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COIIPOTUBJICHMS 3aIl0JIHEHUsI BpauieHuo. [1lokasaHo,
YTO HEBBIIOJHEHUE YCAOBUI YCTOMYMBOCTU IBUKE-
HUST MOXET ObITh BBI3BAHO JOCTUXKEHUEM IKCTPEMAalb-
HbIX OTPULIATEJILHBIX 3HAYCHUIA TIPOU3BOIHBIX OT MHEP-
LIMOHHBIX TTAPaMETPOB BHYTPUKAMEPHOI'O 3aII0OJTHEHUSI
10 YIJIOBOM CKOPOCTU BpallleHUs 6apabaHa.
IIpakTnueckas 3HauuMocTh. Pa3zpaboTaHHasi marte-
MaTrudecKasi MOJIEJ b ITO3BOJISIET KAYeCTBEHHO OIpee-
JIITh YCIOBUS YCTOMYMBOTO BpallaTeIbHOTO JBVKCHUS
OapabaHa ¢ TeKy4YMUM 3aroJIHeHeM KaMephl. YCI0BUS
BO3HUKHOBEHUSI HEYCTONYMBOTO IBIDKEHUST MMEIOT CY-
IIECTBEHHOE TTPUKJIaTHOE 3HAUCHHE, ITIOCKOJIBKY BBI3HI-
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Purpose. To develop a method for determining resonant modes of industrial equipment of elastic shaft type, which
is widely used in the mining industry, through the study of mathematical model of nonlinear oscillations. Mathemat-
ical models of oscillatory systems previously were studied in the literature mainly based on the numerical and experi-
mental approaches. This paper proposes using a combination of the wave theory of motion and asymptotic methods
of nonlinear mechanics using special apparatus of periodic functions to investigate the vibrational dynamics of the
system and conditions of resonance phenomena in it, as well as to describe the method for determining the resonance
curves to increase the margin of safety of industrial equipment.

Methodology. Methods for studying resonance amplitudes and frequencies, determining the strength characteris-
tics of equipment are based on the use of asymptotic methods of nonlinear mechanics, wave motion theory and the-
ory of special Ateb-functions.

Findings. In this work the conditions of resonance amplitude and frequency depending on the system parameters
were obtained analytically for these nonlinear vibrational systems of elastic shaft and the overall method for determin-
ing the resonance curves was described.

Originality. For the first time a complete analysis of the impact of physical, mechanical and geometrical factors of
the dynamic pricess on the resonant frequency and amplitude in systems such as elastic shaft was conducted on the
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basis of analytical approaches that allow, in contrast to numerical methods and experimental approaches, exploring

features of dynamics of such systems more precisely.

Practical value. The proposed technique allows solving important practical problems of developing oscillatory
engineering systems at the design stage, selecting the elastic characteristics of shafts, counting modes and screw drill-
ing equipment in view of possible resonance phenomena. Determination of resonance modes of the equipment in

turn allows for efficient and safe mining.

Keywords: mathematical model, nonlinear vibrations, asymptotic method, elastic shaft, resonance curve, special function

Introduction. The relevance of the topic and analysis of
the recent research. Mathematical models used in mod-
eling modern machines, equipment and mechanisms of
mining engineering, aviation, transport and space tech-
nology are becoming increasingly complex and im-
proved. This is due to the increasing demands of power,
speed and precision equipment [1—4]. The investigation
of nonlinear mechanical systems with distributed pa-
rameters basing on the single-frequency vibrations prin-
ciple and asymptotic methods of nonlinear mechanics
was summarized on quasi-linear partial differential equa-
tions. Using these types of equations, which describe lon-
gitudinal and bending vibrations of single-dimensional
systems with distributed parameters (rods, shafts, beams,
etc.) with the elasticity principle close to linear, a num-
ber of important applied problems were solved. Nowa-
days, the use of asymptotic methods of nonlinear me-
chanics for investigating non-stationary dynamic pro-
cesses in nonlinear mechanical systems with distributed
parameters, are fully justified. Based on such methods, a
lot of theoretical and practical problems of the vibration
theory were solved, such as: non-stationary turbine ma-
chines rotor vibrations while crossing the critical num-
ber of revolutions; longitudinal and transverse vibrations
of nonlinear elastic rods; rod vibrations under the axial
and transverse load. The wave theory of motion has been
widely used in the past few decades for investigating dy-
namical processes in different mediums and systems. In
particular, in paper [5], the method for determining the
optimal working mode of vibration protection equip-
ment is developed.

The main ideas of the wave theory are widely used in
applied problems, where it is not always possible to use
classical methods, such as Fourier or D’Alambert methods
for integrating partial differential equations. In particular,
the D’Alambert method has been modified and general-
ized for use in nonlinear elastic systems, which vibrate in
longitudinally movable mediums. The relevance of devel-
oping solving methods basing on the combination of the
wave theory of motion and the asymptotic approach is
mainly related to problems, which describe the dynamical
processes of longitudinally movable mediums. For exam-
ple, the longitudinal and transverse vibrations of belt, fluid
pipe networks, auger machines in viscous or loose medi-
ums, the vibroseparation process to some extent, and oth-
ers. Besides, not only the quantitative characteristics of the
process are influenced by the longitudinal part of the me-
dium velocity, but also the qualitative characteristics, which
may lead to vibration or stability failures.

In this paper, a method for investigating some classes
of the upmentioned systems, namely, elastic bodies, which
rotate around a fixed axis with constant angular velocity
(drilling colons, auger machines, etc.) in a flow of me-
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dium is developed. The developed method is based on
the ideas of asymptotic integration of partial differential
equations, which combine the main principles of the wave
theory of motion and the single-frequency vibrations prin-
ciple in nonlinear systems. The bending vibrations of a
single-dimensional elastic body, considering its angular
velocity around a fixed axis and the relative motion in a
flow of homogeneous medium, are investigated. The equa-
tion, which determines the main nonlinear vibration pa-
rameters, is obtained in standard form.

The dynamics of an elastic body in a continuous flow
of homogeneous medium (CFHM) has not been prop-
erly investigated yet, mainly because of the lack of anal-
ysis methods, even for the linear mathematical models.
However, the equipment, operation of which is de-
scribed by such mathematical models, is widely used in
various industries (mostly in mining industry). This fact
has led to the development of different analytic and nu-
merical methods for investigating both linear and non-
linear models of such systems in the past few decades.
For partial solving of the problems, pointed in this pa-
per, the following approach is proposed: the relative mo-
mentum of the medium is small compared to the mo-
mentum of the elastic body at its bending vibrations (small
density or relative motion velocity of the medium); the
relative motion velocity of the continuous flow of me-
dium alongside the body is changing slowly.

The mathematical model of bending vibrations of an
elastic body in a CFHM. For investigating the influence
of the continuous flow of homogeneous medium on the
nonlinear vibrations of an elastic body, firstly, a solution
for the perturbated boundary problem

o’u 0,0 ou 0*u d*u o'u
—+ —tQa _=8F usev_7_5_5_ ) (])
or? b ox? ox* ot ox? ox® ox*

3
ou 0*u *u o*u EI &% [ d%u

8F uaes_s_’_)_ =—€ 5| ~ 5 -
ot ox? ox3 ox* m+m, ox? | ox?

2
m W o°u N m
oxot m+m,

q(x,1).

m+m,
In the expressions above, m is the linear mass of the

elastic body; m, is the mass of a standard unit of the CFHM
material line, which moves alongside the body; E is the

69




FTEOTEXHIYHA | TIPHWYA MEXAHIKA, MAIWWHOBYYBAHHA

modulus of the body material elasticity; /is the moment
of inertia of the body’s cross-section, relative to the neu-
tral axis in non-deformed state (this axis is perpendicu-
lar to the vibration plane); Vs the constant speed of the
medium movement along the continuum elastic body;
N is the pressure force; g(x, 7) is the intensity of the re-
sultant of external forces which act on the body’s stan-
dard unit. The equation (1) is complemented by bound-
ary conditions, which correspond to the movement con-
ditions of an elastic body at x = 0 (the beginning) and
(x=1) (the end). Assuming the movement conditions as
a fixed hinge, we have the following

u(0,1)=u(l,1)=0; @(O,t) Ou )=0. @
ox? ox?

The solving of the problem (1, 2) simplifies the con-

ditions, imposed on the right part of the statement (1),

namely the maximum value of the force of inertia of the

4

CFHM is small compared to max o.? Z—Z This is also the
X

pre-condition of applying the general ideas of perturba-

tion methods for solving the up-mentioned boundary
problem. In the first asymptotic approximation, the single-
frequency process of the elastic body is described as follows

u(x,t):

+pu(a,xy,0),k=012,...,

a(cos(mx+\|/)—cos(1cx—w))+ )

where y = of + ¢. For the case under consideration, the a
and ¢ parameters are time-dependent functions, u,(a, v,
0, x) is a 2 — periodic function by the y and 6, which is
defined from the fact that the asymptotic representation
ofthe solution must satisfy the given equation and bound-
ary conditions with the second order of accuracy.

Resonant vibrations of an elastic body in a CFHM. In
this paper, the resonant case of bending vibrations of an
elastic body in a continuous flow of medium is consid-
ered. Resonant vibrations are mostly a negative factor in
mechanical systems, because of the significant increase
in the vibration amplitude in case of resonance, and the
increase in dynamic loads. This leads to the decrease of
the system’s exploitation resource.

Considering the nonlinear transverse vibrations of an
elastic body in a CFHM, the physical, mechanical, and
motion characteristics of the body affect not only the
amplitude of the vibrations, but also the resonance fre-
quency. For investigating the influence of the vibrations
on the resonant value of the amplitude, the solution of
the problem is sought the same way as in the non-reso-
nance case, as an asymptotic representation (3), with the
difference that, in resonant case, the vibration amplitude
depends on the free and forced vibrations phase differ-
ence (parameter ¢ = y — 0). Taking this into account, in
the asymptotic representation, the amplitude parameter
is defined by a more complex formula

da

uAl(a,(I)); %:w—v+p31(a,¢). 4)
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The unknown functions A4,(a, ¢) and B,(a, ¢) are
found so that the asymptotic representation (3), taking
into account (4), satisfies the given equation with the con-
sidered order of accuracy. To achieve this, by differenti-
ating (4), we have the following
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These formulas allow constructing a differential equa-
tion, which connects the sought functions in the follow-
ing form

) 2
8u; @’ +2 Oy vo+vi—-+
0w oy 00 20
4 4 2
+o2 kn M:aw kn sin@xcosw—
) ax? ) )

- 2V%cos?xcosw + F(x,a,w,e) +

+ psin%;{cosw(—%i’d))(m—v) + ZamBJ +

+ sinw[a%i’d))(m—v)+2A(a,¢)mD.

The unknown function satisfies the homogeneous
(non-perturbated) conditions, if it can be presented as a
series

(x a,v, ) Zmn

In this case, the series coefficients are connected by
differential equations:
a)ifk=1-—

m(a,e,\y).
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By imposing conditions, which are analogical to the
non-resonant case, on the function u, k(a,\y,e), for the
main resonance we have the following
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Thereby, in case of resonance, for the first approxi-
mation of the solution of the problem we have a differ-
ential equation system, which connects the sought func-
tions in the following form
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In the following paragraphs, based on general depen-
dencies, the transverse vibrations of an elastic body in a
continuous flow of medium under periodic harmonic per-
turbation, is considered. This case is the most interesting
both theoretically and practically.

Transverse vibrations of an elastic body in a CFHM un-
der harmonic perturbation, excluding the pressure force.
In this case, the differential equation of the bending vi-
brations of an elastic body takes the following form

2 4 2 2
6_M+QZQZ_L 8_uV2 +28_LIV _
or’ axt m+m | ox? oxot
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Assuming that the boundary conditions of the equa-
tion (5) correspond to the hinge-fixed body ends, the sin-
gle-frequency vibration process, with the regime, close to
the frequency of external perturbation, can be described
by (3). The a and ¢ parameters for this case are deter-
mined by a differential equation system:

- for non-resonance case it is a system of the form (4);

- for the main resonance case —

da __ 2eH cosd:

di n{o+v(r))

do 2y
—=0-V- —+
dt 1 8w

If an internal friction force, which is proportional to

N
the velocity raised to the power s, namely R= y[f;:J ,

where y is a constant, and the compression or stretching
force is considered, then, the resonant and non-resonant
vibrations can be described by the following dependencies

ﬂ:- Y ((,_o)ﬁlaf;
dt  m+m,
dy __ | 3mad (= %
—=0-¢ — 4= =],
dt 32 12 D) ) 8w
or
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2
4 _o (x| _
dt ) 8w
7 S ¥
((o+v(t))a RNLw |
_ kn [(kn) EI _ N
where ©, =—, || — ¥ .
/ [) m+m m+m

The “+” sign corresponds to the stretching of the body
by an axial force, and the “—” sign corresponds to com-
pression of the body by an axial force. In Fig. 1, a the
dependency of the nonlinear vibration frequency on the
relative velocity of the CFHM V and the compression or
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stretching force is shown at m; = 0.6 kg/m, a = 0.02 m.
In Fig. 1, b the dependency of the nonlinear vibration
frequency from the compression or stretching force and
amplitude is shown at m; = 0.6 kg/m and V = 4 m/s.
These graphs show that the dominant influence on the
vibration frequency change is performed by the linear
velocity of the CFHM. This velocity should be consid-
ered in the first place, when investigating resonance.

In Fig. 2, the resonance curves of the vibration am-
plitudes are presented, at the fast crossing of the reso-
nance point while s =1. The graphical dependencies in
Fig. 2 correspond to the following values of the param-
eters: ® =310s!, V=0m/s, —case a; ® = 310s™!, m; =
0.5 kg/m, V=4 m/s — case b.

The up-defined differential equations allow getting
the formulas for determining the amplitude of stationary
resonance vibrations

((T) r— cosp=0;

n((T)Jrv(t))

_ e
“’_V(’)_[ﬂ 80
2 2

T a
K E0)

=u sing +

B

2H
n((T)+v(t))a

and the resonant curve

These facts are the main points of consideration while
investigating resonance vibrations of an elastic body.

The results of the paper also show that:

- for small CFHM velocities the resonance ampli-
tude is greater;

- for smaller linear mass of CFHM, the resonance
amplitude is smaller.

The resulting mathematical model of nonlinear vibra-
tions of an elastic shaft, and the dependencies between the
parameters of the oscillatory system, obtained using as-
ymptotic methods of nonlinear mechanics, allow choosing
such elastic characteristics of the industrial equipment,
that make the resonance operation regimes impossible.
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Fig. 1. The dependency of the nonlinear vibration fre-
quency from:
a — the relative velocity of CFHM and the compression or
stretching force; b — the compression or stretching force
and the amplitude
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Fig. 2. Resonant curves of the vibration amplitude at vari-
ous parameter values:

a—o0=310s", V=0m/s;b— o =310s", m'=0.5kg/m,
V=4m/s
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Meta. Po3poOiieHHSI METOAUMKU 3HAXOIKEHHS pe-
30HAHCHUX PEXKMMiB pOOOTH MPOMUCIOBOIO 00JaTHAHHS
TUITY TIPY>KHOTO BaJia, 110 IIMPOKO BUKOPUCTOBYETHCS
B TipHUYOPYIHIA MPOMUCIIOBOCTI, UISIXOM JOCTiTXKEHHST
MaTeMaTUYHOI MoJiesli HeJliHiMHMX KoJvBaHb. MaTema-
TUYHI MOJIeJi TAKMX KOJUMBAJIbHUX CUCTEM paHillle B Ji-
Teparypi JOCTIIXYBAIUCS MTEPEBAXHO Ha 0a3i yucesb-
HUX 1 eKCIIepUMEHTAJIbHUX TAXOMIB. ¥ 1l poOOTi IIpo-
TMOHYETHCS 32 I0TMIOMOTOIO TTOEAHAHHS XBUJIBOBOI TEOPil
PyXy Ta aCUMIITOTMYHUX METOMIB HeJIiHIMHOT MeXaHiK1
i3 3aCTOCYBaHHSIM amaparty CIeliaJbHUX MepioanIHUX
(byHKIII JOCTIAUTH TUHAMIKY KOJUBAJIbHOI CUCTEMU
Ta YMOBU BUHMKHEHHSI pE30HAHCHUX SIBUILL Y Hil, a Ta-
KOX OIMMCAaTy METOIMKY BU3HAYEHHST PE30HAHCHUX KPH-
BUX 3 METOI0 301IbLIEHHS 3a11acy MillHOCTi TPOMUCIOBO-
ro obJaaHaHHS.

Metoauka. MeTonyka BUBYEHHS pe30HAHCHUX aMIT-
JITYN i YaCTOT, BU3HAYEHHS XapaKTePUCTUK MIlLTHOCTi 00-
JTaTHAHHS 0a3yeThCS HA 3aCTOCYBAHHI aCUMITTOTUIHO-
T0 METOAY HEeJIiHIITHOI MeXaHiKM, XBUJIbOBIN Teopil pyxy
1 BUKOpUMCTaHHI crieliaabHuX Ateb-(yHKITiiA.

Pe3syabraTu. Y poOOTi 1151 3a3HAYEHUX HEJTiHIMHUX
KOJMBaJIbHUX CUCTEM THUITY TIPYKHOTO Bajla aHAJIiITUIHO
OTpUMaHi YMOBHM BU3HAYEHHS PE30HAHCHUX aMILIITY/I i
YacTOT 3aJIeXKHO Bill MapaMeTPiB CUCTEMU Ta OIMCaHa 3a-
rajbHa MeTOMKAa BU3HAYCHHS PE30HAHCHUX KPUBHUX.

Haykosa noBusHna. [Tojsirae B ToMmy, 1110 BIiepiie mo-
BHUI aHaJi3 BILTUBY (hi3UKO-MEXaHIYHUX i TeOMETpUY-
HUX YMHHMKIB IMHAMIYHOTO MPOLECY Ha Pe30HAHCHi
YacTOTH Ta aMILIITyAd B CUCTeMaX TUITY TIPY>KHUX BaJliB
3AilicHeHU# Ha 0a3i aHaAJIITUYHUX TTIXO/MIB, SIKi 103BO-
JISIFOTh, HA BIIMiHY BiJl YCEJIbHUX METOIiB Ta EKCIIepH-
MEHTAJIbHUX ITiIXO/IiB, TOUYHIIIIE TOCIIiIKyBaTA OCOOJIM-
BOCTi AMHAMiK1 TaKUX CUCTEM.

IIpakTHYHA 3HAYMMICTB. 3aITPONIOHOBaHA METOIMKA
JI03BOJISIE BUPIIIYBAaTH BaKJIMBi i3 MPaKTUYHOI TOYKU
30py 3aBIaHHSI CTBOPEHHSI Ta ONTUMIi3allil mapaMeTpiB
TEeXHIYHMX KOJMBAJIbHUX CUCTEM Ha CTail MPOEKTyBaH-
H$I, BUOMpPATU MPYXKHi XapaKTepUCTUKHU BaJliB, po3pa-
XOBYBATH PEXUMU pOOOTU OYpUILHOTO I LIHEKOBOTO
o0JIalHAHHS 3 YpaxyBaHHSIM MOXJIMBUX PE30HAHCHUX
sBulll. BU3HaYeHHS pe30HAaHCHUX PeXUMiB pOOOTH 00-
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JIaIHAHHS1, Y CBOIO Yepry, 103BOJISIE 3MiMCHIOBATH epeK-
TUBHI 1 6e3MeYHi TipHU4i poOOTH.

Kimrouosi ciioBa: mamemamuuna modenw, HeAIHIlIHI KO-
AUBAHHS, ACUMNIMOMUYHULL MemOo0, NPYICHUL 8al, pe30-
HaHCHA Kpuea, cneuianvii yHKuii

emb. PazpaboTka METOIMKM HAXOXASHUS PE30HAHC-
HBIX PEKMMOB PaObOThI MPOMBILITIEHHOTO 000PYIOBaHMST
THIIA YIIPYTOT0 Bajia, KOTOPOE IIMPOKO UCIIOIH3YETCs B
TOPHOPYIHOM TIPOMBINIUIEHHOCTH, IyTeM HCCIIeIOBa-
HMST MATEMATHYECKOM MOIEIN HEJTMHEHHBIX KOJICOaHMIA.
MaremMaTi4aecKre MOIEIN TAKMX KOJIeOaTeIbHBIX CICTEM
paHee B TUTepaType MCCICIOBAINCH IIPEUMYIIEeCTBEH -
HO Ha 0a3e YMCICHHBIX U eKCIIePUMEHTAIBHUX TTOIXO0-
noB. B aToii pabote nmpeayiaraercsl ¢ TIOMOLIbIO coYeTa-
HUS BOJTHOBOM TEOPUU ABMKCHUS U aCUMIITOTUYECKIX
METOIOB HEJIMHEWHON MEXaHUKU C TIPUMEHEHUEM arll-
rapara crieliMaIbHbIX iepruoaudeckux yHKIUI uccie-
JIOBaTh TMHAMUKY K0J1e0aTeIbHON CUCTEMBI 1 YCIIOBUS
BO3HUKHOBEHUS PE30HAHCHBIX SIBJICHUI B HEM, a TAKXKe
OITCaTh METOIUKY OIpeIeaeHUs pe30HAHCHBIX KPUBBIX
C TIEJTBIO YBEJIMUCHUS 3aImaca IMPOYHOCTH ITPOMBIIILICH-
HOTO 000pYIOBaHUS.

MeTtoanka. MeToanKa N3ydeHUs Pe30HAHCHBIX aM-
IUTUTYI X YaCTOT, OTIPEICICHNS XapaKTePUCTHK ITPOYHO-
CTH 000pyIOBaHUS Oa3MpyeTcs Ha MPUMEHEHNH achM-
NTOTUYECKOTO METO/IAa HEJIMHEMHOW MEXaHUKHU, BOJTHO-
BOI TEOPUU IBVKCHUS M UCTIOIb30BAHUM CIIEIIUATbHBIX
Ateb-pyHKIMiA.

PesyabTatel. B paboTe 115 yKa3aHHbBIX HETMHEWHBIX
KoJsiebaTeIbHBIX CUCTEM TUIIA YIIPYTOro Bajia aHAJIUTH-
YECKH ITOJIYYEeHBI YCIIOBHS ONPENSICHNST Pe30HAHCHBIX
AMIUTUTYI Y 9aCTOT B 3aBUCHUMOCTH OT ITapaMeTPOB CH-
CTEeMBI M OITHCaHa O0IIast METOANKA OIpeIeIICHUs pe-
30HAHCHBIX KPUBHIX.

Hayunas HoBU3HA. 3aKJTFOUAETCS B TOM, UTO BITEPBEIC
TTOJTHBIA aHAJIN3 BIMSTHUST (DU3UKO-MEXaHUIESCKIX 1 T€0-
METPHUUYECKUX (haKTOPOB TMHAMMYECKOTO IIpoliecca Ha
PE30HAHCHBIC YaCTOTHI M aMIIUATYIBI B CUCTEMaX THUIIA
VIPYTUX BaJIOB OCYIIECTBJICH Ha 0a3e aHAaTUTUUYCCKUX
MOIXOMI0B, KOTOPKIE MTO3BOJISIIOT, B OTJIMYME OT YUCIICH-
HBIX METOMIOB U 9KCIIEPUMEHTAIbHBIX [TOJXOI0B, TOUHEE
HCCIenoBaTh OCOOEHHOCTU TMHAMUKU TaKUX CUCTEM.

IIpakTHyeckas 3HaYMMOCTb. [1peToskeHHAsT METO-
KA TTO3BOJISIET pelliaTh BasKHbBIC C TPAKTUIECKOI TOU-
KU 3peHMS 3a0aun CO3MaHNs TEXHUIECKUX KoJieOaTeIb-
HBIX CCTEM Ha CTaIWU IMPOSKTUPOBAHUS, BEIOUPATh
VIIPYTHE XapaKTePUCTUKH BaJIOB, PACCUNTHIBAThH PEXKU -
MBI pabOTBI OYPIIIBHOTO M IITHEKOBOTO 000PYIOBAHMS
C YUETOM BO3MOXHBIX Pe30HAHCHBIX sIBIIeHUI. Ompene-
JIEHUE PE30HAHCHBIX PEXXMMOB pabOThl 000PYI0OBaHUSI,
B CBOIO OY€pE/Ib, TTO3BOJISIET OCYIIECTBIATH d(D(EKTUBHBIC
1 6e30IacHbIe TOPHbIE PAOOTHI.

KimoueBbie ciioBa: mamemamuyeckas mooens, HeauHe-
Hble K01eOaHus, ACUMNMOMU4ecKull Memoo, ynpyeuii 8a,
DE30HAHCHAS KpUBas, cneyuadnbhvle QYHKUUU

Pexomendosarno 0o nybaikauyii dokm. mexH. HAyK
€.B. Xapuenxom. Jama naoxo0xcenns pyxonucy 16.11.16.
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