
ÓÄÊ 512.543

c⃝2012 ð. Rostislav Grigorchuk1, Dmytro Savchuk2

1Texas A&M University, USA, 2University of South Florida, USA
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Introduction Groups generated by Mealy
type automata represent an important and
interesting class of groups with connecti-
ons to di�erent branches of mathemati-
cs, such as dynamical systems (including
symbolic dynamics and holomorphic dynami-
cs), computer science, topology and probabili-
ty. For more details about this class of groups
we refer the reader to survey papers [12, 3].

In the whole class of groups generated
by automata, there is an important subclass
of self-similar groups. These are the groups
generated by initial automata that are
determined by all states of a non initial
automaton. The natural characteristic of such
groups, which we will call complexity, is the
pair (m,n) of two integers, m ≥ 2, n ≥ 2,
where m is a number of states and n is a
cardinality of the alphabet. There are 6 groups
of complexity (2, 2) and the most compli-
cated of them is the lamplighter group L =
(Z/2Z) ≀ Z [12]. It is shown in [4] and [17]
that there is not more than 115 di�erent
(up to isomorphism) groups of complexity
(3, 2), although the number of corresponding
automata up to symmetry is 194. Even though
the complete characterization of (3, 2)-groups
is not achieved yet, a lot of information about
these groups has been obtained. The motivati-
on for this note is twofold: partially it comes
from the necessity to understand this class of
groups better, and additionally, it represents
the venture in the search of new interesti-

ng examples of self-similar groups that might
potentially serve as answers to questions posed
at the end of the paper.

Groups generated by �nite automata de�-
ned over the m-letter alphabet, in particular
self-similar groups, naturally act on the m-
regular rooted tree T = Tm (m a cardinality of
alphabet) and on its boundary, which topologi-
cally is homeomorphic to the Cantor set. This
action preserves the uniform Bernoulli measure
µ on the boundary. Therefore one can study
a topological dynamical system (G, ∂T ) or
metric dynamical system (G, ∂T, µ). Ergodici-
ty of the latter is equivalent to the level transi-
tivity of the action of G on T .

The important class of actions are topologi-
cally free actions and essentially free acti-
ons. These types of actions play especially
important role in various studies in dynami-
cal systems, operator algebras, and modern di-
rections of group theory like theory of cost or
rank gradient [7, 2]. Self-similar groups acting
essentially freely on ∂T can potentially be used
to construct new examples of scale-invariant
groups [18], and have connection to the class
of hereditary just-in�nite groups [9].

The opposite to the notion of a free action
are totally nonfree actions considered recently
in [21, 20, 10]. These are the actions, for whi-
ch stabilizers of di�erent points are di�erent.
Surprisingly many groups generated by �nite
automata, in particular those of them that are
branch or weakly branch) act totally nonfree.
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Totally non free actions are also important for
the theory of operator algebras and for rapi-
dly developing now theory of invariant random
subgroups [21, 1, 5, 6].

The goal of this note is to report on the
progress of the project of description of all
(3, 2)-groups acting essentially freely on the
boundary of the tree. Or main result is:
Theorem 1. Among all groups generated

by 3-state automata over 2-letter alphabet the
only groups that act essentially freely on the
boundary of the tree T2 are:

• Trivial group;

• Group Z/2Z of order 2;

• Klein group (Z/2Z) × (Z/2Z);

• (Z/2Z) × (Z/2Z) × (Z/2Z);

• Free abelian groups Z and Z2;

• In�nite dihedral group D∞;

• Baumslag-Solitar groups BS(1, 3) and
BS(1,−3);

• Extension
(
(Z/2Z) ≀ Z

)
o (Z/2Z) of the

lamplighter group by Z/2Z;

• Free group F3 of rank 3;

• Free product (Z/2Z) ∗ (Z/2Z) ∗ (Z/2Z) of
three groups of order 2;

• Lamplighter group (Z/2Z) ≀ Z;

• Extension Z2o (Z/2Z) of the Z2 group by
Z/2Z;

• Metabelian group ((1
2
Z
[
1
3

]
)o(Z/2Z))oZ;

• Extension
(
(Z/2Z)2≀Z

)
o(Z/2Z) of a rank

2 lamplighter group (Z/2Z)2 ≀ Z by Z/2Z.

The paper is organized as follows. In Secti-
on 1 we recall main notions from a theory of
groups generated by automata, and discusses
various types of free actions. The strategy of
proof of the main Theorem is surveyed in Secti-
on 2. Finally, we conclude the paper with open
questions in Section 3.
Notation and Preliminaries Let X be a

�nite set of cardinality d and let X∗ denote

the free monoid generated by X, which consi-
sts of �nite words over X. This monoid can be
naturally endowed with a structure of a rooted
d-ary tree T by declaring that v is adjacent to
vx for any v ∈ X∗ and x ∈ X. The empty word
corresponds to the root of the tree and Xn

corresponds to the n-th level of the tree. We
will be interested in the groups of automorphi-
sms and semigroups of homomorphisms of
X∗. Any such homomorphism can be de�ned
via the notion of initial automaton (see, for
example, [12]).

Now we describe shortly the notations used
in the classi�cation of (3, 2)-groups [4]. Every
3-state automaton A with set of states S =
{0,1,2} acting on the 2-letter alphabet X =
{0, 1} is assigned a unique number from 1 to
5832 according to a certain lexicographic order
on the set of all automata in this class. Denote
by An the automaton numbered by n and by
Gn the group generated by An.

On the set of all (3,2)-automata one can
naturally de�ne an equivalence relation of mi-
nimal symmetry. Namely, two automata A and
B are minimally symmetric if their minimizati-
ons coincide up to symmetry and taking the
inverse. At present ([4, 17]), it is known that
there are no more than 115 non-isomorphic
(3, 2)-automaton groups out of 194 classes of
(3, 2)-automata that are pairwise not mini-
mally symmetric.

In this note, since we are looking for essenti-
ally free actions of groups, we will actually di-
stinguish non minimally symmetric automata
generating isomorphic groups. So we will work
with 194 classes of not minimally symmetric
automata.

There are di�erent ways to de�ne the
freeness of a group action. The de�nition
below works in the general context of arbitrary
topological (or, respectively, measure) space,
but we will work only in the context of actions
of self-similar groups on the boundary ∂T of a
rooted tree T .

Let G be a countable group acting on a
complete metric space Y . Denote by Y− the
set of points with nontrivial stabilizer and by
Y+ the set of points with trivial stabilizer.
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De�nition 1.

1. The action (G, Y ) is topologically free
if Y− is a meager set (i.e., it can
be represented as a countable union of
nowhere dense sets).

2. Suppose the action (G, Y ) has a G-
invariant (not necessarily �nite) Borel
measure µ. The system (G, Y, µ) is said
to be essentially free if µ(Y−) = 0.

First of all, we note that in our case of
groups generated by �nite state automata that
act spherically transitively on the tree the
notions of topological freeness and essential
freeness are identical [13, 10].

In order to establish that a group does not
act topologically (and essentially) freely on ∂T ,
one can just �nd an element g ∈ G and a vertex
v ∈ X∗ �xed by g such that g|v is identity
(because in this case all points in the cylindri-
cal set cv (consisting of vertices in T = X∗ that
have v as a pre�x), which is open (and has posi-
tive measure), will have g in their stabilizers.

De�nition 2. For a vertex v ∈ X∗ the set
of all g ∈ G that �x v and such that g|v is
identity forms a subgroup trivG(v) of G called
the trivializer of v.

De�nition 3. The action of a group G on a
rooted tree is called locally nontrivial if trivi-
alizers of all vertices of the tree are trivial.

As observed above, if the action is not
locally trivial, it cannot be topologically or
essentially free. It is not hard to prove the
converse in the case of countable group and
topological freeness.

Proposition 1 ([11], Proposition 4.2.). The
action of a countable group on the boundary of
a tree is topologically free if and only if it is
locally nontrivial.

This observation constitutes one of the main
tools to determine that a self-similar group
does not act essentially freely on the boundary
of a tree. Of course, one can simply apply a
brute force to �nd such an element, but in case
of self-replicating groups (see, for example, [4])

it can be made almost automatic in many cases
by using the the following procedure.

Suppose G = ⟨a1, a2, . . . , an⟩ is a
group generated by automaton with states
a1, a2, . . . , an. First, we calculate the �nite
generating set {sj, j ∈ J} of the stabilizer
of the �rst level of the tree StabG(1) in G.
This is a subgroup of �nite index and a
Reidemeister-Schreier procedure can be used
for that [14].

Let FA denote the free group generated
by elements a1, a2, ..., an. The wreath recursi-
on that de�nes an automaton induces an
embedding

FA ↪→ FA ≀ Sym(X)

de�ned by

FA ∋ g 7→ (g|0, g|1, . . . , g|d−1)λ(g) ∈ FA≀Sym(X),
(1)

where g|i denotes the section of g at vertex
i ∈ X∗ (see [12]).

With a slight abuse of notation, we will
denote by sj also a word over A ∪ A−1 in FA
that is mapped to sj ∈ G under the canonical
epimorphism FA → G. Then we decompose
each sj ∈ FA as a pair (sj|0, sj|1) ∈ FA × FA
using the wreath recursion embedding (1). The
�rst components sj|0 of above pairs generate a
subgroup H of FA. After applying the Nielsen
reduction to the generators of this subgroup,
keeping track of second coordinates, we obtain
the generating set of ⟨(sj|0, sj|1), j ∈ J⟩ <
FA×FA whose projection onto the �rst coordi-
nate is Nielsen reduced [14]:

t1 = (b1, w1), . . . , tl = (bm, wm),
tm+1 = (1, r1), . . . , tm+l = (1, rl),

(2)

where {b1, . . . , bm} is a Nielsen reduced
generating set for H, wi ∈ FA and m+ l = |J |.
We will call such a representation for StabG(1)
the Mikhailova system for G. The reason for
such name is explained below.

If any of ri, i = 1, . . . , l represents a non-
identity element of G, then the correspondi-
ng pair (1, ri) will represent a non-identity
element of G that belongs to the trivializer of
vertex 1. Thus, the action of G on ∂T2 would
not be essentially free.
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Showing that the group actually does act
essentially freely is usually much harder. The
main tool here is the Proposition 2 below. This
proposition is similar to Proposition 1, but it
additionally uses self-similarity of a group. We
�rst introduce a notion of a rigid stabilizer.

De�nition 4. Let G be a group acting on the
rooted tree X∗.

• The rigid stabilizer of a vertex v ∈ X∗

in G is a subgroup RistG(v) of G that
consists of elements that act nontrivially
only on the vertices that have v as a pre�x.

• The rigid stabilizer of a level n of X∗

in G is a subgroup RistG(n) of G that
is generated by rigid stabilizers of all the
vertices of this level.

Proposition 2 ([11], Proposition 4.5.). For a
group G generated by �nite automaton, acti-
ng on a binary tree T2, the action on ∂T2 is
essentially free if and only if the rigid stabili-
zer of the �rst level RistG(1) is trivial.

The problem is that it is harder to show that
the rigid stabilizer is trivial, than to �nd an
element witnessing its non-triviality. The main
method here is based on �nding the presentati-
on of a group. We now go back to Equation (2).
In the case when H coincides with FA we get
m = n and this equation is transformed to
(after reordering the generators, if necessary):

t1 = (a1, w1), . . . , tl = (an, wn),
tn+1 = (1, r1), . . . , tn+l = (1, rl),

(3)

We can further assume that all ri's represent
identity element in G (otherwise, as stated
above, the action of G is not essentially free).
Suppose additionally that

⟨w1, w2, . . . , wn⟩ = FA.

Then the map ϕ : ai → wi extends to an
automorphism of FA. In this case we say
that the de�nition of the group G by a �-
nite automaton belongs to the diagonal type.
This condition does not depend on how the
pairs of elements are reduced by the Nielsen

transformations. Note, that the case when ϕ
is the identity automorphism one obtains a
subgroup of FA × FA that was used by Mi-
khailova in [15] to to prove that the inclusion
problem for direct products of free groups is
algorithmically unsolvable.

The following proposition is formulated
in [11] and follows immediately from Proposi-
tion 2.

Proposition 3 ([11], Proposition 5.1).
Suppose that G is a group generated by �ni-
te automaton acting on a binary tree such that
its �rst-level stabilizer can be reduced by the
Nielsen transformations to the diagonal type.
Let ϕ be the above-constructed automorphi-
sm of the free group FA. Then the action is
essentially free if and only if ϕ induces an
automorphism of the group G.

Another useful proposition that allows us to
establish essential freeness of the action in the
case of groups generated by �nite bireversible
automata, i.e. invertible automata, whose dual,
and dual to the inverse are invertible as well.

Proposition 4 ([19], Corollary 2.10). A
group generated by a bireversible automaton
acts topologically and essentially freely on the
boundary of the tree.

Strategy for classi�cation and most
interesting new examples.

Our systematic search heavily uses results
of [4], in conjunction with computations
performed using AutomGrp package [16] for
GAP system [8]. In the �rst step we compute
Mikhailova systems for all automata and �-
lter out those automata, for which Mikhailova
system produces a non-identity element in the
rigid stabilizer. For the remaining automata
we apply a brute force in an attempt to �nd
such elements up to length 5 using the functi-
on FindGroupElement of AutomGrp package.
This reduction leaves 57 automata that might
generate groups acting essentially freely.

Finally, we investigate these cases
separately. Most of the remaining automata
generate groups that were either descri-
bed in [4], or can be reduced to such
groups in one or another way. However,
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two automata, namely A2193 (wreath recursion
a = (c, b)σ, b = (a, a)σ, c = (a, a), where
σ denotes a nontrivial permutation of the
letters in X = {0, 1}) and A2372 (wreath
recursion a = (b, b)σ, b = (c, a)σ, c = (c, a))
generated groups that have not been studied
extensively before. We completely describe
the structure and the presentations of these
groups in the following two theorems and
using the presentations we prove that they act
essentially freely on the boundary of the tree.
Theorem 2. The group G2193 = ⟨a, b, c⟩ =

⟨a2, b−1c, b−1a, ac−1a⟩ is solvable of derived
length 3 and has the following structure:

G ∼= L2 o (Z/2Z) =
(
(Z/2Z)2 ≀ Z

)
o (Z/2Z),

where the isomorphism is induced by sendi-
ng the �rst two generators a2, b−1c of G to
generators of the base group (Z/2Z)2 in L2,
the generator b−1a to the generator of Z in L2,
and the generator ac−1a of G to the generator
of Z/2Z in L2 o (Z/2Z) acing on L2.

Moreover, G2193 has the following
presentation:

G ∼= ⟨a, b, c | a4 = (b−1c)2 = 1,[
a2, (a2)(b

−1a)i
]

=
[
a2, (b−1c)(b

−1a)i
]

=
[
b−1c, (b−1c)(b

−1a)i
]

= 1, i ∈ Z,

(ba2)2 = (ca2)2 = 1⟩ (4)

Theorem 3. The group G2372 has the
following structure:

G = Lo ⟨a⟩ = (K o ⟨v⟩) o ⟨a⟩

∼= ((
1

2
Z[

1

3
]) o (Z/2Z)) o Z

where the action of a on 1
2
Z[1

3
] corresponds

to the multiplication by 3, and the action on v
is de�ned by va = vx0, v

a−1
= vx−1

1 .
Moreover, G2372 has the following �nite

presentations

G2372
∼= ⟨a, b, c | (ac−1)a = (ac−1)3,

(ab−1)2 = 1, (ac−1)ab
−1

= ca−1,

b−1a = ab−1(ac−1)2⟩ (5)

Finally, to prove that G2193 and G2372 act
essentially freely on ∂T we use the presentati-
ons constructed in the above theorems and
Proposition 3.
Open questions

Question 1. Is there a self-similar group that
acts neither essentially freely, nor totally non-
freely on the boundary of a rooted tree?

Question 2. Does total non-freeness of acti-
on of a self-similar group on ∂T imply weak
branchness?

Question 3. Classify all (4, 2)-groups and
(2, 3)-groups that act essentially freely on the
boundaries of corresponding rooted trees.

Question 4. Are there self-similar groups
acting essentially freely on the boundary of
rooted tree that are essentially new examples
of scale-invariant groups?

Question 5. Is there an example of a
nonamenable self-replicating group acting
essentially freely on the boundary of the tree?
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