УДК 544.174.2; 544.182.32; 544.144.4; 544.144.53

© Баб'юк Д.П., Скіп Б.В., 2015

Чернівецький національний університет імені Юрія Федьковича, Україна

КВАНТОВО-ХІМІЧНЕ ДОСЛІДЖЕННЯ СТРУКТУРИ ТА ВЛАСТИВОСТЕЙ САФРАНІНУ Т

Методом DFT/B3LYP у базисі 6-31+G(d,p) розраховано геометричні та електронні параметри катіону сафраніну у газовій фазі та водному середовищі. Отримано вертикальні електронні переходи для шести станів і змодельовано на їх основі УФ-видимий спектр досліджуваної сполуки. Батохромний зсув при переході у водне середовище складає $\Delta\lambda$ =24.19 нм.

Ключові слова: сафранін Т, B3LYP, TDDFT, кратність зв'язку, УФ-видимий спектр.

Сафранінами називають азонієві сполуки симетричних 2,8-диметил-3,7-діаміно-феназинів. Одним з таких є сафранін Т або сафранін О ($C_{20}H_{19}ClN_4$; 3,7-діаміно-2,8-диметил-5-феніл-феназино-5-іум хлорид)

У водних розчинах він добре дисоціює на катіон і хлорид аніон і при цьому створює лужне середовище. Сафранін Т знайшов своє практичне застосування у гістології та цитології для забарвлення ядер клітин. Крім того, він служить як фотосенсибілізатор у реакціях з перенесенням заряду та енергії [1], а також у фотополімеризації при видимому світлі [2].

Розрахунок структури сафраніну Т проводився у [3] методом теорії функціоналу густини з використанням функціоналу B3LYP з базисом 6-311+G(d,p). Проте основна увага приділялася вивченню основного електронного стану цієї сполуки, її ІЧ та КР-спектрів, але нехтувалося впливом розчиника.

Мета цієї роботи полягає у детальному вивченні просторової структури катіона сафраніну Т у газовій фазі та водному середовищі та моделюванні його УФ-видимого спектра.

Розрахункова частина

Усі розрахунки проводилися з використанням спеціалізованого програмного забезпечення Gaussian09 [4] на комп'ютерному ресурсі PlGrid [5]. Методика розрахунку базувалась на основі теорії функціоналу густини (DFT) з B3LYP в базисному наборі 6-31G++(p,d). Щоб пришвидшити процес, первинна структура сафраніну Т формувалася методами молекулярної механіки, а потім оптимізація методом проводилась DFT/B3LYP у мінімальному базисі STO-3G. Лише після цього був задіяний базис 6-31G++(p,d). Оптимізована у такий спосіб конфігурація сполуки відповідає її рівноважному розташуванню ядер при відсутності будь-якого зовнішнього впливу, тобто наближено це реалізуватиметься для газового стану сафраніну Т. Якщо молекула потрапляє у рідке середовище, то тут обов'язково потрібно враховувати вплив її взаємодії з молекулами розчинника. Одним зі способів є використання моделі поляризаційного континуума (РСМ) [6]. Роль розчинника зводиться до створення неперервного електричного поля, що діє на перерозподіл електронної густини досліджуваної молекули. Єдиний параметр, що характеризує розчинник є діелектрична проникність. У нашому випадку вибиралася вода зі стандартним у Gaussian09 значенням ε=78.355.

Досліджувана структура містить 43 атоми, тобто загальне число ступенів вільності складатиме 123. Проте, як свідчать попередні розрахунки в базисі STO-3G, оптимізована структура катіона сафраніну Т володіє високим ступенем симетрії. Феназинова та фенільна частини по окремості належать до точкової групи симетрії С₂. Ці два фрагменти розташовуються один до одного під прямим кутом, а отже, і вся структура катіону сафраніну Т належить також до точкової групи С₂. Урахування симетрії зменшує кількість ступенів вільності до 41, що значно прискорює розрахунок.

Для рівноважної конфігурації сафраніну Т розраховувалися вертикальні електронні переходи методом TDDFT/B3LYP в тому ж базисі 6-31G++(p,d). Маючи енергії збуджених електронних рівнів і силу осцилятора для певних наборів переходів, моделювався УФвидимий спектр.

Обговорення результатів

Для аналізу особливостей молекулярної структури будемо користуватися трьома параметрами: довжина зв'язку, кратність зв'язку та надлишковий заряд на атомах. Два останні параметри розраховувались на основі аналізу натуральних зв'язкових орбіталей (NBO). На рис. 1 показано нумерацію атомів в катіоні сафраніну Т, що фігурувала у розрахунках. Його структурні та розраховані деякі електронні характеристики наведено в табл. 1-3.

Фенільний фрагмент сафраніну Т майже не відрізняється за параметрами від молекули

бензену. Проведений нами окремий розрахунок молекули бензену тим же методом ВЗLYP/6-31++G(d,p) для газової фази дає довжини зв'язків R_{C-C} =1.398 Å, R_{C-H} =1.086 Å. Кратність для них відповідно складає 1.4375 та 0.915. Однак, як випливає з даних табл.3, фенільний фрагмент катіона сафраніну Т із зарядом +1 концентрує на собі +0.2783 сумарного заряду, що становить лише 27,8%.

Остов феназинового фрагменту лежить у площині, однак ароматичність крайніх циклів послаблюється внаслідок великої кількості різноманітних замісників. Зокрема, зв'язок 1С-2С має кратність усього 1.169. А сусідній з ним 2С-3С збільшує свою кратність до 1.589. Тож для зв'язку меншої кратності зростає відстань між атомами (див. табл.1-2).

Рис.1. Просторова конфігурація катіона сафраніну Т у газовій фазі

Таблиця 1

Геометричні парамет	ри для рівноважно	ої конфігурації і	катіону саф	раніну Т	
у газовій фазі (Рис.1) та водному се	редовищі, розрахо	ваних методом	DFT/B3LY	Р у базисі 6-31++G(с	d,p)

T i j za3oba dasa bodhe cepedobu ue k za3oba dasa bodhe cepedobu ue n za3oba dasa bodhe cepedobu ue C 1 -	Е л е м е н	А т о м	A T O M	Відстань R між атомами <i>i</i> та <i>j</i> , Å		A T O M	Кут α між атомами і, <i>j</i> та k		А т о м	Дігедральний кут D між площиною атомів <i>i, j, k</i> та атомом <i>n</i>	
C 1 -	Т	i	j	газова фаза	водне середови ше	k	газова фаза	водне середови ше	n	газова фаза	водне середови ше
C 2 1 1.44787 1.44960 - <	С	1	-	_	,.	_	-		-	-	-
C 3 2 1.36916 1.36898 1 117.93702 118.02050 - - - C 4 3 1.42759 1.42794 2 122.61009 122.67426 1 0.02562 0.02562 C 5 4 1.44065 1.44138 3 118.40614 118.25025 2 0.02562 0.02562 C 6 5 1.39422 1.39308 4 119.77603 119.89199 3 0.02562 0.02562 C 6 5 1.39422 1.39308 4 119.77603 119.89199 3 0.02562 0.02562 H 7 6 1.08316 1.08267 5 120.38532 120.50610 4 179.97438 179.97438 N 8 1 1.35689 1.35324 2 119.14517 119.29114 3 179.97438 179.97438 H 9 3 1.08517 1.08539 2 120.86347 <t< td=""><td>C</td><td>2</td><td>1</td><td>1.44787</td><td>1.44960</td><td>-</td><td>-</td><td></td><td>-</td><td>-</td><td>-</td></t<>	C	2	1	1.44787	1.44960	-	-		-	-	-
C 4 3 1.42759 1.42794 2 122.61009 122.67426 1 0.02562 0.02562 C 5 4 1.44065 1.44138 3 118.40614 118.25025 2 0.02562 0.02562 C 6 5 1.39422 1.39308 4 119.77603 119.89199 3 0.02562 0.02562 H 7 6 1.08316 1.08267 5 120.38532 120.50610 4 179.97438 179.97438 N 8 1 1.35689 1.35324 2 119.14517 119.29114 3 179.97438 179.97438 H 9 3 1.08517 1.08539 2 120.86347 120.51464 1 179.97438 179.97438 N 10 4 1.33640 1.33731 3 118.97026 119.18975 2 179.97438 179.97438 C 11 10 1.33640 1.33731 4 11	С	3	2	1.36916	1.36898	1	117.93702	118.02050	-	-	-
C 5 4 1.44065 1.44138 3 118.40614 118.25025 2 0.02562 0.02562 C 6 5 1.39422 1.39308 4 119.77603 119.89199 3 0.02562 0.02562 H 7 6 1.08316 1.08267 5 120.38532 120.50610 4 179.97438 179.97438 N 8 1 1.35689 1.35324 2 119.14517 119.29114 3 179.97438 179.97438 H 9 3 1.08517 1.08539 2 120.86347 120.51464 1 179.97438 179.97438 N 10 4 1.33640 1.33731 3 118.97026 119.18975 2 179.97438 179.97438 C 11 10 1.33640 1.33731 4 119.01960 119.02871 3 179.97438 179.97438 C 12 11 1.44065 1.44138 10	С	4	3	1.42759	1.42794	2	122.61009	122.67426	1	0.02562	0.02562
C651.394221.393084119.77603119.8919930.025620.02562H761.083161.082675120.38532120.506104179.97438179.97438N811.356891.353242119.14517119.291143179.97438179.97438H931.085171.085392120.86347120.514641179.97438179.97438N1041.336401.337313118.97026119.189752179.97438179.97438C11101.336401.337314119.01960119.028713179.97438179.97438C12111.440651.4413810122.62360122.5600040.025620.02562N1351.384201.382854117.23251117.232703170.07438170.07438	С	5	4	1.44065	1.44138	3	118.40614	118.25025	2	0.02562	0.02562
H 7 6 1.08316 1.08267 5 120.38532 120.50610 4 179.97438 179.97438 N 8 1 1.35689 1.35324 2 119.14517 119.29114 3 179.97438 179.97438 H 9 3 1.08517 1.08539 2 120.86347 120.51464 1 179.97438 179.97438 N 10 4 1.33640 1.33731 3 118.97026 119.18975 2 179.97438 179.97438 179.97438 C 11 10 1.33640 1.33731 4 119.01960 119.02871 3 179.97438 179.97438 C 12 11 1.44065 1.44138 10 122.62360 122.56000 4 0.02562 0.02562 N 12 5 1.38420 1.38285 4 117.232870 3 170.07438 170.07438	С	6	5	1.39422	1.39308	4	119.77603	119.89199	3	0.02562	0.02562
N 8 1 1.35689 1.35324 2 119.14517 119.29114 3 179.97438 179.97438 H 9 3 1.08517 1.08539 2 120.86347 120.51464 1 179.97438 179.97438 N 10 4 1.33640 1.33731 3 118.97026 119.18975 2 179.97438 179.97438 C 11 10 1.33640 1.33731 4 119.01960 119.02871 3 179.97438 179.97438 C 12 11 1.44065 1.44138 10 122.62360 122.56000 4 0.02562 0.02562 N 12 5 1.38420 1.38285 4 117.232870 2 170.07438 170.07438	Η	7	6	1.08316	1.08267	5	120.38532	120.50610	4	179.97438	179.97438
H 9 3 1.08517 1.08539 2 120.86347 120.51464 1 179.97438 179.97438 N 10 4 1.33640 1.33731 3 118.97026 119.18975 2 179.97438 179.97438 C 11 10 1.33640 1.33731 4 119.01960 119.02871 3 179.97438 179.97438 C 12 11 1.44065 1.44138 10 122.62360 122.56000 4 0.02562 0.02562 N 12 5 1.3840 1.38285 4 117.332351 117.33270 3 170.07438 170.07438	Ν	8	1	1.35689	1.35324	2	119.14517	119.29114	3	179.97438	179.97438
N 10 4 1.33640 1.33731 3 118.97026 119.18975 2 179.97438 179.97438 C 11 10 1.33640 1.33731 4 119.01960 119.02871 3 179.97438 179.97438 C 12 11 1.44065 1.44138 10 122.62360 122.56000 4 0.02562 0.02562 N 13 5 1.38420 1.38285 4 117.33251 117.33270 3 170.07438 170.07438	Н	9	3	1.08517	1.08539	2	120.86347	120.51464	1	179.97438	179.97438
C 11 10 1.33640 1.33731 4 119.01960 119.02871 3 179.97438 179.97438 C 12 11 1.44065 1.44138 10 122.62360 122.56000 4 0.02562 0.02562 N 12 5 1.38420 1.38285 4 117.23251 117.23270 2 170.07428 170.07428	Ν	10	4	1.33640	1.33731	3	118.97026	119.18975	2	179.97438	179.97438
C 12 11 1.44065 1.44138 10 122.62360 122.56000 4 0.02562 0.02562 N 12 5 1.38430 1.38285 4 117.23251 117.23270 3 170.07438 170.07438	С	11	10	1.33640	1.33731	4	119.01960	119.02871	3	179.97438	179.97438
N 12 5 1 29420 1 29295 4 117 22251 117 22970 2 170 07429 170 07429	С	12	11	1.44065	1.44138	10	122.62360	122.56000	4	0.02562	0.02562
N 15 5 1.58430 1.58285 4 117.55351 117.55879 5 179.97438 179.97438	Ν	13	5	1.38430	1.38285	4	117.33351	117.33879	3	179.97438	179.97438
C 14 11 1.42759 1.42794 10 118.97026 119.18975 4 179.97438 179.97438	С	14	11	1.42759	1.42794	10	118.97026	119.18975	4	179.97438	179.97438
C 15 14 1.36916 1.36898 11 122.61009 122.67426 10 179.97438 179.97438	С	15	14	1.36916	1.36898	11	122.61009	122.67426	10	179.97438	179.97438
C 16 15 1.44787 1.44960 14 117.93702 118.02050 11 0.02562 0.02562	С	16	15	1.44787	1.44960	14	117.93702	118.02050	11	0.02562	0.02562
C 17 12 1.39422 1.39308 11 119.77603 119.89199 10 179.97438 179.97438	С	17	12	1.39422	1.39308	11	119.77603	119.89199	10	179.97438	179.97438
H 18 14 1.08517 1.08539 11 116.52644 116.81110 10 0.02562 0.02562	Н	18	14	1.08517	1.08539	11	116.52644	116.81110	10	0.02562	0.02562
N 19 16 1.35689 1.35324 15 119.14517 119.29114 14 179.97438 179.97438	Ν	19	16	1.35689	1.35324	15	119.14517	119.29114	14	179.97438	179.97438
C 20 2 1.50642 1.50585 1 120.22001 120.16561 3 179.97438 179.97438	С	20	2	1.50642	1.50585	1	120.22001	120.16561	3	179.97438	179.97438
H 21 20 1.09756 1.09713 2 111.71997 111.59596 1 60.43224 60.13315	Н	21	20	1.09756	1.09713	2	111.71997	111.59596	1	60.43224	60.13315
H 22 20 1.09756 1.09713 2 111.71997 111.59596 1 299.56776 299.86685	Η	22	20	1.09756	1.09713	2	111.71997	111.59596	1	299.56776	299.86685
H 23 20 1.09153 1.09174 2 110.65580 110.53026 1 179.97438 179.97438	Н	23	20	1.09153	1.09174	2	110.65580	110.53026	1	179.97438	179.97438
C 24 15 1.50642 1.50585 14 121.84297 121.81389 11 179.97438 179.97438	С	24	15	1.50642	1.50585	14	121.84297	121.81389	11	179.97438	179.97438
H 25 24 1.09153 1.09174 15 110.65580 110.53026 14 0.02562 0.02562	Н	25	24	1.09153	1.09174	15	110.65580	110.53026	14	0.02562	0.02562
H 26 24 1.09756 1.09713 15 111.71997 111.59596 14 240.43224 240.13315	Н	26	24	1.09756	1.09713	15	111.71997	111.59596	14	240.43224	240.13315
H 27 24 1.09756 1.09713 15 111.71997 111.59596 14 119.56776 119.86683	H	27	24	1.09756	1.09713	15	111.71997	111.59596	14	119.56776	119.86685
H 28 17 1.08316 1.08267 12 120.38532 120.50610 11 179.97438 179.97438	H	28	17	1.08316	1.08267	12	120.38532	120.50610	11	179.97438	179.97438
H 29 8 1.00691 1.00736 1 121.69839 121.90054 2 0.02562 0.02562	H	29	8	1.00691	1.00736	1	121.69839	121.90054	2	0.02562	0.02562
H 30 8 1.00819 1.00905 1 121.12916 121.03461 2 179.97438 179.97438	H	30	8	1.00819	1.00905		121.12916	121.03461	2	179.97438	179.97438
H 31 19 1.00691 1.00736 16 121.69839 121.90054 15 0.02562 0.02562	H	31	19	1.00691	1.00/36	16	121.69839	121.90054	15	0.02562	0.02562
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	H	32	19	1.00819	1.00905	16	121.12916	121.03461	15	179.97438	179.97438
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	C	33	13	1.451/5	1.45118) 12	119.46691	119.41315	4	1/9.9/438	1/9.9/438
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	C	34	33	1.39042	1.39010	13	119.31213	119.20380) 12	270.00000	270.00000
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	C	35	34	1.39/3/	1.39/41	33	119.08399	119.03081	13	1/9.9/438	1/9.9/438
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		30	26	1.39829	1.39800	25	120.13709	120.14281	24	0.02562	0.02562
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		3/	30	1.39829	1.39800	12	120.18209	120.1/238	54	0.02302	0.02302
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	U U	30	33	1.39042	1.39010	22	119.31213	119.20360	12	0.02562	0.02562
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	п	39	25	1.00370	1.00320	24	120.03341	110 60066	22	170 07429	0.02302
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	п	40	35	1.08542	1.00333	34	119.03190	119.00000	33	1/9.9/438	1/7.9/438
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	п	41	30	1.00343	1.08533	36	120 21005	117.71301	34	170 07/28	170 07/20
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	H	43	38	1.08570	1.08526	33	120.21093	120.25055	13	0.02562	0.02562

Номери	Кратність зв'язку			
сусідніх	газова	водне		
атомів	фаза	середовище		
1-2	1.1691	1.1627		
2-3	1.5885	1.5913		
3-4	1.2036	1.2035		
4-5	1.1544	1.1507		
5-6	1.3869	1.3914		
6-1	1.3482	1.3425		
1-8	1.2540	1.2710		
6-7	0.8998	0.8958		
3-9	0.8975	0.8995		
2-20	1.0349	1.0357		
4-10	1.3931	1.3870		
5-13	1.1410	1.1410		
8-30	0.7964	0.7869		
20-22	0.9118	0.9106		
13-33	0.9180	0.9180		
33-38	1.4047	1.4055		
38-37	1.4314	1.4312		
37-36	1.4377	1.4382		
38-43	0.9035	0.9006		

Таблиця 2 у за Вайбергом лля леяких пар

Кратність зв'язку за Вайбергом для деяких пар сусідніх атомів

Нетиповою для розрахованого катіона сафраніну Т є конфігурація аміногруп, які лежать у площині феназинового фрагмента. Як відомо, аміногрупа в молекулі аніліну відхиляється від площини ароматичного кільця [7] внаслідок неподіленої пари електронів. У випадку сафраніну Т ці два електрони задіюються на зв'язок 3 електронно-дефіцитним атомом 1С, кратність якого становить аж 1,254. Для порівняння, кратність такого ж зв'язку N-C в о-толуїдині лише 1,117. Отже, делокалізація електронної пари аміногрупи внаслідок контактування зі збідненим електронною густиною атомом 1С формування призводить ДО площинної конфігурації атомів 1С-8N-29H-30H. Крім того, такий перерозподіл електронної густини веде до послаблення зв'язку N-H у сафраніні Т (кратність 0,796) порівняно з *о*-толуїдином (кратність 0,823). Це свідчить про те, що аміногрупа сафраніну Т проявлятиме вищу реакційну здатність порівняно з подібними до неї сполуками. Дещо меншою, але все-таки реакційною здатністю хорошою будуть володіти атоми гідрогену феназинового фрагмента 7Н, 9Н, 18Н та 28Н. Кратність зв'язку для них із сусідніми атомами карбону знаходиться в діапазоні 0,894÷0,898. Для отолуїдину вона 0,917÷0,918. Отже, атоми гідрогену в аміногрупах та зв'язані з карбонами ароматичних циклів повинні володіти доброю реакційною здатністю. Це підтверджується в реакціях електрохімічної полімеризації сафраніну Т, яка проходить саме по цих реакційних центрах [8-9]. Висока реакційна здатність гідрогенів аміногруп при анодній електрополімеризації підтверджується високим позитивним зарядом на них, а саме: +0,433÷0,436 (табл.3).

Зазначимо, аналізуючи табл.3, що заряди на атомах іона розподіляються не так, як прийнято зображати структурну формулу сафраніну Т за Льюїсом. Атом 13N, згідно з квантово-хімічними розрахунками, ніяк не несе позитивного заряду, зате він має надлишковий негативний заряд -0,352. Усі інші нітрогени - також з негативним зарядом. Особливо високі заряди нітрогенів аміногруп -0,785. Позитивний заряд катіону сафраніну Т концентрується на всіх атомах гідрогену та тих атомах карбону, що мають сусідство з атомами нітрогену. Оскільки, як зазначалось вище, фенільний фрагмент несе на собі +0.2783, то решта сумарного заряду величиною в +0.7217 (72,2%) припадає на феназиновий. Дипольний момент становить 2.327 Д для газової фази та 3.507 Д для водного середовища, і спрямований від центру зарядів, що приблизно збігається з атомом 13N, у напрямку осі фенільного фрагмента на атомах 33С-36С.

Якщо порівнювати структурні та електронні характеристики у газовій фазі та водному середовищі, то на перший погляд вони мало змінюються. Проте енергія основного електронного стану катіона у водному середовищі порівняно з газовою фазою менша на 37,986 ккал/моль. Також змінюється якісно і кількісно УФ-видимий спектр сполуки.

УФ-видимий спектр

На рис. 2 представлено розподіл молекулярних орбіта лей (МО) за енергією (енергія вказана в атомних одиницях). Найвища заселена МО основного стану (НОМО) належить до A₂ симетрії, найнижча вільна МО (LUMO) - до B₁ симетрії. Відстань між ними зменшується при переході від газової фази до водного середовища. Це повинно призвести до батохромного зсуву в УФ-видимому спектрі.

Таблиця 3

H O T		Надлишковий	і заряд на атомі	Порядок зв'язку окремого атома		
Елеме	Номер атома	газова фаза	водне середовище	газова фаза	водне середовище	
С	1	0.23707	0.23598	3.9666	3.9683	
С	2	-0.05681	-0.05383	4.0006	4.0008	
С	3	-0.15707	-0.17570	3.9346	3.9375	
С	4	0.11666	0.13184	3.9902	3.9849	
С	5	0.20803	0.20487	3.9518	3.9518	
С	6	-0.32001	-0.32008	3.9145	3.9121	
Н	7	0.25782	0.26569	0.9357	0.9315	
Ν	8	-0.78527	-0.78180	3.0815	3.0916	
Н	9	0.26728	0.26293	0.9302	0.9327	
Ν	10	-0.33246	-0.36519	3.1179	3.1080	
С	11	0.13029	0.11812	3.9854	3.9898	
С	12	0.20158	0.21135	3.9517	3.9519	
Ν	13	-0.35168	-0.34806	3.5205	3.5245	
С	14	-0.16091	-0.17182	3.9345	3.9375	
С	15	-0.05662	-0.05404	4.0002	4.0013	
С	16	0.23702	0.23602	3.9667	3.9681	
С	17	-0.31994	-0.32014	3.9142	3.9124	
Н	18	0.26724	0.26297	0.9303	0.9326	
Ν	19	-0.78527	-0.78180	3.0815	3.0916	
С	20	-0.69073	-0.69136	3.8257	3.8261	
Н	21	0.24643	0.24847	0.9411	0.9401	
Н	22	0.24643	0.24847	0.9411	0.9401	
Н	23	0.26135	0.25676	0.9328	0.9352	
С	24	-0.69074	-0.69135	3.8257	3.8261	
Н	25	0.26136	0.25676	0.9328	0.9352	
Н	26	0.24643	0.24848	0.9411	0.9401	
Н	27	0.24643	0.24848	0.9411	0.9401	
Н	28	0.25782	0.26569	0.9357	0.9315	
Н	29	0.43643	0.44287	0.8112	0.8055	
Н	30	0.43362	0.44468	0.8137	0.8039	
Н	31	0.43642	0.44288	0.8112	0.8055	
Н	32	0.43362	0.44469	0.8137	0.8039	
С	33	0.11433	0.11896	3.9472	3.9486	
С	34	-0.23662	-0.23204	3.9412	3.9385	
С	35	-0.21949	-0.22659	3.9431	3.9436	
С	36	-0.21393	-0.22359	3.9425	3.9438	
С	37	-0.21949	-0.22659	3.9431	3.9436	
С	38	-0.23662	-0.23204	3.9412	3.9385	
Н	39	0.25890	0.26454	0.9345	0.9315	
Н	40	0.25763	0.25736	0.9350	0.9352	
Н	41	0.25703	0.25531	0.9354	0.9363	
Н	42	0.25763	0.25736	0.9350	0.9352	
Н	43	0.25890	0.26454	0.9345	0.9315	

Надлишковий заряд на атомах катіона сафраніну Т

розраховані Табл.4-5 демонструють спектральні характеристики методом TDDFT B3LYP/6-34++G(d,p) для шести електронних станів. Для газової фази вони добре узгоджуються Наявність даними [3]. 3 розчинника призводить не лише до кількісних, але і до якісних відмітностей. Для молекули у газовій фазі найменшим за енергією буде синглетний стан А₁, тоді як при додаванні розчинника таким стає синглетний стан В₂.

Рис.2. Розподіл електронів по МО катіона сафраніну Т у газовій фазі (а) та водному середовищі (б) (величини енергії у еВ)

Однак на реальній спектрограмі така рокіровка не проявиться, оскільки стан А₁ має набагато нижчу силу осцилятора, а отже, слабку інтенсивність. Саме смуги, що відповідають переходам НОМО—LUMO, будуть домінувати у спектрі. Як і передбачалося, спостерігається батохромний зсув при добавлянні водного розчинника (рис. 3). Якщо у газовій фазі довжина хвилі для максимальної смуги буде при λ =430.42 нм, то з водним розчинником вона стає λ =454.61 нм.

Таблиця 4

Номер збудженого стану	Переходи	Мультиплетність і тип симетрії	Довжина хвилі, нм	Сила осцилятора
1	$82 \rightarrow 84$	Синглет - А1	441.96	0.0163
2	$\begin{array}{c} 82 \rightarrow 85\\ 83 \rightarrow 84 \end{array}$	Синглет - В2	430.42	0.6106
3	$77 \rightarrow 84$	Синглет - B ₁	342.18	0.0007
4	$\begin{array}{c} 78 \rightarrow 84 \\ 81 \rightarrow 84 \end{array}$	Синглет - В2	337.78	0.0083
5	$80 \rightarrow 84$	Синглет - А2	329.63	0.0000
6	$\begin{array}{c} 78 \rightarrow 84 \\ 81 \rightarrow 84 \end{array}$	Синглет - В2	312.55	0.0036

Спектральні характеристики для катіона сафраніну Т у газовій фазі

Таблиця 5

0		•	1	•
(пектральн	и характеристики	THA RATIOHV	сафранну Г	<u>у волному сереловиші</u>
Cheripulli	n Aupuki opnornikn	Ann Runony	cuppulling 1	у водному середовнщі

Номер збудженого стану	Переходи	Мультиплетність і тип симетрії	Довжина хвилі, нм	Сила осцилятора
1	$\begin{array}{c} 82 \rightarrow 85\\ 83 \rightarrow 84 \end{array}$	Синглет - В ₂	454.61	0.7758
2	$82 \rightarrow 84$	Синглет - А1	453.32	0.0174
3	$\begin{array}{c} 78 \rightarrow 84 \\ 81 \rightarrow 84 \end{array}$	Синглет - В ₂	338.00	0.0120
4	$80 \rightarrow 84$	Синглет - А2	328.95	0.0000
5	$77 \rightarrow 84$	Синглет - В ₁	328.39	0.0008
6	$\begin{array}{c} 78 \rightarrow 84 \\ 81 \rightarrow 84 \end{array}$	Синглет - В2	312.90	0.0061

Рис.3. Модельний УФ-видимий спектр сафраніну Т у газовій фазі (пунктирна крива) та водному середовищі (суцільна крива)

Висновки

Квантово-хімічним DFT методом B3LYP/6-31++G(d,p) отримано оптимізовану конфігурацію катіону сафраніну Т у газовій фазі та водному середовищі. Встановлено, що цей катіон належить до точкової групи симетрії С_{2v} - дві його остовні площини феназинова та фенільна розташовуються у просторі під прямим кутом. За допомогою NBO аналізу отримано розподіл зарядів на атомах і кратності всіх зв'язків. З нього випливає, що найімовірніші реакційні центри для сафраніну Т, розташованими у порядку зменшення реакційної здатності, є гідроген аміногруп, гідроген у положеннях 1,9 та 4,6.

Для оптимізованих структур у двох середовищах методом TDDFT B3LYP/6-31++G(d,p) розраховано вертикальні переходи у збуджені електронні стани. Для водного розчину сафраніну Т виявлено батохромний зсув з $\Delta\lambda$ =24.19 нм відносно стану у газовій фазі.

Подяка

Автори вдячні інфраструктурі PL-GRid за наданий доступ до комп'ютерних ресурсів і програмного забезпечення, грант plgdbabyuk2015b.

Список літератури:

- Saravanan S. Excited singlet state reaction of phenosafranine with electron donors Role of the heavy-atom effect in triplet induction / S. Saravanan, P. Ramamurthy // J. Chem. Soc. Faraday Trans. – 1998. – V.94. – P. 1675 – 1679.
- Photoinitiated vinyl polymerization by safranine T/triethanolamine in aqueous solution/ M.V. Encinas, A.M. Rufs, M.G. Neumann, C.M. Previtali // Polymer. – 1996. – V.37. – P. 1395 – 1398.
- Safranin-O dye in the ground state. A study by density functional theory, Raman, SERS and infrared spectroscopy / C. Lofrumento, F. Arci, S. Carlesi, M. Ricci, E. Castellucci, M. Becucci // Spectrochimica Acta A. – 2015. – V.37. – P. 677 – 684.
- Gaussian 09, Revision E.01 / M. J. Frisch, G. W. Trucks, H. B. Schlegel and others / Gaussian, Inc., Wallingford CT, 2009.

- 5. PL-Grid infrastructure: http://www.plgrid.pl
- Tomasi J. Quantum mechanical continuum solvation models / J. Tomasi, B. Mennucci, R. Cammi // Chem. Rev. – 2005. – V. 105. – P. 2999 – 3093.
- Electronic structures, vibrational spectra, and revised assignment of aniline and its radical cation: Theoretical study / P. M. Wojciechowski, W. Zierkiewicz, D. Michalska, P. Hobza // J. Chem. Phys. – 2003. – V.126. – P. 10900 – 10911.
- Electrosynthesis and characterisation of poly(safranine T) electroactive polymer films / R. Pauliukaite, A. Selskiene, A. Malinauskas, C. M. A. Brett // Thin Solid Films. – 2009. – V. 517. – P. 5435 – 5441.
- Chemical Oxidative Polymerization of Safranines / G. Ciric-Marjanovic, N. V. Blinova, M. Trchova, J. Stejskal // J. Phys. Chem. P. – 2007. – V.111. – P. 2188 – 2199.

Summary

Babyuk D.P., Skip B.V.

QUANTUM-CHEMICAL STUDY OF THE STRUCTURE AND ELECTRONIC PROPERTIES OF SAFRANIN T

The geometric and electronic parameters of the safranin T cation in the gaseous phase and aqueous environment were computed using DFT B3LYP/6-31+G(d,p) theory level. The vertical transitions for six states are derived and UV-vis spectrum of the studied substance is modeled. The bathochromic shift is $\Delta\lambda$ =24.19 nm if the environment change occurs from the gas phase to aqueous medium.

Keywords: safranin T, B3LYP, TDDFT, bond index, UV-Vis spectrum.