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PROBLEMS WITH MODELLING USING DELAY DIFFERENTIAL
EQUATIONS

In applications models described in the framework of delay di�erential equations (DDEs)
are often used. The advantage of such approach is simplifying a description of complex natural
phenomena which take some time. Using even one DDE with single delay one can re�ect oscillatory
dynamics typical for many biological systems. One ODE with two delays or two DDEs with si-
ngle delay are su�cient to re�ect stability switches with increasing delay. Simple DDEs models
can also re�ect chaotic dynamics. Although DDEs can be very useful in applications, they lead to
much more complicated mathematical analysis than in ODEs case. DDEs de�ne in�nite dimensi-
onal semi-dynamical systems. Comparing to appropriate ODEs it should be noticed that DDEs
not necessarily preserve non-negativity of solutions, it can be di�cult to study global existence
of solutions, and moreover global stability can be really hard to prove. Therefore, proposing the
model based on DDEs one should be very careful and check at least basic properties to be sure
that the model is properly de�ned.

Introduction
Modelling of biological systems in the

framework of delay di�erential equations
(DDEs) has a long history. Probably the
eldest DDE model is the Hutchinson equati-
on [34] proposed in 1948 for the description of
population dynamics. This equation reads

Ṅ = rN(t)
(

1 − N(t−τ)
K

)
, (1)

where N(t) re�ects the population size at time
t, K is its carrying capacity and τ is the delay
in per capita Ṅ/N growth rate. For many years
the delay has been typically introduced to this
per capita growth rate, compare e.g. [36], leadi-
ng to the models of the general form

Ṅ = N(t)F
(
N(t− τ)

)
, (2)

which preserves non-negativity.
Clearly, the integral form N(t) =

N(0) exp

(
t∫
0

F
(
N(s− τ)

)
ds

)
is equivalent to

Eq. (2) under the weak assumption that F is
integrable and this guarantees non-negativity
for N(0) ≥ 0. Notice, that typically in biologi-
cal models F is of class C1. Moreover, the
form of Eq. (2) guarantees global existence of

solutions. Clearly, de�ning a continuous initial
function φ : [−τ, 0] → R+(Rn

+) we can use
the step method, compare e.g. [32], that is the
method of mathematical induction applied to
the subsequent intervals [nτ, (n + 1)τ ], and
show the existence of the solution for all t ≥ 0.

Although most of natural phenomena is
non-linear, also linear DDEs can be someti-
mes used; e.g. Bratsun et al.[14] proposed the
following linear equation

ẋ = A−Bx(t) − Cx(t− τ) (3)

as the description of biochemical reactions
channel

∅ A−→ P , P
B−→ ∅ , P

C−→ ∅ , (4)

thinking about oscillatory dynamics. However,
it occurs that such type of oscillatory dynami-
cs is present for the critical value of time delay
and always leads to negative solutions [27].
This is one of the main problems for modelling
using DDEs.

Moreover, as mentioned above to solve even
such simple equation as Eq. (3) one needs to
know the behaviour of the variable x on the
whole interval [−τ, 0], that is an initial condi-
tion is a function, typically continuous, whi-
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ch means that the problem is in�nite dimensi-
onal. Also an eigenvalue problem is much more
complex than for ODEs. Clearly, looking for
exponential solutions to Eq. (3) one gets

λ = −B − C exp(−λτ), (5)

and therefore there are in�nitely many ei-
genvalues for this equation. This means that it
is not possible to calculate all the eigenvalues.
One can only try to estimate real parts of ei-
genvalues to check stability, compare e.g. [22]
and the references therein. We should also noti-
ce that the dynamics of DDEs can be much
richer than for appropriate ODEs, including
multiple stability switches and chaotic behavi-
our, compare e.g. [33].

In this paper we present some results
concerning speci�c models, as mentioned
above linear equation for biochemical reactions
channel and delayed logistic equation.

Negativity of solutions to linear
equation (3)

In this section we present the results obtai-
ned in [27] concerning Eq. (3). As it is
mentioned in Introduction, Bratsun et al. [14]
considered the reaction channel (4) and used
Eq. (3) as the mathematical description of that
channel. In this case we require A, B, C>0 as
they re�ect reactions propensities. In [27] we
studied Eq. (3) with initial data of the form

x(t) = 0 for t < 0 and x(0) = x0 ≥ 0 .
(6)

This initial data re�ect the fact that the reacti-
on channel (4) is triggered at t = 0. Although
such type pf initial data is not typical, as
it is noncontinuous, we can easily see that
the Cauchy problem (3),(6) (and other similar
problems with initial data having discontinuity
in some points) is equivalent to the standard
problem with continuous initial function starti-
ng from t0 = τ . Clearly, for t ∈ [0, τ ] Eq. (3)
can be rewritten in the integral form

x(t) =
A

B
+

(
x0 − A

B

)
e−Bt−C

t−τ∫
−τ

x(s)e−B(t−s−τ)ds,

which is continuous even if x is discontinuous
in some points. Moreover, for x de�ned by

Eq. (6) we calculate x(t) = x1(t) = A
B

+(
x0 − A

B

)
e−Bt for t ∈ [0, τ ] implying that our

Cauchy problem is equivalent to solving Eq. (3)
with initial data t0 = τ and x = x1.

It is known that the dynamic of Eq. (3)
depends on the ratio between the coe�cients
B and C as well as the magnitude of delay τ .
Clearly, if τ = 0, then we have ẋ = A − (B +
C)x(t) and the steady state xss = A/(B + C)
is asymptotically stable. Eq. (3) depends on all
parameters continuously, and therefore to get
the change of stability a pair of purely imagi-
nary eigenvalues should appear. Moreover,
these eigenvalues should cross imaginary axis
from left to right. Let λ = iω, ω > 0. Then
from Eq. (5) we get

iω = −B − Ce−iωτ =⇒ |iω +B| = C.

Following [15] we de�ne an auxiliary function

F (z) = z +B2 − C2,

where z = ω2 and positive zeros of F gi-
ves purely imaginary eigenvalues. Hence, if
B > C, then F has no positive zeros implying
that xss is stable independently of τ , while for
B < C we have z0 = C2 − B2, and therefore
purely imaginary eigenvalues are expressed as
±i

√
C2 −B2. For these eigenvalues we can

calculate critical values of delays as τth,k =
arccos(−B/C)√

C2−B2 + 2kπ. Moreover, the sign of F ′(z0)

describes the direction of the movement of the
purely imaginary eigenvalues in the complex
plane. If it is positive, then the movement is
from left to right leading to destabilisation
of the steady state. Clearly, F ′(z) = 1, and
therefore the steady state xss loses stability at
the �rst critical delay τcr = τth,0 and cannot
gain it again for larger delays.

In [27] we proved that for the Cauchy
problem (3),(6) periodic solutions appearing
for B < C and delay τ ≥ τcr always take
negative values. To reduce the number of
parameters we scale the time and space vari-
able obtaining

ẏ = 1 − by(t) − y(t− τ), (7)

were b < 1 with y(t) = 0 for t < 0 and y(0) =
y0 ≥ 0. It occurs that instead of Eq. (7) we
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can study the simpler problem for b = 0 and
y(t) ≡ 0 in [−τ, 0], because solutions to Eq. (7)
can be expressed by solutions to this simpler
equation

ẇ = 1 − w(t− τ), w(t) = 0 for t ≤ 0. (8)

Calculating solutions to Eq. 8 we obtain

w(t) =
n∑
k=1

(−1)k+1

k!
(t− (k − 1)τ)k (9)

for t ∈ [(n− 1)τ, nτ), n ≥ 1. Using Eq. (9)
we show that there exists t̄ ∈ (2τ, 3τ) or
t̄ ∈ [3τ, 4τ) such that x(t̄) < 0. Clearly,
on the interval [τ, 2τ) the solution w(t) =
t − 1

2
(t− τ)2 has a maximum at t̃ = 1 +

τ , implying that w has a minimum around
t = t̃ + 2τ = 1 + 3τ , where 2τ is
around the half of the basic period. We have
w(1 + 3τ) = 1

24
(15 + 36τ − 36τ 2 + 4τ 3), and

therefore w(1 + 3π
2

) ≈ −0.0739 and the
polynomial w(1 + 3τ) is decreasing for τ ∈(
3 −

√
6, 3 +

√
6
)
≈ (0.55, 5.45). This result is

very important from the application point of
view as it shows that such type of linear equati-
ons cannot be used not only as a description of
biochemical reactions channel but also any bi-
ological process. In such cases the delay should
be introduced in a di�erent way, see [37, 13] for
details.
Bifurcation with respect to delay for

the logistic equation
In the series of papers [23, 8, 9] we studi-

ed the logistic equation and its generalisati-
ons in the context of tumour growth dynamics.
Because the delay re�ect the length of the cell
cycle in this case, the classic form of delayed
logistic equation (1) seems to be not proper.
Therefore, we consider

V̇ = rV (t−τ) (1 − V (t− τ)) , V (0) = V 0 > 0,
(10)

where V describes the tumour volume re�ected
as a percentage of the maximal possible si-
ze that can be achieved without additional
external supply of nutrients and r is the
maximal growth rate. As it is mentioned in
Introduction, such type of equations can have
negative solutions, compare [2] for more detai-

ls on that topic. Therefore, we need to restri-
ct the values of parameters, including delay,
to preserve positivity. On the other hand, for
Eq. (10) negative solutions are possible only
for large values of V 0 and τ , implying that
such case is biologically irrelevant, because the
description on the basis of the logistic equation
can be used only for the initial stage of tumour
growth, before the tumour angiogenesis starts.

Describing some process using DDEs we are
typically interested in the dependance of the
model dynamics on the magnitude of delay.
However, as the problem is in�nite dimensional
and de�ned on a Banach space of continuous
functions C, where C = {ϕ ∈ C([−τ, 0],R)},
we see that the space depends on the delay
and therefore the delay cannot be treated
as a parameter straightforward. However, in
the case with only one discrete delay, as for
Eq. (10), it is not a big problem, because for
τ > 0 we can rescale the time t→ t/τ obtaini-
ng

V̇ = rτV (t−1) (1 − V (t− 1)) , V (0) = V 0 > 0,
(11)

that is the equation with constant delay and τ
being a parameter.

Let f(V ) = rτV (1−V ). Then Eq. (11) can
be written as dotV = rτf(V (t−1)). Due to the
properties of the function f we have two steady
states for Eq. 11, that is the trivial V̄1 = 0 and
positive V̄2 = 1. The linearised equation reads

ẋ(t) = rτf ′(V̄ )x(t− 1)

implying that the characteristic equation for
Eq. (11) has the form (5) with B = 0 and
C = −rτf ′(V̄ ). For V̄1 there is f ′(0) =
rτ > 0. Hence, there exists a real positi-
ve eigenvalue and the trivial steady state is
unstable independently of the delay. On the
other hand, for V̄2 we have f ′(1) = −rτ < 0.
The full analysis of the characteristic equati-
on Eq. (5) is presented in the previous section.
Now, the threshold value of the delay can be
expressed as τcr = π

2r
and for τ < τcr the steady

state V̄2 is stable, while for τ > τcr it remains
unstable.

Moreover, in [9] we showed that if

(11π − 4) (f ′′(1))
2
> πf ′′′(1)f ′(1), (12)
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then a stable Hopf bifurcation occurs at τcr. To
study stability of appearing periodic orbits we
need to �nd the coe�cient of the third term
in Taylor expansion of the periodic solution.
To do this we use the approach of normalised
bounded variation functions (NBV) proposed
by Diekamnn et al. [16]. Let us change the vari-
able z(t) = x(t) − 1 such that the positive
steady state V̄2 is moved to 0. Therefore,

ż(t) = αf(z(t− 1) + 1), α = rτ. (13)

We easily see that L(ϕ) = αf ′(1)ϕ(−1) and
G(ϕ) = α (f(ϕ(−1) + 1) − f ′(1)ϕ(−1)), ϕ ∈ C,
are the linear and non-linear part of Eq. (13),
respectively. The NBV function ζ(θ, α) for
Eq. 13 reads

ζ(θ, τ) =

{
0 for θ ∈ [0, 1),

αf ′(1) for θ = 1,

while the characteristic equation has the form

∆(λ, α) = λ+ α|f ′(1)| exp(−λ) = 0. (14)

Purely imaginary eigenvalues ±iω0 = ±iπ
2

appear for α0 = π
2

and are simple. Let
Φ(θ) = exp(iπ

2
θ)p, p ̸= 0 be a right ei-

genvector for the eigenvalue iπ
2
. We need

choose a left eigenvector Ψ(s) = exp(iπ
2
s)q

such that qd1∆(iπ
2
, π
2
)p = 1, where d1 denotes

the derivative with respect to the �rst variable
λ. However, d1∆(iπ

2
, π
2r

) = 1 + iπ
2
and choosing

p = 1 − iπ
2
and q = 4

4+π2 we obtain the desired
property.

Now, we can calculate the third term coe�-
cient µ2 as

µ2 =
ℜc

ℜ (qd2∆(iω0, α0)p)
,

where p, q are de�ned above, d2 is the deri-
vative with respect to the second variable α,
and

c = 1
2
qd31G(0, α0)(Φ,Φ, Φ̄)+
qd21G(0, α0) (ΨΦ̄(·, 0),Φ) +
1
2
qd21G(0, α0)

(
ΨΦ(·, 2iω0), Φ̄

)
,

where di1, i = 2, 3 denotes the derivative of the
ith order with respect to the �rst variable and

ΨΦ1(θ, a) = eaθ(∆(a, α0))
−1d21G(0, α0)(Φ,Φ1).

We have d2∆(iπ
2
, π
2|f ′(1)|) = −i|f ′(1)|, and

therefore the denominator of µc reads

ℜ
(

4

4 + π2
(−i)|f ′(1)|(1 − i

π

2
)

)
=

= −2|f ′(1)|π
4 + π2

< 0.

To �nd the numerator we need to calculate the
derivatives of the non-linear part G. Let u, v,
w ∈ C be any test functions. Then

d21G(0,
π

2|f ′(1)|
)(u, v) = α0f

′′(1)u(−1)v(−1)

and
d31G(0,

π

2|f ′(1)|
)(u, v, w) =

= α0f
′′′(1)u(−1)v(−1)w(−1).

Moreover,
(

∆(0, π
2|f ′(1)|)

)−1

= 2
π
, while(

∆(iπ, π
2|f ′(1)|)

)−1

= − 2
5π

(2i+ 1). Therefore,

1

2
qd31G(0,

π

2|f ′(1)|
)(Φ,Φ, Φ̄) = −π

4

(π
2

+i
) f ′′′(1)

|f ′(1)|
,

qd21G(0,
π

2|f ′(1)|
)
(

ΨΦ̄(·, 0),Φ
)

=

= −π
2

(π
2

+ i
)( f ′′(1)

|f ′(1)|

)2

,

and

1

2
qd21G(0,

π

2|f ′(1)|
)
(

ΨΦ(·, iπ), Φ̄
)

=

π
(

1 − iπ
2

)(
1 − i1

2

)
10

(
f ′′(1)

|f ′(1)|

)2

.

Eventually, we obtain

ℜc = −π
8

(
π
f ′′′(1)

|f ′(1)|
+

11π − 4

5

(
f ′′(1)

|f ′(1)|

)2
)
.

We easily see that if Inequality (12) is satis�ed,
then µ2 > 0 and because all eigenvalues other
than ±iπ

2
are located in the left-hand complex

half-plane the periodic solutions exit for τ >
τcr and are stable.
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Let us check Inequality (12) for Eq. (11). As
the �ght-hand side of Eq. (11) is a polynomi-
al of the second degree, the third derivative
equals 0, while the second one is non-zero,
and therefore Inequality (12) is easily ful�-
lled. Hence, bifurcating periodic solutions are
stable.

As we can see from the analysis presented
above, studying bifurcations in the case of
DDEs is not easy, even for such simple
equation as Eq. (11). The situation is much
more complex when more than one delay is
introduced into the model. Then stability swi-
tches with increasing delay can be observed,
compare [38, 39, 42]. This means that with
increasing delay there appears a sequence of
critical values of the delay and the steady state
is stable for the delays between some critical
values of the delay, while is unstable between
others. It should be marked, that if the steady
state destabilises for some critical delay, than
eventually it must remain unstable.

Final remarks
As we can see from the examples presented

in this paper, analysis of even simple DDEs can
be really complicated. Many other interesting
examples of the models based on DDEs can be
found in the literature, compare e.g. [10, 7, 5, 6,
26, 24, 28, 29, 41, 43] for the models describing
di�erent stages of tumour growth, [3, 4, 18,
19, 20, 21, 25, 17, 12] for immune reactions
modelling, also in the context of AIDS [11, 30]
and tumour [31, 35, 40] or [1] for love a�airs
dynamics.

At the end we would like to recall that it
is necessary to perform at least preliminary
analysis of the model we propose to descri-
be a real phenomenon to be sure that the
model is properly de�ned and can be biologi-
cally relevant. The example of biochemical
reactions channel described here is very signi-
�cant, because mathematical description whi-
ch seems "intuitive"is completely wrong. This
shows that proposing mathematical models
experimentalists should closely cooperate with
mathematicians, as only such cooperation can
guarantee that the model is properly de�ned.
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