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CONFIGURATIONS OF INVARIANT STRAIGHT LINES OF CUBIC
DIFFERENTIAL SYSTEMS WITH DEGENERATE INFINITY

Some properties of cubic systems with invariant straight lines are determined and are classi�ed
all the systems with the in�nite line �lled up with singularities (i.e. with the degenerated in�nity)
and having exactly �ve and exactly six straight lines three of which are parallel. It is proved that
there are 15 a�ne classes of such systems with di�erent con�gurations of invariant straight lines.
For every class was carried out the qualitative investigation in the Poincar�e disc.

1. Introduction
We consider the real cubic di�erential

system
dx
dt

=
3∑
r=0

Pr (x, y) ≡ P (x, y) ,

dy
dt

=
3∑
r=0

Qr (x, y) ≡ Q (x, y) ,
(1)

where Pr, Qr are homogeneous polinomials
of degree r, |P3(x, y)| + |Q3(x, y)| ̸≡ 0 and
GCD (P,Q) = 1.

The curve f(x, y) = 0, f ∈ C[x, y] (the
function f(x, y) = exp( g

h
), g, h ∈ C[x, y]) is

said to be an invariant algebraic curve (invari-
ant exponential function) of (1) if there exists
a polynomial Kf ∈ C[x, y], deg(Kf ) ≤ 2 such
that the identity

∂f

∂x
P (x, y) +

∂f

∂y
Q(x, y) ≡ f(x, y)Kf (x, y)

holds.
In [5] it is shown that if f = exp( g

h
) is an

invariant exponential factor, then h(x, y) = 0
is an invariant algebraic curve for (1).

We say that an invariant algebraic curve
f(x, y) = 0 has the degree of invariance equal
to m, if m is the greatest positive integer
such that fm−1 divides Kf [7]. If f(x, y) = 0
has the degree of invariance equal to m ≥ 2,
then exp(1/f), ..., exp(1/fm−1) are exponenti-
al functions.

We say that the system (1) is Darboux
integrable if there exists a non-constant functi-
on of the form f = fλ11 · · · fλss , where fj is
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an invariant algebraic curve or an invariant
exponential function and λj ∈ C, j = 1, s, such
that either f = const is a �rst integral or f is
an integrating factor for (1).

We will be interested in invariant algebraic
curves of degree one, that is invariant straight
lines αx+ βy + γ = 0, (α, β) ̸= (0, 0).

At present, a great number of works are
dedicated to the investigation of polynomial di-
�erential systems with invariant straight lines.

The problem of estimation the number
of invariant straight lines which can have a
polynomial di�erential system was considered
in [1]; the problem of coexistence of the invari-
ant straight lines and limit cycles in [8, 9, 15];
the problem of coexistence of the invariant
straight lines and singular points of a center
type for cubic system in [7], [17]. An interesti-
ng relation between the number of invariant
straight lines and the possible number of di-
rections for them is established in [2].

A qualitative investigation of quadratic
systems (P3 ≡ 0, Q3 ≡ 0) with degenerate
in�nity is given in [16]. For cubic di-
�erential systems with degenerate in�nity the
problems:of integrability, of the center and of
his isochronicity were studied in [3], [11], [4].

In this paper a qualitative investigation of
cubic systems with degenerate in�nity and
exactly �ve (exactly six) invariant straight li-
nes (real or complex) of which three are parallel
is given.
2. Properties of the cubic systems wi-

th straight lines
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By con�guration of straight lines we
understand the R2 plane with a certain number
of straight lines.To each bidimensional di-
�erential system (with invariant straight lines)
we can associate a con�guration consisting of
invariant straight lines of this system. It easy to
show that reciprocal a�rmation is not always
true.

The problem arise to determine such
properties for invariant straight lines which wi-
ll allow to construct con�gurations of strai-
ght lines realizable for (1). The proof of these
properties is not complicated and will be not
given in this paper.
2.1. Singular points and invariant

straight lines
2.1) In the �nite part of the phase plane the

system (1) has at most nine singular points.
2.2) In the �nite part of the phase plane on

any straight line there are at most 3 singular
points of the system (1) .
2.3) In the �nite part of the phase plane the

system (1) has no more than eight invariant
straight lines [1], [18].
2.4) If system (1) has complex invari-

ant straight lines then they occur in complex
conjugated pairs (l and l̄).
2.5) The intersection point (x0, y0) of

two invariant straight lines l1 and l2 of the
system (1) is a singular point for this system.
Moreover, if l1, l2 ∈ R[x, y] or l2 ≡ l̄1, then
x0, y0 ∈ R.
2.6) A complex straight line l can pass

through at most one point with real coordinates.
2.7) If a straight line passes through two

distinct real points or through two complex
conjugated points, then this straight line is real.

Unlike the complex straight lines, a real
straight line ax + by + c = 0, a, b, c ∈ R, a2 +
b2 ̸= 0, passes through an in�nite number of
real points and through an in�nite number of
points with at least one complex coordinate.
Indeed, if x0, y0 ∈ R and ax0 + by0 + c = 0,
then this straight line passes through complex
points (x0 + αb, y0 − αa), α ∈ C \ R.

A complex straight line passing through a
real point will be called a complex straight li-
ne with a real point, and a complex straight
line not passing through a real point - a purely

imaginary complex straight line.
2.8) A complex straight line with a real poi-

nt intersect transversally the coordinate axis.
2.9) Through one and the same point of a

purely imaginary straight line can pass at most
one real straight line.
2.2. The parallel invariant straight li-

nes
2.10) A complex invariant straight line of

the system (1) is purely imaginary i� this strai-
ght line is parallel with his conjugate (l ∥ l̄).
2.11) Any purely imaginary invariant strai-

ght line by a linear transformation can be
brought to a straight line parallel to one of the
axes of coordinate.

Regarding two parallel invariant straight li-
nes we have the following property:
2.12) If l1 and l2 are two parallel invariant

straight lines of the system (1), then only one
of the following properties occurs:

a) l1, l2 ∈ R[x, y],
b) l1 is real and l2 is purely imaginary,
c) l1 and l2 are purely imaginary,
d) l1 and l2 are complex straight lines with

a real point.
2.13) The system (1) can not have

more than three straight lines parallel among
themselves.
2.14) The system (1) can not have more

than two triplets of parallel invariant straight
lines.
2.3. The cubic systems with

degenerate in�nity
The cubic system (1) has degenerate in�nity

if the following identity holds

yP3(x, y) − xQ3(x, y) ≡ 0. (2)

If (2) holds, then in�nity consists only of si-
ngular points.
2.15) The identity (2) is invariant under

a�ne transformation of the system (1).
2.16) The invariant straight lines of the

cubic system (1) with degenerate in�nity passi-
ng through one point M0 (x0, y0), x0, y0 ∈ C
have at most three slopes.
2.17) Through one and the same point of

a complex invariant straight line of the cubic
system with degenerate in�nity can not pass
more than one real straight line.
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2.18) The straight line passing through
three distinct singular points of system (1) with
degenerate in�nity is invariant for (1).

Let ψ(x, y) is the polynomial

ψ(x, y) = P · (P · ∂Q/∂x+Q · ∂Q/∂y)−
Q · (P · ∂P/∂x+Q · ∂P/∂y) .

If αx + βy + γ = 0 is an invariant straight
line of the system (1), then αx+βy+γ divides
ψ(x, y) (see [6]); furthemore, the condition (2)
limits the degree of the polynomial ψ(x, y) to
at most six, so it follows next two properties:
2.19) The maximum number of the invari-

ant straight lines for a di�erential cubic system
with degenerate in�nity is equal to six..
2.20) The system (1) with degenerate in�-

nity has invariant straight lines along at most
six di�erent directions [2].
2.21) If the cubic di�erential system (1) wi-

th degenerate in�nity has a triplet of parallel
invariant straight lines l1, l2, l3, then only one
case of following two occurs:

a) l1, l2, l3 ∈ R[x, y],
b) l1 ∈ R[x, y], l2,3 ∈ C[x, y] \ R[x, y] and

l3 = l2.
2.22) If l1,2,3 are a triplet of parallel invari-

ant straight lines of the cubic system with
degenerate in�nity [(1), (2)], then all singular
points of [(1), (2)] lie on these straight lines.
2.23) Let lj, j = 1, 5 are �ve invari-

ant straight lines of the cubic system with
degenerate in�nity, where l1,2,3 compose a tri-
plet of parallel straight lines, the straight lines
l4,5 are distinct and intersect transversally the
triplet l1,2,3. Then l4 ̸∥ l5 and l4, l5 ∈ R[x, y], or
l4,5 are complex with a real point with l5 = l4.
3. The cubic system with degenerate

in�nity and �ve (six) straight lines three
of which are parallel

The purpose of this section is to give
a classi�cation of the cubic systems with
degenerate in�nity having invariant straight li-
nes with total degree of invariance equal to �-
ve (six), where three of them are parallel. If
the straight line l has the degree of invariance
equal tom, then l will be counted asm parallel
straight lines.

3.1. Con�gurations of straight lines
In this section, taking into account the

properties 2.1)-2.23), we will construct all
con�gurations with �ve (six) straight lines,
three of which are parallel. The number near
the straight line (see Conf.10-Conf.15) indi-
cates how many times this line is counted. If
a straight line is invariant, then this number
is equal to degree of invariance of the line.
All other straight lines are counted once and
their invariance degree is considered equal to
one. Thus, we get the following 15 con�gurati-
ons of the straight lines (real straight lines are
represented by continuous lines; complex strai-
ght lines are represented by dashed lines):

Conf.1 Conf.2 Conf.3

Conf.4 Conf.5 Conf.6

Conf.7 Conf.8 Conf.9

2 2 2

Conf.10 Conf.11 Conf.12

2 3 3

Conf.13 Conf.14 Conf.15
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3.2. The classi�cation of systems
We will use the following notations: 5r

means �ve real invariant straight lines; 2c− two
complex invariant straight lines; 5(2)r− four
distinct real invariant straight lines of which
one has the degree of invariance equal to two;
and so on.

Using the above con�gurations of the strai-
ght lines we can state the following theorem.
Theorem. Any cubic system with

degenerate in�nity having invariant strai-
ght lines with total degree of invariance 5
(6), three of which are parallel, via a�ne
transformation and time rescaling can be
written as one of the following 15 systems. In
the square brackets is given the number and
type of invariant straight lines; the existence
of Darboux �rst integral (F) or Darboux
integrating factor (µ). In the �gure associated
to each system is presented the phase portrait
in the Poincar�e disc.

3.3. Darboux integrability and invari-
ant straight line of the systems 3.1)-3.15)

The systems 3.1)-3.15) have the followi-
ng invariant straight lines and Darboux �rst
integrals (integrating factors), respectively:

3.1): l1 = x+ 1, l2 = x, l3 = x− a, l4 = y,
l5 = (a + c− 1)x− y; (l1/l3)

a+c−1(l4/l5)
a+1 =

const;
3.2): l1 = x+ 1, l2 = x, l3 = x− a, l4 = y,

l5 = b(x+ 1) − y; lb2l
−b
3 la4l

−a
5 = const;

3.3): l1 = x+ 1, l2 = x, l3 = x− a, l4 = y,
l5 = (a+ 1)x− y, l6 = x− y−a; l1l4/(l3l5) =
const;

3.4): l1 = x+ 1, l2 = x, l3 = x− a, l4 = y,
l5 = a(x+ 1)− y, l6 = x+ y−a; l2l4/(l3l5) =
const.

3.5): l1 = x+ 1, l2 = x, l3 = x− a,
l4,5 = y ± ix; µ(x, y) = 1/(l1l3l4l5);

3.6): l1 = x+ 1, l2 = x, l3 = x− a,

l4,5 =
√
b y ± i(x+ 1); µ(x, y) = 1/(l2l3l4l5);

3.7): l1 = x − i, l2 = x − a, l3 =
x + i, l4 = y, l5 = cx − y − ac;µ(x, y) =
1/(l1l3l4l5), y exp(−c · arctan(x))/l5 = const;

3.8): l1 = x− i, l2 = x− a, l3 = x+ i, l4 =
y, l5,6 = (a ∓ i)x + y + 1 ± ai;µ(x, y) =
1/(l1l3l5l6);

3.1)

 ẋ = x (x+ 1) (x− a) , a > 0, c ̸= 2,
ẏ = y

(
−a+ c x− y + x2

)
, a+ c > 1

[5r; F ; Fig. 3.1] ;

3.2)

 ẋ = x (x+ 1) (x− a) , a > 0, b > 0,
ẏ = y

(
b+ (b− a)x− y + x2

)
, b− a ̸= 0

[5r; F ; Fig. 3.2] ;

3.3)

 ẋ = x(x+ 1)(x− a), a > 0,
ẏ = y(−a+ 2x− y + x2)
[6r; F ; Fig. 3.3] ;

3.4)

 ẋ = x(x+ 1)(x− a), a > 0,
ẏ = y(a− y + x2)
[6r; F ; Fig. 3.4] ;

3.5)

 ẋ = x(x+ 1)(x− a), a > 0,
ẏ = y(x+ 1)(x− a) + x2 + y2

[3r + 2c; µ; Fig. 3.5] ;

3.6)

 ẋ = x(x+ 1)(x− a), a > 0,
ẏ = (x+ 1)2 + xy(x− a) + by2, b > 0
[3r + 2c; µ; Fig. 3.6] ;

3.7)

 ẋ = (x− a)(x2 + 1), a ∈ R,
ẏ = y(1 − ac+ cx− y + x2), c ̸= 0
[3r + 2c; µ; Fig. 3.7] ;

3.8)

 ẋ = (x− a)(x2 + 1), a ∈ R,
ẏ = y(−1 − 2ax− y + x2)
[2r + 4c; µ; Fig. 3.8] ;

3.9)

 ẋ = (x− a)(x2 + 1), a ∈ R,
ẏ = (x− a)2 + y + 1

by
2 + x2y, b > 0

[1r + 4c; µ; Fig. 3.9] ;

3.10)

 ẋ = x2(x+ 1), a > 0
ẏ = y

(
(a+ 1)x− y + x2

)
[5(2)r; F ; Fig. 3.10] ;

3.11)

 ẋ = x2(x+ 1),
ẏ = y(a+ ax− y + x2), a ̸= 0
[5(2)r; F ; Fig. 3.11] ;

3.12)

 ẋ = x2(x+ 1),
ẏ = ax2 + xy + ay2 + x2y, a ̸= 0
[3(2)r + 2c; µ; Fig. 3.12] ;

3.13)

 ẋ = x2(x+ 1),
ẏ = a(x+ 1)2 + ay2 + x2y, a ̸= 0
[3(2)r + 2c; µ; Fig. 3.13] ;

3.14)

 ẋ = x3, a > 0
ẏ = y(ax− y + x2)
[5(3)r; F ; Fig. 3.14] ;

3.15)

 ẋ = x3, a > 0
ẏ = ax2 + ay2 + x2y
[3(3)r + 2c; µ; Fig. 3.15] .

3.9): l1 = x− i, l2 = x−a, l3 = x+ i, l4,5 =

y ± i
√
b (x− a); µ(x, y) = 1/(l1l3l4l5);

3.10): l1 = x + 1, l2 ≡ l3 = x, l4 = y, l5 =
ax− y; lal l

−a
2 l4l

−1
5 = const;
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3.11): l1 = x + 1, l2 ≡ l3 = x, l4 = y, l5 =
a+ ax− y; y exp(a/x)/(a+ ax− y) = const;

3.12): l1 = x + 1, l2 ≡ l3 = x, l4,5 = y ±
ix; µ(x, y) = 1/(l1l2l4l5);

3.13): l1 = x + 1, l2 ≡ l3 = x, l4,5 = y ±
i(x+ 1); µ(x, y) = 1/(l22l4l5);

3.14): l1,2,3 = x, l4 = y, l5 = ax −
y; y exp(a/x)/(ax− y) = const;

3.15): l1,2,3 = x, l4,5 = y ± ix;µ(x, y) =
1/(l21l4l5).
3.4. Phase portraits of the systems

3.1)-3.15)
The qualitative investigation of the systems

3.1)-3.15) is presented, respectively, in the
following �gures:

We remark that Fig. 3.1 and Fig. 3.4
(Fig. 3.8 and Fig. 3.9) represent two topologi-
cally equivalent phase portraits with di�erent
numbers of invariant straight lines (one of the
separatrices of the saddle singular point from
Fig. 3.1 (Fig. 3.8) becomes a straight line in
Fig. 3.4 (Fig. 3.9)).
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