jiang B. New ab initio coupled potential energy surfaces for the Br(2P3/2, 2P1/2) + H₂ reaction / B. Jiang, C. Xie, D. Xie // J. Chem. Phys. - 2011. - V. 135. - P. 164311.
- Бабюк Д. П. Исследование в рамках квантового подхода полной реакционной динамики при взаимодействии H + DCl / Д. П. Бабюк, В. В. Нечипорук // Химическая физика. – 2012. – Т. 31, №1. – С. 3 – 6.
- Bian W. Global ab initio potential energy surfaces for the ClH₂ reactive system / W.Bian, H.-J. Werner // J. Chem. Phys. – 2000. – V. 112. – P. 220 – 229.
- Peterson K. A. Benchmark calculations with correlated molecular wave functions. IV. The classical barrier height of the H+H₂→H₂+H reaction / K. A. Peterson, D. E. Woon, T. H. Dunning // J. Chem. Phys. – 1994. – V. 100. – P. 7410 – 7415.
- 6. MOLPRO is a package of ab initio programs written by H.-J. Werner, P. J. Knowles et al. http://www.molpro.net/
- 7. PL-Grid infrastructure: http://www.plgrid.pl
- Multireference configuration interaction calculations for the F(2P)+HCl→HF+Cl(2P) reaction: A correlation scaled ground state (1 2A') potential energy surface / M. P. Deskevich, M. Y. Hayes, K. Takahashi, R. T. Skodje, D. J. Nesbitt // J. Chem. Phys. – 2006. – V. 124. – P. 224303.
- Gao B. H.-T. Time-dependent quantum dynamics study of the Cl+H₂ reaction / B. H.-T. Gao, K.-L. Han, J.Z.H. Zhang // J. Chem. Phys. – 2000. – V. 113. – P. 1434 – 1440.

Summary

Babyuk D.P., Korchowiec Ya.

AB INITIO COMPUTATION OF TRANSITION STATES PARAMETERS FOR THE H $_2$ CI SYSTEM

The transition states parameters are computed for the H_2Cl system using the MRCI+Q and UCCSD(T) methods. The obtained with aug-cc-pVnZ basis sets (n=D, T, Q, 5, 6) results were extrapolated to the complete basis set. It is found that the barrier heights are lower than the known in literature values for similar system.

Keywords: potential energy surface, H₂Cl, MRCI+Q, UCCSD(T).