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LIMIT CYCLE BIFURCATIONS OF A LI�ENARD SYSTEM WITH
CUBIC RESTORING AND POLYNOMIAL DAMPING FUCTIONS

In this paper, applying a canonical system with �eld rotation parameters and using geometric
properties of the spirals �lling the interior and exterior domains of limit cycles, we solve the limit
cycle problem for a Li�enard system with cubic restoring and polynomial damping functions.

1. Introduction. We consider Li�enard
equations

ẍ+ f(x) ẋ+ g(x) = 0 (1)

and the corresponding dynamical systems in
the form

ẋ = y, ẏ = −g(x) − f(x)y. (2)

There are many examples in the natural
sciences and technology in which such equati-
ons and related systems are applied [1]�[10].
They are often used to model either mechani-
cal or electrical, or biomedical systems, and in
the literature, many systems are transformed
into Li�enard type to aid in the investigations.
They can be used, e. g., in certain mechani-
cal systems, where f(x) represents a coe�ci-
ent of the damping force and g(x) represents
the restoring force or sti�ness, when modeling
wind rock phenomena and surge in jet engi-
nes [2], [8]. Such systems can be also used to
model resistor-inductor-capacitor circuits with
nonlinear circuit elements. Recently, e. g., the
Li�enard system (2) has been shown to descri-
be the operation of an optoelectronics circuit
that uses a resonant tunnelling diode to dri-
ve a laser diode to make an optoelectronic
voltage controlled oscillator [10]. There are also
some examples of using Li�enard type systems
in ecology and epidemiology [7].

In this paper, we suppose that system (2),
where g(x) is cubic and f(x) is arbitrary
polynomial, has an anti-saddle (a node or a
focus, or a center) at the origin and write it

in the form

ẋ = y,

ẏ = −x (1 + β1 x+ β2 x
2) +

y (α0 + α1 x+ . . .+ α2k x
2k).

(3)

2. Limit cycle bifurcations of a spe-
cial Li�enard polynomial system. By means
of our bifurcationally geometric approach [11]�
[13], we will consider the Li�enard system (3).
Its �nite singularities are determined by the
algebraic system

x (1 + β1 x+ β2 x
2) = 0, y = 0. (4)

It always has an anti-saddle at the origin and,
in general, can have at most three �nite si-
ngularities which lie on the x-axis: a saddle and
two anti-saddles or two saddles and an anti-
saddle, or a saddle-node and an anti-saddle, or
a saddle and an anti-saddle, or a unique anti-
saddle at the origin. At in�nity, system (3) has
two singular points: a node at the �ends� of
the x-axis and a saddle at the �ends� of the
y-axis. For studying the in�nite singularities,
the methods applied in [1] for Rayleigh's and
van der Pol's equations and also Erugin's two-
isocline method developed in [11] can be used;
see [12], [13].

Following [11], we will study limit cycle
bifurcations of (3) by means of a canonical
system containing �eld rotation parameters
of (3) [1], [11].

Theorem 1. The special Li�enard polynomial
system (3) with limit cycles can be reduced to
the canonical form
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ẋ = y ≡ P (x, y),

ẏ = −x (1 + β1 x± x2)

+ y (α0 + x+ . . .+ x2k−1 + α2k x
2k)

≡ Q(x, y),

(5)

where β1 is �xed and α0, α2, . . . , α2k are �eld
rotation parameters of (5).

Proof. Let all the parameters αi, i =
0, 1, . . . , 2k, vanish in system (5),

ẋ = y, ẏ = −x (1 + β1 x+ β2 x
2), (6)

and consider the corresponding equation

dy

dx
=

−x (1 + β1 x+ β2 x
2)

y
≡ F (x, y). (7)

Since F (x,−y) = −F (x, y), the direction �-
eld of (7) (and the vector �eld of (6) as well) is
symmetric with respect to the x-axis. It follows
that for arbitrary values of the parameters β1
and β2 system (6) has centers as anti-saddles
and cannot have limit cycles surrounding these
points. Therefore, without loss of generality,
the even parameter β2 of system (3) can be
supposed to be equal, e. g., to ±1: β2 = ±1.

Let now all the parameters αi with even
indexes and the odd parameter β1 vanish in
system (5),

ẋ = y,

ẏ = −x (1 ± x2)

+y (α1 x+ α3 x
3 + . . .+ α2k−1 x

2k−1),

(8)

and consider the corresponding equation

dy

dx
=

−x(1 ± x2) + y(α1x+. . .+α2k−1x
2k−1)

y

≡ G(x, y).
(9)

Since G(−x, y) = −G(x, y), the direction �-
eld of (9) (and the vector �eld of (8) as
well) is symmetric with respect to the y-axis.
It follows that for arbitrary values of the
parameters α1, α3, . . . , α2k−1 system (6) has
centers as anti-saddles and cannot have limit
cycles surrounding these points. Therefore, wi-
thout loss of generality, all the odd parameters
αi of system (3) can be supposed to be equal,
e. g., to 1: α1 = α3 = . . . = α2k−1 = 1.

Inputting the odd parameter β1 into
system (8),

ẋ = y ≡ R(x, y),

ẏ = −x (1 + β1 x± x2)

+ y (x+ x3 + . . .+ x2k−1)

≡ S(x, y),

(10)

and calculating the determinant

∆β1 = RS ′
β1

− SR′
β1

= −x2y,

we can see that the vector �eld of (10) is
rotated symmetrically (in opposite directions)
with respect to the x-axis and that the �ni-
te singularities (centers and saddles) of (10)
moving along the x-axis (except the center at
the origin) do not change their type or join
in saddle-nodes. Therefore, we can �x the odd
parameter β1 in system (5), �xing the position
of its �nite singularities on the x-axis.

To prove that the even parameters α0,
α2, . . . , α2k rotate the vector �eld of (5), let
us calculate the following determinants:

∆α0 = PQ′
α0

−QP ′
α0

= y2 ≥ 0,

∆α2 = PQ′
α2

−QP ′
α2

= x2y2 ≥ 0,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

∆α2k
= PQ′

α2k
−QP ′

α2k
= x2ky2 ≥ 0.

By de�nition of a �eld rotation
parameter [1], [11], for increasing each of the
parameters α0, α2, . . . , α2k, under the �xed
others, the vector �eld of system (5) is rotated
in the positive direction (counterclockwise)
in the whole phase plane; and, conversely,
for decreasing each of these parameters, the
vector �eld of (5) is rotated in the negative
direction (clockwise).

Thus, for studying limit cycle bifurcations
of (3), it is su�cient to consider the canonical
system (5) containing only its even parameters
α0, α2, . . . , α2k which rotate the vector �-
eld of (5) under the �xed parameter β1. The
theorem is proved. �

By means of the canonical system (5), let
us study global limit cycle bifurcations of (3)
and prove the following theorem.
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Theorem 2. The special Li�enard polynomial
system (3) can have at most k + 1 limit cycles
in (k : 1)-distribution.

Proof. According to Theorem 1, for the study
of limit cycle bifurcations of system (3), it is
su�cient to consider the canonical system (5)
containing the �eld rotation parameters α0,
α2, . . . , α2k of (3) under the �xed parameter β1.

Let all these parameters vanish:

ẋ = y,

ẏ = −x (1 ± x2)

+y (x+ x3 + . . .+ x2k−1).

(11)

Suppose that (11) has three �nite singulariti-
es: a saddle, S, and two anti-saddles, O at the
origin and A on the x-axis (all other cases are
considered absolutely similarly). System (11) is
symmetric with respect to the y-axis and has
centers as anti-saddles. Its center domains are
bounded by separatrix loops of the saddle S
lying on the x-axis between O and A. If to
input the parameter β1 into (11), we will get
again system (10) the vector �eld of which is
rotated symmetrically (in opposite directions)
with respect to the x-axis. The �nite singulari-
ties S, O, and A of (10) do not change their
type and the center domains of O and A will
be bounded by separatrix loops of the saddle
S of (10) [1], [11].

Let us input successively the �eld rotation
parameters α0, α2, . . . , α2k into system (10)
beginning with the parameters at the hi-
ghest degrees of x and alternating with
their signs; see [12], [13]. So, begin with
the parameter α2k and let, for de�niteness,
α2k > 0:

ẋ = y,

ẏ = −x (1 + β1 x± x2)

+ y (x+ x3 + . . .+ x2k−1 + α2k x
2k).

(12)

In this case, the vector �eld of (12) is rotated in
the positive direction (counterclockwise) turni-
ng the center O at the origin into a nonrough
(weak) unstable focus. The other center A
becomes a rough unstable focus [1], [11].

Fix α2k and input the parameter α2k−2 < 0
into (12):

ẋ = y,

ẏ = −x (1 + β1 x± x2)

+ y (x+ x3 + . . .+ α2k−2x
2k−2

+x2k−1 + α2k x
2k).

(13)

Then the vector �eld of (13) is rotated in the
opposite direction (clockwise) and the focus O
immediately changes the character of its stabi-
lity (since its degree of nonroughness decreases
and the sign of the �eld rotation parameter
at the lower degree of x changes) generati-
ng a stable limit cycle. The focus A will also
generate a stable limit cycle for some value of
α2k−2 after changing the character of its stabi-
lity. Under further decreasing α2k−2, both limit
cycles will expand disappearing on separatrix
loops of (13) [1], [11].

Denote the limit cycle surrounding the ori-
gin by Γ1, the domain outside the cycle by D1,
the domain inside the cycle by D2 and consider
logical possibilities of the appearance of other
(semi-stable) limit cycles from a �trajectory
concentration� surrounding this singular point.
It is clear that, under decreasing the parameter
α2k−2, a semi-stable limit cycle cannot appear
in the domain D2, since the focus spirals �lli-
ng this domain will untwist and the distance
between their coils will increase because of the
vector �eld rotation [12], [13].

By contradiction, we can also prove that
a semi-stable limit cycle cannot appear in
the domain D1. Suppose it appears in this
domain for some values of the parameters
α∗
2k > 0 and α∗

2k−2 < 0. Return to system (10)
and change the inputting order for the �eld
rotation parameters. Input �rst the parameter
α2k−2 < 0:

ẋ = y,

ẏ = −x (1 + β1 x± x2)

+ y (x+ . . .+ α2k−2x
2k−2 + x2k−1).

(14)

Fix it under α2k−2 = α∗
2k−2. The vector �-

eld of (14) is rotated clockwise and the origin
turns into a nonrough stable focus. Inputting
the parameter α2k > 0 into (14), we get again
system (13) the vector �eld of which is rotated
counterclockwise. Under this rotation, a stable
limit cycle Γ1 will appear from a separatrix loop
for some value of α2k. This cycle will contract,

32 Íàóêîâèé âiñíèê ×åðíiâåöüêîãî íàö. óí-òó. Ìàòåìàòèêà. 2012. � Ò. 2, � 2-3.



the outside spirals winding onto the cycle wi-
ll untwist and the distance between their coi-
ls will increase under increasing α2k to the
value α∗

2k. It follows that there are no values of
α∗
2k−2 < 0 and α∗

2k > 0 for which a semi-stable
limit cycle could appear in the domain D1.

This contradiction proves the uniqueness
of a limit cycle surrounding the origin O in
system (13) for any values of the parameters
α2k−2 and α2k of di�erent signs. Obviously,
if these parameters have the same sign,
system (13) has no limit cycles surrounding
the origin at all. On the same reason, this
system cannot have more than one limit cycle
surrounding the other its singular point A.

Let system (13) have the unique limit cycle
Γ1 surrounding the origin O and a unique li-
mit cycle surrounding A. Fix the parameters
α2k > 0, α2k−2 < 0 and input the third
parameter, α2k−4 > 0, into this system:

ẋ = y,

ẏ = −x (1 + β1 x± x2) +

y (x+ x3 + . . . + α2k−4x
2k−4 +

α2k−2 x
2k−2 + x2k−1 + α2k x

2k).

(15)

The vector �eld of (15) is rotated
counterclockwise, the focus at the origin
O changes the character of its stability and
the second (unstable) limit cycle, Γ2, immedi-
ately appears from this point. The limit cycle
surrounding A can only disappear in this point
(because of its roughness) under increasing
the parameter α2k−4. Under further increasing
α2k−4, the limit cycle Γ2 will join with Γ1
forming a semi-stable limit cycle, Γ12, which
will disappear in a �trajectory concentration�
surrounding the origin. Can another semi-
stable limit cycle appear around the origin in
addition to Γ12? It is clear that such a limit
cycle cannot appear either in the domain D1

bounded on the inside by the cycle Γ1 or in
the domain D3 bounded by the origin and Γ2

because of the increasing distance between
the spiral coils �lling these domains under
increasing the parameter α2k−4 [12], [13].

To prove the impossibility of the appearance
of a semi-stable limit cycle in the domain D2

bounded by the cycles Γ1 and Γ2 (before their

joining), suppose the contrary, i. e., that for
some set of values of the parameters, α∗

2k > 0,
α∗
2k−2 < 0, and α∗

2k−4 > 0, such a semi-
stable cycle exists. Return to system (10) again
and input �rst the parameters α2k−4 > 0 and
α2k > 0:

ẋ = y,

ẏ = −x (1 + β1 x± x2)

+ y (x+ x3 + . . .+ α2k−4x
2k−4+

x2k−3 + α2k x
2k).

(16)

Both parameters act in a similar way: they
rotate the vector �eld of (16) counterclockwi-
se turning the origin into a nonrough unstable
focus.

Fix these parameters under α2k−4 =
α∗
2k−4, α2k = α∗

2k and input the parameter
α2k−2 < 0 into (16) getting again system (15).
Since, by our assumption, this system has
two limit cycles surrounding the origin for
α2k−2 > α∗

2k−2, there exists some value of the
parameter, α12

2k−2 (α∗
2k−2 < α12

2k−2 < 0), for
which a semi-stable limit cycle, Γ12, appears
in system (15) and then splits into a stable
cycle, Γ1, and an unstable cycle, Γ2, under
further decreasing α2k−2. The formed domain
D2 bounded by the limit cycles Γ1, Γ2 and �-
lled by the spirals will enlarge since, on the
properties of a �eld rotation parameter, the
interior unstable limit cycle Γ2 will contract
and the exterior stable limit cycle Γ1 wi-
ll expand under decreasing α2k−2. The di-
stance between the spirals of the domain D2

will naturally increase, which will prevent the
appearance of a semi-stable limit cycle in this
domain for α2k−2 < α12

2k−2 [12], [13].
Thus, there are no such values of the

parameters, α∗
2k > 0, α∗

2k−2 < 0, α∗
2k−4 > 0,

for which system (15) would have an additi-
onal semi-stable limit cycle surrounding the
origin O. Obviously, there are no other values
of the parameters α2k, α2k−2, and α2k−4 for
which system (15) would have more than two
limit cycles surrounding this singular point. On
the same reason, additional semi-stable limit
cycles cannot appear around the other singular
point A of (15). Therefore, three in (2 : 1)-
distribution is the maximum number of limit
cycles in system (15).
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Suppose that system (15) has two limit
cycles, Γ1 and Γ2, surrounding the origin O
and a unique limit cycle surrounding A (this
is always possible if α2k ≫ −α2k−2 ≫ α2k−4 >
0). Fix the parameters α2k, α2k−2, α2k−4 and
consider a more general system inputting the
fourth parameter, α2k−6 < 0, into (15):

ẋ = y,

ẏ = −x (1 + β1 x± x2)

+ y (x+ x3 + . . .+ α2k−6x
2k−6+

x2k−5 + . . .+ α2k x
2k).

(17)

For decreasing α2k−6, the vector �eld of (17)
will be rotated clockwise and the focus at the
origin will immediately change the character
of its stability generating a third (stable) li-
mit cycle, Γ3. With further decreasing α2k−6,
Γ3 will join with Γ2 forming a semi-stable
limit cycle, Γ23, which will disappear in a
�trajectory concentration� surrounding the ori-
gin; the cycle Γ1 will expand disappearing on a
separatrix loop of (17).

Let system (17) have three limit cycles
surrounding the origin O : Γ1, Γ2, Γ3. Could
an additional semi-stable limit cycle appear
with decreasing α2k−6 after splitting of whi-
ch system (17) would have �ve limit cycles
around the origin? It is clear that such a li-
mit cycle cannot appear either in the domain
D2 bounded by the cycles Γ1 and Γ2 or in
the domain D4 bounded by the origin and Γ3

because of the increasing distance between the
spiral coils �lling these domains after decreasi-
ng α2k−6. Consider two other domains: D1

bounded on the inside by the cycle Γ1 and D3

bounded by the cycles Γ2 and Γ3. As before, we
will prove the impossibility of the appearance
of a semi-stable limit cycle in these domains by
contradiction.

Suppose that for some set of values of the
parameters α∗

2k > 0, α∗
2k−2 < 0, α∗

2k−4 > 0,
and α∗

2k−6 < 0 such a semi-stable cycle exi-
sts. Return to system (10) again, input �rst
the parameters α2k−6 < 0, α2k−2 < 0 and then
the parameter α2k > 0:

ẋ = y,

ẏ = −x (1 + β1 x± x2)+

y (x+ x3 + . . .+ α2k−6x
2k−6 + . . .+

α2k−2x
2k−2 + x2k−3 + α2k x

2k).

(18)

Fix the parameters α2k−6, α2k−2 under
the values α∗

2k−6, α∗
2k−2, respectively. Wi-

th increasing α2k, a separatrix loop formed
around the origin will generate a stable limit
cycle, Γ1. Fix α2k under the value α∗

2k and input
the parameter α2k−4 > 0 into (18) getting
system (17).

Since, by our assumption, (17) has three li-
mit cycles for α2k−4 < α∗

2k−4, there exists some
value of the parameter α23

2k−4 (0 < α23
2k−4 <

α∗
2k−4) for which a semi-stable limit cycle, Γ23,

appears in this system and then splits into an
unstable cycle, Γ2, and a stable cycle, Γ3, with
further increasing α2k−4. The formed domain
D3 bounded by the limit cycles Γ2, Γ3 and also
the domain D1 bounded on the inside by the
limit cycle Γ1 will enlarge and the spirals �lling
these domains will untwist excluding a possi-
bility of the appearance of a semi-stable limit
cycle there [12], [13].

All other combinations of the parameters
α2k, α2k−2, α2k−4, and α2k−6 are considered
in a similar way. It follows that system (17)
can have at most four limit cycles in (3 : 1)-
distribution.

If we continue the procedure of successive
inputting the even parameters, α2k, . . . , α2, α0,
into system (10), it is possible �rst to obtain
k limit cycles surrounding the origin (α2k ≫
−α2k−2 ≫ α2k−4 ≫ −α2k−6 ≫ α2k−8 ≫
. . .) and then to conclude that the canonical
system (5) (i. e., the special Li�enard polynomi-
al system (3) as well) can have at most k+1 li-
mit cycles in (k : 1)-distribution. The theorem
is proved. �
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