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Purpose. The main purpose of the article is a study of new approaches and development of mathematical
models of group expert estimate structuring (clustering) based on mathematical apparatus of modern theories.

Methodology. The study methodology is based on the mathematical apparatus of the theory of evidence,
cluster analysis. Jousselme measure was used to determine the similarities and differences of clusters.

Findings. The proposed methodology of expert information structuring allows assessing the degree of consis-
tency of expert assessments within the expert group; in the case of its absence it is possible to receive a partition of
the expert committee into the groups with similar expert estimates. The expert assessments in these groups are
characterized by uniformity and consistency. A measure of consistency is characterized by the degree of proximity
of expert assessments.

Originality. Mcthods of mathematical theory of evidence were used to identify and analyse the expert infor-
mation. Unlike existing approaches, this theory allows considering specific forms of un-factors, such as a combi-
nation of uncertainty and fuzzy arising from the process of interaction between the expert judgments. The struc-
ture of such interactions may be different in nature - they can be consistent, compatible, or arbitrary; they can be
arbitrarily nested and overlap. This allows getting more “subtle” analysis of expert assessments. To split a commis-
sion of experts into groups with similar views, we proposed to use Jousselme measure for characterizing the degree
of difference between the generated groups of expert evidence. Expert evidence belongs to one group, if the value
of Jousselme measure for all evidence of this group does not exceed a predetermined threshold. A measure, re-
flecting the degree of conflict between the analysed evidence and formed plurality of expert evidence, was used to
select the order of consideration of expert evidence.

Practical value. The proposed method of structuring of group expert estimates generated under uncertainty
and conflicting expert evidence constitutes the theoretical basis for the construction of information technologies
of the analysis of the expert information using methods of un-factors modelling. This information technology can
be used as the tools of decision support systems to advise the person making a decision according to the “Situa-
tion-Variant solutions” model.
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Introduction. One of the main purposes of the ex-  ommendations for the decision-maker (DM). Howev-
pertise is to obtain a consensus between members of ¢ jt is not always possible to achieve this consistency.
the expert committee that is the basis for making rec- The real situations show that in the expert commit-

tee there are experts whose judgments stand out from
© Kovalenko I.1., Shved A. V., 2016 the majority.
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In [1] it is noted that the results of the expertise can
lead to one of the three main cases: 1) experts’ esti-
mates are “close” (related) to each other. It could indi-
cate a fairly high degree of consistency in the expert
group; 2) the majority of experts is divided into a small
number of groups (clusters), in which the experts’ as-
sessments are “close” to each other to a greater or less-
er degree; 3) a set of experts are divided into a large
number of small groups.

In [1] it is stated that case 2 indicates a small num-
ber of expert groups in the set of experts who reflect
different points of view.

Case 3 characterizes the inconsistency of the expert
committee and may indicate both unfounded choice
of the method of getting the expert information and
the presence the sub-groups of experts (usually minor
ones) or individual experts whose assessments differ
vastly from the majority’s assessments.

Cases 2 and 3 are characterized by the lack of con-
sistency in the expert assessments that leads to some
difficulties in the aggregation of estimates. This, in
turn, raises the general problem of finding and devel-
oping approaches for structuring (clustering, ranking)
of expert group assessments.

Analysis of the recent research and publica-
tions. After analysing the classical methods for clus-
tering of expert group judgments into consistent (in
some sense) sub-groups, we defined, that it is not al-
ways possible to apply them efficiently.

There are two important conditions that we should
take into account to solve problems of structuring
(clustering) of expert group evaluations and to select
appropriate methods [2]: the diversity of measurement
scales of expert assessments (nominal, ordinal, abso-
lute, interval, and others), which allow obtaining the
expert data suitable for decision making support in the
form of labels, rankings, numbers, intervals, binary re-
lations, etc.; limited number of experts # (n < 30) in
groups.

For example, to analyse the expert information
formed in the numerical scales (both absolute and ball
ones) clustering algorithms are widely used, which can
be roughly divided into three categories: distance-
based methods such as the Euclidean distance, the
Mahalanobis distance, the Kolmogorov-Smirnov Test,
the Bhattacharyya distance measure, etc.; clustering
algorithms dealing with mathematical programming
methods (dynamic and integer); density-based cluster-
ing, which provides an estimate of probability density
function (modal analysis, decomposition of mixtures
of probability distributions, method of histogram and
others).

Methods for non-numerical data clustering are
used to analyse the expert assessments made, for ex-
ample, in the scales of the order or relation. Nowa-
days, the Kemeny method, based on metric with the
same name (the distance d(B;, B))) between two bi-
nary relations B; and B; defined on the space of non-
numeric expert opinions, is the most efficient [3].

This distance characterizes the measure of similar-
ity (proximity) of objects to each other. The computa-
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tion of the Kemeny median is the integer program-
ming problem, whose computational complexity is
arbitrarily high.

Unsolved aspects of the problem. The effective-
ness of these methods for clustering of expert group
assessments depends upon the correct considering of
various un-factors (incompleteness, uncertainty, fuzz-
iness, inaccuracy, ambiguity, and others), which ap-
pear while receiving and processing the expert infor-
mation [4].

The specific forms of un-factors may exist in actual
practice, for example, uncertainty and fuzziness or a
mix of both, which are formed in the process of inter-
action between the experts’ judgments (evidence). The
structure of such judgments can be varied: compatible
evidence, consistent evidence or arbitrary evidence;
they can be potentially nested and overlap.

In such a context, there is a problem of expert in-
formation structuring coming from different sources
and generated under uncertainty and conflict (contra-
dictory, not coinciding expert judgments), and identi-
fication of experts or groups of experts characterized
by consistent judgments.

Different aspects of the imperfection (uncertainty,
conflict, impression) of the information can be mod-
elled within the Dempster-Shafer theory (DST, Evi-
dence theory), which is a mathematical tool able to
characterize the imperfect information [5, 6].

In this paper, we propose using metrics in evidence
theory to solve this problem [7].

Objectives of the article. Let us consider a set of

alternatives A ={A4, |i =1,_n} and group of experts E =

={E, | j =1,_t}, expressing their opinions and generat-
ing a set of individual choice rankings (orderings)

B= {Bj | j= l,t}, where B; has a weak ordering.

The problem is to determine groups of experts E =
= {Gr}, {Gry}, ..., {Gr}, ..., {Gry)) (Gr, € B, {Gr,) =
={E,,....E}, t >r>2), with similar judgments. So it is
required to construct a rule that allows determining
uniquely the identity of the expert £ to the group Gr,.

Presentation of the main research. Let QO =

={o,|i= 1,_11} be a finite set (frame of discernment) of
n exclusive and exhaustive elements (hypotheses) [5,
6]. The power set 2 of Q gives a set of focal elements

B={B, | /=1,s}, s =22 each of which appears to be a
focal element, based on which the level of confidence,
that the best choice is in the selected subsets, is deter-
mined.

Any subset B; c Q can be constructed from ele-
ments of Q with operator N so that:

1. B={(@);

2. B;={n;}; e (D

3. B,={w,|i=1,p}, p<n;

4. B, =Q={o, |i=1,n}.

The 1% statement corresponds to a situation for
which none of the alternatives (o, € Q) satisfies an ex-
pert choice, i.e. their choice is empty; the 2" is to sup-
port that an expert selected one alternative (o, € Q2 );
the 3" is to support that an expert selected p alterna-
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tives and the fourth statement is to show that an expert
finds it difficult to choose any of the proposed alterna-
tives (w; € Q ), i.e. all alternatives are equal.

Three important functions are defined in DST: the
basic probability assignment (or mass) function, the
Belief function, and the Plausibility function (VB c Q)
[5, 6]:

- basic probability assignment m: 2* — [0,1]

0<m(B)<1V(B,€2%),m@)=0, Y m(B)=1; (2)

B;e2?
- belief function Bel: 2* — [0,1]
Bel()= Y m(B): 3)
B;cA, B;e2”

- plausibility function PI: 2% — [0,1]
Pl(A)= Y

Q
B,nAD, B;e2

m(B,). )

A method for measuring the distance between two
BPAs is proposed in [7, 8] and is called Jousselme et.
al.’s distance

dj(m],m2)=\/%(ml—mz)rl_)(ml—mz)’ (5)

where mi is a 2°-dimensional column vector with ba-
sic probability assignment of focal elements generated
on independent group 7 of evidence as its coordinates;
(m;)7 is the transpose of vector mi (row vector); (m, —
— my,) stands for vector subtraction; Disa 2 x 2° ma-

trix whose elements are
1, ifB,=B .

S(B,B,), VB,B eQ ©

D(B,.,Bj>={

As the similarity function S(B,, B)) between two focal

elements B; and B;, the Jaccard’s coefficient S(B;, B)) =
=|B,.mBj|/|Bi qu| was used, where | - | means the

cardinality of the corresponding subsets.

Jousselme distance measure satisfies the following
properties:

1. d,(m,, m,y) > 0;

2.d,(m, my) =0 m;=my;

3.d;(my, my) = d;(my, my);

4. d,(m\, my) <d/my, ms) + d,(m3, my).

Jousselme measure d;(m;, m,) can be used to as-
sign the conflict measure between 2 experts in a set of

experts E={E, | j =11} [9]
Conf(1, 2) =d,(m,, m,). (7)

The conflict measure between one expert 7 and the
other 7 — 1 experts is defined by [9]

‘ -

i .Conf(i,j). ®)

J=Li#j

Conf(i,E) = -

—

As a general rule, expert survey leads to a situation
in which the majority of experts are divided into a
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small number of groups (clusters). The expert judg-
ments in one cluster are similar to each other whereas
judgments of different clusters are dissimilar. This in-
dicates insufficiently high consistency in an expert
group and allows assuming that the opinions of experts
are far from each other.

Therefore, the problem definition is to divide a
given group of experts into several sub-groups (clus-
ters) with similar and consistent expert estimates, and
characterize each sub-group.

Let E={F y | j =1,_t} be a set of decision makers
(experts) who present their opinions on a set of alter-

natives A ={A4,|i=1,n}, where ¢ is the number of ex-
perts and # is the number of alternatives in a set. Then
a set of focal elements given by each expert
X={X, |j=L#} will be formed where X is a
2A-dimensional vector with opinion of expert E; (focal
elements) as its coordinates. All elements of the set X
are satisfying the conditions (1).

Then a basic probability assignment as a vector

m, ={m,|i =1,s}, s =24, associated with a given sub-

sets X;, j =12, isdefined. All elements of m; satisfy the
conditions (2).

We have to divide the original set of experts E =
=1{Gn},{Gnry},..., {Gr}, ..., {Gr )} (Gr,c E, {Gr,} =
={E,,..., E}, t > r>2), and identify a sub-groups of
experts with similar opinions (expert evidence).

To solve this problem we propose the method that
consists of the following.

Step 1: Calculate measure (5) for every pairs of
(m;, my, L,j=Lt i#j.

The results are stored in the form of a matrix having
a property of symmetry of the main diagonal as follows

- d(m;,m,) d(m;,m,)
d(my,m,)

, 9

dim,m) d(m,m)) .. -

where d(m;, m;) = d(m;, m;), Vi,j=Lt, i#j; tis the
number of compared elements (objects); d(m;, m;)
stands for values of Jousselme measure (5).

Finally, for each expert £, a graph could be con-
structed (Fig. 1), which reflects the dissimilarity be-
tween expert £; and other 7 — 1 experts.

Step 2: Identify sub-groups of experts Gr, c E,

p=1,[#/2], , where [x] is the greatest integer < x .
Decision rule: V E; € Gr,, j=Lr,, t>r>2 must

meet the conditions V(i,/)=Lr, i =) [, | < d(m,
my) < 1,, where [, _,, [, are some values which are re-
sponsible for belonging of expert £ to the group Gr,,.

Let us consider a set of examples of the proposed
method.

Example 1. Let us consider the frame of discern-
ment A ={4,|i=1,n}, n = 4 with Shafer’s model and

the set of experts E={FE, | j =1,_t}, t = 10, expressing
their opinions.
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Fig. Schematic demonstration of measure d(m,, m;)

The results of the expertise are reported in Table 1.

To evaluate the dependency between two sources of
an expert’s evidence, we propose to compute a mea-
sure of discrepancy (5) between their outputs.

A square matrix of order 10 contains pairwise dis-
tances (5), calculated for a system of subsets X defined
by a group of experts on A set, is given in Table 2.

Figure considers a graphical representation of mea-

sure d,(my, m)), Vk,j =11, k #j: the value of element

E; is in conflict with the rest of the set E\ £, (Table 3).
The results of grouping the initial set of experts are
given in Table 4.
We considered two different procedures of presen-
tations of generated groups of evidence:

Table 1
Basic probability assignments of focal elements m,(A;)

k is given in the centre (the schematic representation

of the group of evidence £, i.e. the group of evidence Expert E; my(A,) my(A,) my(As) my(Ay)
generated by expert £}); solid lines marked element j E, 0.1 05 0.3 0.1
'(the group of evidence genera'ted by expert £)), satisfy- E, 02 03 04 01
ing: 0 <d,;(my, m;) <0.3, and illustrated a low degree of
dissimilarity between m, and m;; dashed lines marked E; 0.3 0.2 0.2 0.3
elements (the groups of evidence) satisfying: 0.3 < E, 0.5 0.1 0.1 0.3
<d;,(my, m;) <0.6, and characterized the medium de- Es 0.1 0.1 0.6 0.2
gree of dissimilarity between m, and m;; the set of ele- E, 0.1 0.3 0.2 0.4
ot A O AR e NS TR R
m, and m,. Eg 0.3 0.3 0.3 0.1
Let us compute the Conf(j, #), with the Equa- Ey 0.1 0.2 0.1 0.6
tion (8). This measure must quantify how much expert Ey 0.1 0.6 0.2 0.1
Table 2
Representation of Jousselme’s pairwise distances d(m,, m;)
1 2 3 4 5 6 7 8 9 10
1 - 0.17 0.3 0.45 0.36 0.27 0.33 0.2 0.44 0.1
2 0.17 - 0.22 0.36 0.22 0.27 0.17 0.1 0.42 0.27
3 0.3 0.22 - 0,17 0.33 0.17 0.17 0.17 0.27 0.35
4 0.45 0.36 0.17 - 0.46 0.33 0.27 0.28 0.37 0.48
5 0.36 0.22 0.33 0.46 - 0.35 0.2 0.3 0.46 0.46
6 0.27 0.27 0.17 0.33 0.35 - 0.28 0.27 0.17 0.3
7 0.33 0.17 0.17 0.27 0.2 0.28 - 0.17 0.39 0.41
8 0.2 0.1 0.17 0.28 0.3 0.27 0.39 - 0.41 0.27
9 0.45 0.42 0.27 0.36 0.46 0.17 0.39 0.41 - 0.46
10 0.1 0.27 0.35 0.48 0.46 0.3 0.41 0.27 0.46 —
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Table 3
Values of measure Conf(J, 7)
Conf(j, 7) Order
Conf(FE), f) 0.290 6
Conf(E,, 1) 0.245 3
Conf(E;, 1) 0.240 1
Conf(E,, 1) 0.350 9
Conf(Es, 1) 0.349 8
Conf(Eg, 1) 0.267 5
Conf(E;, £) 0.266 4
Conf(Ey, 1) 0.241 2
Conf(Ey, ) 0.375 10
Conf(E)y, ) 0.343 7
Table 4
Groups of experts
Group Expert A degree of dissimilarity of
number number evidence my and m;

Procedure 1

1 1,2,3,6,8 | low:0<d,(my, m)<0.3

2 5,7 low:0<d,(my, m)<0.3

3 4,9,10 medium : 0.3 < d;(my, m;) <0.6
Procedure 2

1 1,2,3,6,8 | low:0<d,(my, m)<0.3

2 5,7 low : 0<d,(my, m)<0,3

3 4,9, 10 medium : 0,3 < d,(my, m;) <0,6

- in the first case, experts’ evidence was considered
in order (starting with group of evidences generated by
expert 1);

- in the second case, experts’ evidence was consid-
ered starting with group of evidence generated by ex-
pert £, with min(Conf (£, 7)), and so on in order of
increasing Conf (£}, 7).

Both procedures of the decomposition of the ex-
pert group are the same. As a result of the partition of
the original expert group E={F y | j=1,t},, we identi-
fied three sub-groups (clusters) of experts:

G,={E,, E,, E;, E;, Eg} makes the experts’ evi-
dence in this clusters which do not differ by more than
d;(my, m;) = 0.3 (max(d,(m;, m;) = 0.27). This fact
presupposes the existence of a low dissimilarity be-
tween all groups of evidence, and leads to the conclu-
sion that there is a consistency between the corre-
sponding groups of evidence;

G,={E;, E5} isthe experts’ evidence in this clusters
are also consistency (d;(ms, m;) =0.2). But in relation
to other experts, the consistency decreases while in-
creasing the values d,;(my, m)). In this case the value
d;(my, m)) varies in 0 < d;(my, m;) <0.45;

G;={E,, E,, E\y}, the experts in this clusters, are
characterized by the medium dissimilarity between all
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generated groups of evidence: V(E;, E)) € Grs, i # -
d,;(m;, m;) <0.6. The maximum degree of the dissimi-
larity between evidence in this group is max(d,(m,,
my)) = 0.48.

Example 2. Let A={A|i=1n}, n = 4 be the
frame of discernment (with Shafer’s model) to be ana-

lysed by a set of experts E={FE, | j=L#}, t=10. Table 5
gives the basic probability assignments (BPA) of gen-
erated focal elements, defined by Equation (2).

Table 5 shows that only experts £, and £, generated
focal elements of A. This leads to an increase of the de-
gree of inaccuracy and uncertainty. The experts are
characterized by inconsistency (e.g. experts E; and E,
are in conflict according to alternative A,). The coef-
ficient of conflict ( z mi(C)mj(D)) varies between

CnD=0
0.56 and 0.92 and achieves the maximum value for
evidence Esand E;.

Based on the data in Table 5 we can compute the
values of the distance given by Equation (5), and the
measure Conf(j, 7) by the formula (8).

Both procedures tend to the same result — all the

experts E={E, | / =1,¢} were grouped into three clus-
ters:

G,={E\, E,, E;, E,, E\)} — the experts’ evidence in
this cluster does not differ by more than d,(m,, m;) =
= 0.3 (max(d,(m,, m,,) = 0.3)). This fact presupposes
the existence of a low dissimilarity between all groups
of evidence, and leads to the conclusion that there is a
consistency between the corresponding groups of evi-
dence;

G,={FE;, Ey} — the experts’ evidence in this cluster
is also consistency (d,(ms, my) =0.2). But in relation to
other experts the consistency decreases with increas-
ing values d,(m,, m;). In this case the value d,(m,, m;)
varies in 0 < d(my, m;) < 0.45;

G;={E,4, E;, Eg} — the experts in this cluster are
characterized by the medium dissimilarity between all
generated groups of evidence: V(E,, E)) € Grs, i # .
d(m;, m;) <0.6. The maximum degree of the dissimi-
larity between evidence in this clusters is max(d(m,,
m5) =0.33.

Table 5
Basic probability assignments of focal elements #1,(A4,)
Expert £; | mi(A) | myA,) my(A;) my(Ay)
E, - 0.5 0.3 0.2
E, 0.2 0.3 0.4 0.1
E; — 0.6 - 0.4
E, 0.5 0.1 0.1 0.3
Es — 0.3 0.4 0.3
Es 0.1 0.3 0.2 0.4
E, 0.3 - 0.5 0.2
Eg 0.4 0.3 0.3 -
E, ~ 0.4 — 0.6
o - 0.6 0.2 0.2
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Conclusions. In this paper, we propose a new al-
gorithm for clustering expert group judgments based
on the mathematical apparatus of measures in the the-
ory of evidence. Applied measures are used to quantify
a notion of dissimilarity (distance) and conflict of evi-
dence between m,(*) and m,(-).

In contrast to the existing methods for clustering
expert judgments, the proposed algorithm allows get-
ting better results of group decision making under
multialternative, specific forms of un-factors (uncer-
tainty and fuzziness) and conflict (conflicting, dis-
senting) expert judgments.
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Meta. [JocaigkeHHss HOBUX MiAXOAiB i po3podka
MaTeMaTUYHUX MOJEEN CTpyKTypu3alil (Kj1actepu-
3allii) rpyNoOBUX €KCIMEPTHUX OLIIHOK HA OCHOBI MaTe-
MaTUYHOTIO arnapary CyJacHUX TeOpili.

Metoauka. bazyeTbcss Ha MaTeMaTUYHOMY amna-
paTi Teopii CBIIOUTB, KJIaCTepHOMY aHali3i. B skocTi
KpUTEPil0 BU3HAYEHHSI CXOXOCTI Ta BiIMiHHOCTI
KJIacTepiB po3mIsiHyTa MeTpuka Jousselme.

Pe3syabraTH. 3anpornoHoBaHa METOAMKA CTPYKTY-
pu3alii eKcrepTHoi iHgopmallii 03BOJISIE OLiHIOBaA-
TU CTYIiHb Y3TOMXKEHOCTi €KCIIepTHUX OILIiHOK yce-
peouHi eKCIepTHOl Tpynu; y pasi il BiICyTHOCTI —
OTPUMYBATHU PO3OUTTS €KCHEPTHOI KOMICil Ha IpyIiu,
yCepenuHi SKNUX OLIHKMU €KCMNEePTiB OJU3bKi MiX CO-
0010 Ta XapaKTepu3ylOThCSl OJHOPIIHICTIO Ta Y3ro-
IKeHicTIo. Mipa y3TroIKeHOCTi XapaKTepU3yEThCS
CTyIIeHeM OJIM3bKOCTi EKCITIEPTHUX OLIIHOK.

HayxoBa HoBu3Ha. [l BUSBIEHHS I aHaJi3y
eKCIIepTHOI iH(opMallii OyJau BUKOPUCTAHI METOAU
Teopii cBimouTB. Ha BigMiHy Bim iCHylOUMX MigXOMiB,
JlaHa Teopisl O03BOJISIE BpaxoByBaTW crieuM@ivHi
¢opmu HE-dakropiB, Hanpukiaa, KoMOiHallisl He-
BU3HAYEHOCTi Ta HEYITKOCTI, 1110 BUHUKAIOTh y MPO-
1ieci B3aeEMOJii MixX cyIkeHHsIMU ekcnepTiB. CTpyk-
Typa TakKux B3aEMOJill Moxe MaTu pi3HUM Xapak-
Tep — BOHU MOXYTb OyTH Y3TOIKCHUMU, CYMiCHUMM,
IOBUTBHUMU; MOXYTb TOBLILHUM YMHOM 00’ €IHYBAa-
THCA Ta mepeTuHaTucs. lle mo3Bosie TPOBOIUTHU
OUIbII ,,TOHKUI® aHaji3 eKCIIEpTHUX OLiHOK. [ist
PO30UTTSI €eKCHePTHOI KOMICil Ha TPyNu 3i CXOKUMU
IyMKaMU, 3aIllpONIOHOBAaHO BUKOPHUCTOBYBATH Me-
TPUKM TEOPii CBITOLTB, 1110 XapaKTePU3yIOTh CTYITiHb
BiAMiHHOCTI MiX BMAiIEHUMM IpynamMu eKCIIePTHUX
cBigouTB. EXcniepTHi cBigoLTBa HajlleXaTh OAHil Ipy-
Mi, SKIIO 3HAYeHHSI 3a3HAa4ye€HOl METPUKU JJIST BCiX
CBiJIOLITB AaHOI IPyNU HEe MepeBUIIYE 3aJaHOTO MO-
poroBoro 3HayeHHs. [J1s1 BUOGOpy MOPSIAKY PO3MISLY
eKCIEePTHUX CBIiTOLTB 3aCTOCOBaHA Mipa, IO Bimo-
Opaxkae CTyMiHb KOH(MIIIKTY MiXX PO3IJISIHYTUM CBigO-
LTBOM i c(hOpMOBaHOIO MHOXXIHOIO eKCIIEPTHUX CBi-
JIOLITB.

IIpakTuyHa 3HAYMMICTB. 3aITIPOITOHOBAaHA METO-
JIMKa CTPYKTYypHU3allii TPyMOBUX €KCIIEPTHUX OLIHOK,
copMOBaHUX B yMOBaxX HEBU3HAYEHOCTi Ta HasiB-
HOCTi KOH(UIIKTYIOUMX €KCIEpTHUX CBiguyeHb, op-
MYE TEOpETUYHE MiATPYHTS 1JIs1 MoOyn0BU iH(pOopMa-
LiMHUX TeXHOJIOTIii aHai3y eKCrepTHOI iH(opMallii 3
CUCTEMHUM BUKOPUCTAHHSIM METO/iB MOJAETIOBAHHS
HE-daxkTopiB siK iIHCTpyMEHTAJIbHUX 3aCO0iB CUCTEM
MiATPUMKU OPUUHSATTS pillleHb 111 pO3pOOKU pEeKO-
MeHJalii oco0i, 110 NpuiiMa€e pillleHHS 3a CXeMOIO
,,Cutyaliisg — BapianTtu pimmeHHS ™.

KimouoBi cioBa: meopis ceidoume, mempukxu,
eKcnepmmi OUIHKU, Kaacmepu3auis, HesUu3Have-
Hicmb

IHenn. VccnenoBaHue HOBBIX MOAXOIOB U pa3pa-
0OTKa MaTeMaTU4YeCKUX Mofeieil CTPYKTypu3aluu
(KJ1acTepu3anum) TPYIITOBBIX SKCIIEPTHBIX OIIEHOK
Ha OCHOBE MaTeMaTUYeCKOIo arrapara COBPEMEH-
HBIX TEOPUIA.
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IHOOPMALIWHI TEXHONOTII, CUCTEMHUN AHANI3 TA KEPYBAHHSA

MeTonuka. bazupyeTcs Ha MaTeMaTUUeCKOM arl-
napaTte TEOpMU CBUIETENbCTB, KJIACTEPHOM aHaIU3E.
B kauecTBe KpuTepus onpeaeacHus CXOXECTU U pa3-
JINYMST KJIIACTepOB pacCMOTpeHa MeTpuka Jousselme.

Pesyabratbl. [IpennoxeHHass METOIMKA CTPYKTY-
pU3aIK SKCIEPTHON MHGMOPMAIIMK TTO3BOJISICT OIle-
HUBATh CTENEHb COMIACOBAHHOCTU IKCIIEPTHBIX OLIe-
HOK BHYTPU 3KCIIEPTHOW TPYIINbI; B CJIy4yae €€ OTCyT-
CTBUSI — TTOJTydaTh pa3OUeHUe SKCIIEPTHON KOMUCCUU
Ha rpyIIbl, BHYTPU KOTOPBIX OLIEHKU DKCIEPTOB OJIN3-
KM MEXTYy COO0M U XapaKTepU3yIOTCsI OMHOPOTHOCTHIO
U COMTACOBAaHHOCTBIO. Mepa COITacOBAaHHOCTU Xapak-
TEPU3YETCS CTENEHbIO OJIM30CTU AKCMEPTHBIX OLIEHOK.

Hayynas noBu3Ha. /151 BbIsSIBIEHUS] M aHaAIM3a
AKCIIEPTHOM MHMOPMAITNN OBUTH UCITOJIb30BAaHEI Me-
TOIbl TEOPUU CBUIETENBCTB. B OT/IMUME OT CyIlIEeCTBY-
IOLIMX MOIXOI0B, JaHHAS TEOPUS MMO3BOJISIET YUUTbI-
Bath creuudpuueckue gopmbel HE-dakTopos, Ha-
npruMep, KOMOMHAIIMS HEOTPEACICHHOCTH U HeYeT-
KOCTU, BO3HUKAIOLIWE B MPOLIECCE B3aUMOIECHCTBUSI
MEXIy CyXIeHUSMM 3KcrnepToB. CTpyKTypa TaKux
B3aMOJIEVICTBUM MOXET MMETh pa3JIMYHbINA Xapak-
Tep — OHU MOTYT ObITh COIIACOBAHHBIMU, COBMECTU -
MBIMU, TPOU3BOJIbHBIMU; MOTYT MPOU3BOJLHBIM 00-
pa3oM OO0BbEAUHSTBLCS U TEpeceKaTbCsl. DTO MO3BOJISI-
€T MPOBOAUTH OoJiee ,,TOHKUI™ aHAJIU3 DKCHEPTHBIX
olieHOK. st pa3dueHuns1 SKCNepTHOM KOMUCCUU Ha
rpynnbl CO CXOKMMU MHEHMSIMU, MPEAIOXEHO MC-
MOJb30BaTh METPUKMU TEOPUU CBUAETEJILCTB, XapaK-
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TepU3YIONINe CTeTICHb Pa3INUMsI MEXKIY BhIICTICHHBI-
MU TPYIIIIaMU 3KCTIEPTHBIX CBUACTEIBCTB. DKCITEPT-
HBIC CBUACTCILCTBA IIPUHAIICXKAT OOHOI TpyIIIe,
€CJIM 3HaUeHMEe YKa3aHHON METPUKU TSI BCEX CBUIE-
TEJIbCTB JTaHHOI TPYMITBI HE IIPEBBIIIACT 3aTaHHOIO
MMOpPOTroBOro 3HauyeHus. s BbIOOpa mopsmKa pac-
CMOTpPEHUS SKCIEPTHBIX CBUIECTEILCTB UCITOIb30Ba-
Ha Mepa, oTpaxarollasi CTeleHb KOHMIMKTAa MEKIY
aHAJIU3UPYEMbIM CBUIETEIbCTBOM 1 C(HOPMUPOBAH-
HBIM MHOECTBOM KCITE€PTHBIX CBUIETEIbCTB.

IIpakTHyeckass 3HAYMMOCTB. [IpemiokeHHas
METOIMKA CTPYKTYPHU3AUU TPYHITOBBIX SKCIIEPTHBIX
OLICHOK, c(hOPMUPOBAHHEIX B YCIOBUSIX HEOIpEIe-
JICHHOCTH Y HAJIMIUS KOH(MIUKTYIOIINX 9KCITIEPTHBIX
CBUIETEIIbCTB, COCTABJISICT TEOPETUUECKOE OCHOBA-
HUE IJI9 ITOCTPOCHUS MH(MOPMAIIMOHHBIX TEXHOJIO-
TMii aHajmM3a dKCIIEPTHONM MH(GOPMALIUU C CUCTEM-
HBIM MHCIIOJIb30BAaHUEM METONOB MOICIMPOBAHUS
HE-dakTopoB KaKk MHCTPYMEHTaIbHBIX CPEACTB CU-
CTeM TOMICPXKKHU MPUHSITUS PELICHUI I BbIpaboT-
KM peKOMEHIALMI JUIY MPUHKUMAIOIIEMy pellieHue
no cxeme ,,Cutyanus — BapuaHT peuieHus .

KiioueBble cioBa: meopus ceudemenvcmea, me-
MpUKU, IKCNepmHble OUeHKU, Kaacmepu3ayus, He-
onpeoeneHHOCHb

Pexomendosarno 0o nybaikauii dokm. mexH.

nayk C.b. IIpuxoovkom. [lama HaoxooxceHHs py-
konucy 17.06.15.
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