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Influence of parameters of a rubber-rope cable 
on the torsional stiffness of the body of the winding
Purpose. Development of a mathematical model of the stress-strain state of the body of the winding of the bobbin 

hoisting machine with rubber-rope cable.
Methodology. Methods of mathematical and computational experiment based on the finite element analysis are 

used.
Findings. To solve the problem of defining the torsional stiffness of the body of the winding of the rubber-rope 

cable (RRC), the physical model of the body of the winding was represented in the form of a composite in which the 
reinforcement is an infinitely thin spiral having stiffness characteristics of a metal rope and the matrix is a rubber 
sheath. After processing the results of the computational experiment using the computer finite element modeling 
method, an analytical expression for determining the torsional stiffness coefficient of the body of the winding of the 
RRC was obtained, the analysis of which shows that the stiffness of the body of the winding depends quadratically on 
its outer diameter, and the local stiffness depends little on the diameter. The danger of dynamic effects occurring in 
the bobbin hoist can take place at a large number of turns in the winding.

Originality. The regularities of the influence of the rubber-rope cable parameters on the torsional stiffness of the 
body of the winding have been established. The nonlinear character of changing the given stiffness characteristics of 
the RRC packet layers is caused by the peculiarity of interaction of the first packet layer with the bobbin surface. This 
interaction can be taken into account by applying the coefficient of a torsional stiffness hardening, for which an ana-
lytical expression was obtained by processing the results of the computational experiment.

Practical value. The developed mathematical model of determining the stiffness of the rubber-rope cable winding 
allows finding the parameters of the bobbin hoist, at which the danger of dynamic effects during the emergency and 
service braking caused by the torsional stiffness of the body of the winding is excepted.
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Introduction. The multilayer winding of the rubber-
rope cable is one of the insufficiently explored elements 
of the bobbin hoisting machines, which has a high com-
pliance and influences the dynamic processes in the 
hoisting installation. Because of the high compliance of 
the cable wound on the bobbin in a short branch, con-
siderable oscillations of the lifting vessel can arise, which 
are dangerous for the possibility of its offset from the 
discharge curves. It follows from the foregoing that the 
evaluation of stiffness is an important problem, the solu-
tion of which is necessary for the research on dynamics 
of the hoisting installation.

Analysis of the recent research and publications. The 
works of V. P. Franchuk and K. A. Ziborov [1] are de-
voted to the elaboration of mathematical models of the 
mechanical systems with distributed and lumped pa-
rameters during stationary and non-stationary rectilin-
ear motion. In the works of S. R. Ilin and V. I. Samusya 
[2,  3], I. O. Taran and I. Yu. Klymenko [4] the depen-
dences of dynamic parameters on the parameters of the 
technical state of the individual links of the installation 
have been established on the basis of complex research 
studies. Carrying out the research of the mine hoists 
D. L. Kolosov [5] elaborated the methodical recom-
mendations on the choice of rational parameters of the 
lift hoists with RRC.
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In the works of K. S. Zabolotnyi [6] the problem of 
deformation of the bobbin winding under the action of a 
concentrated tangential force applied to the outer free 
end of a wound cable was solved. For this purpose, the 
finite element method was used, which took into ac-
count the spirality of the winding and the following as-
sumptions: 1)  the cable layers work together without 
slipping; 2)  the real construction of the body of the 
winding has the form of a sequence of spiral layers of 
constant thickness corresponding in the stiffness char-
acteristics to the ropes and the rubber matrix; 3)  the 
rubber matrix operates in the linear deformation region; 
4) the phenomena that occur with the rubber matrix, are 
similar to the properties of rubber in the abutment joints 
of the RRC.

As a result of computational experiments with a lim-
ited number of layers of the body of the winding (up to 
20) two types of reaction were discovered. In case the 
stiffness of the rope was comparable to the stiffness of 
the rubber matrix, the deformations concentrated at the 
point where the cable descends from the bobbin, while 
the circumferential and radial displacements correspond 
to values of the same order. In conditions where the 
rope stiffness values were real, the body of the winding 
worked as a solid elastic body, which differs by an in-
creased shear modulus in comparison to the same index 
of rubber. The magnitude of the shear is equal to the 
coefficient, which depends on the ratios t/d and h/d 
(here d is the diameter of the rope, t is the pitch of the 
rope, h is the thickness of the cable), under conditions 
of loading the body with a twisting moment.

Based on the analysis of these experiments, an ana-
lytical shear model of the body of the winding was pro-
posed, based on the following assumptions:

- its stiff layers are infinitely thin, they work only on 
extension-compression and do not have bending stiffness;

- of all the components of the displacement of points 
in the soft layers of winding, only angular displacement 
is taken into account;

- for a soft layer the linear law of the angle change in 
rigid layers is applied.

In order to characterize the changeability of the 
stress-strain state of the body of the winding in the cir-
cumferential coordinate, the following parameter is in-
troduced

	 0( ),r sdZ E F j G t R= ⋅ ⋅ ⋅ ⋅ ⋅p 	 (1)

where E is the modulus of rope elasticity of elongation; 
Fr is the cross-sectional area of the rope; j is the number 
of turns; Gsd is the reduced shear modulus of the body 
of the winding; R0 is the radius of the shell.

Based on the computational study of the model, it was 
concluded that taking into account the real parameters of 
the RRC and the initial radius of the bobbin, if the crite-
rion is Z ≥ 20, the body of the winding shows itself as a 
homogeneous cylindrical body in torsion, and its rigidity is

	 ( )24 1 ,hcb sd jC G b= p⋅ ⋅ ρ - 	 (2)

where rj = rj(2p)/R0; b is the width of the body of the 
winding.

Unresolved aspects of the problem. Design parame-
ters of bobbin hoisting installations with the RRC, in-
tended for a depth of more than 2000  m, and with a 
load-carrying capacity of up to 400 tons, essentially dif-
fer from the parameters of bobbin hoists, which have 
been studied in the works mentioned above. This cir-
cumstance necessitates a deeper analysis of the stressed-
strain state of the body of the winding when the tension 
of the hoisting cable is changed.

The objective of the article is to develop a mathemat-
ical model of the stress-strain state of the body of the 
winding of bobbin hoisting machines with a rubber-rope 
cable.

Presentation of the main research. When creating a 
finite-element model of the body of the winding, the 
following assumptions were made: 1)  the rubber-rope 
cable is modeled as a sequence of non-interacting rub-
ber-coated ropes; 2) the rope is modeled as a flat spiral-
shaped body with a circular cross-section equal to the 
diameter of the cable; 3) the model of the rubber matrix 
is a hollow cylinder, and its diameter corresponds to the 
diameter of the shell and the outer diameter of the body 
of the winding, in which a spiral-shaped hole is cut, 
suitable for the model of the rope; 4) the rope and the 
rubber matrix interact without slipping; 5)  the rubber 
matrix is rigidly connected to the shell; 6)  in view of 
symmetry, half the body of the winding is considered; 
7)  because of the smallness of the ratio h/R0, a linear 
tetrahedral finite element is used; 8) the load is applied 
to the linear section of the rope, which is smoothly con-
nected to the spiral-shaped rope.

From the analysis of the works of predecessors it fol-
lows that in general case the torsional stiffness of the 
body of the winding can be represented as the stiffness of 
two series-connected springs. One of them corresponds 
to the torsional stiffness of a homogeneous body, and 
the other corresponds to a local deformation concen-
trated in the vicinity of the point of the rope descend. As 
a criterion for determining the share of participation of a 
homogeneous deformation in the total value of the cable 
deformation, the following ratio is proposed: c = 
= V(p)/V(0), where V(j) is the circumferential displace-
ment of the outer surface of the body of the winding; j 
is the circumferential coordinate, the origin of which 
corresponds to the point where the cable descends.

The criterion for estimating the error of the formula 
in calculating the parameters of a homogeneous body 
denotes the following ratio: x = V(0)/V0, here V0 is the 
circumferential displacement of the outer surface of a 
homogeneous body corresponding to the stiffness (2).

To analyze the reaction of the body of the winding, 
taking into account a large share of the local displace-
ments in the total value of the circumferential displace-
ment, the dependence of the criteria χ and ξ on jρ  
was investigated (Figs. 1, 2), using the following param-
eters of the RRC: d = 4.2 mm, t = 20 mm, h = 10 mm; as 
well as the winding parameter: R0 = 400 mm. In the cal-
culation, 4, 5, 6, 7, 8, 9, 10 and 15 turns were taken into 
account. It can be seen from the figures that if the share 
of homogeneous displacements is 0.375–0.55 of the 
maximum circumferential displacement of the body of 
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the winding, then the error in calculating the stiffness 
according to (2) is 75–180 %. The criterion Z varied 
from 33 to 65 at the same time.

During submarine mining, the belt of increased 
thickness can be used for improving the buoyancy of the 
drag heads. The computational experiment was based 
on the fact that the basic cable of the RRC-5000 has 
5  turns of winding, and the radius of the shell R0  = 
= 420 mm. In comparison with the basic one (25.5 mm), 
the cable thickness varied in the range of 15–40  mm 
(Fig. 3). From the analysis of the graph it follows that 
the dependence of the χ criterion on h  is close to the 
linear one.

To analyze the processes in the body of the winding, 
close to a homogeneous body, the bobbin winding 
RRC-5000 with a shell radius of R0 = 150 mm is consid-
ered. At the same time, the number of turns varied in the 
range of 1...20 (Fig. 4).

From the analysis of the figure it follows that for 
small values of the ratio R0/d, even if the number of 
turns is small, the body of the winding during torsion 
shows itself as a homogeneous body.

In Fig. 5, two extreme cases of deformation of the 
body of the winding are demonstrated: close to homoge-
neous, when χ = 0/81, and local deformation at which 
χ = 0/23. According to (2), the stiffness of the body of 
the winding depends squarely on the outer diameter of 
its body, and the local value of this parameter depends 
little on the value of the diameter of the winding. There-
fore, for a small number of turns, the stiffness of a ho-
mogeneous body exceeds the local stiffness, which 
causes a large error in the calculations using (2) (Fig. 2). 
However, in this case the value of the total winding 
compliance is of the same order as the compliance of the 
homogeneous body, that is, it is sufficiently small. The 
danger of dynamic effects occurring in the bobbin hoist 
during emergency and service braking occurs when 
there are a large number of turns in the winding, when 
the stiffness of a homogeneous body is much less than 
the local stiffness and the value of the total torsional 
stiffness of its body can be defined from (2) with the pre-
cision sufficient for dynamic analysis.

In the process of carrying out a series of computa-
tional experiments using the finite element model of the 
body of the winding, it turned out that the criterion 
(Z  =  20) proposed by M. V. Polushina was not always 
consistent with the prevailing type of the deformed state. 
To make this criterion more precise an analytical model 
has been developed that takes into account the shear and 
compression of the soft rubber layers of the winding. In 
this model, the rope is presented in the form of an infi-
nitely thin spiral and its stiffness characteristics corre-
spond to the real element. The entire body of the wind-
ing is modeled as a cylinder, the reduced stiffness char-
acteristics of which correspond to a reinforced spiral 
rope. Below we consider the algorithm for calculating 
these reduced characteristics.

The definition of reduced stiffness characteristics of 
the body of the winding. In Fig. 6 the result of solving the 
problem of defining the transverse compression of the 
RRC packet is shown, which is obtained in Panchenko›s 
papers. It can be seen from the figure that the expansion 
process of the body of the winding is affected by the ex-
pansion of the rubber near its free surface. Under the 
conditions of the torsion of the body of the winding, the 

Fig. 1. The curve for estimating the share of participation 
of the deformation homogeneity in the general index

Fig. 2. The curve for estimating the error of the formula 
for determining the stiffness of a homogeneous body

Fig. 3. The curve for estimating the share of participation 
of the deformation homogeneity depending on the 
cable thickness in the overall index

Fig. 4. The curve for estimating the share of the partici-
pation of the deformation homogeneity in the general 
index as a function of the turns of the cable winding

a b

Fig. 5. Indices of the characteristics of a deformed state of 
the body of the winding, if:
a – χ = 0.81; b – χ = 0.23 (b)
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stiffness of the system depends mainly on the work of 
the central part of the packet, which is 80 % of the total 
body volume of the winding. Therefore, to define the 
compressive stiffness of the packet, it is permissible to 
replace the rubber-rope cable with a set of non-interact-
ing rubber-coated ropes, the stiffness characteristics of 
which correspond to the indices of the central part of the 
body of the winding, namely

( )
( ) ( )

( )
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0.810

2 2

1

1
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, , ,
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i i j

i i j

B i j
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h t = ×  - ⋅h + ⋅h⋅t+ ⋅t 

 + ⋅ ⋅ - + ×  + ⋅ ⋅ 

	 (3)

where ( )1 1 ,h dh = -  ( )1 1 ;t = -t d  i is the number of 
the winding turn in the packet; j is the general number of 
the turns.

To solve the problem of defining the torsional stiff-
ness of the RRC body of the winding, we use the meth-
od of computer finite element modeling.

For this purpose, we introduce the dimensionless in-
tegral characteristics of the i th winding layer in the RRC 
packet with the total number of layers j, among which 
the torsional stiffness coefficient of the body of the 
winding is
	 G ′ = Py/(wy ⋅ Gr),	  (4)

where Py is the distributed load acting on the i th layer, wy 
is the movement of the layer along the axis у (Fig. 7).

We define the value of the coefficient G ′ depending 
on such parameters of the winding of the RRC: t/d, h/d, 
i, j.

We accept the following assumption: the coefficient 
of the torsional stiffness of the winding layer of the RRC 
has the form of a product of two coefficients, that is
	 G ′ = G ′′ ⋅ kG,	 (5)

where G ′′ is the coefficient of the torsional stiffness of 
the winding, taking into account only the geometry of 
the structure and the physical and mechanical proper-
ties of the components; kG is the coefficient of hardening 
of the winding layer of the RRC, which takes into ac-
count the edge effect when the cable touches the surface 
of the organ of the winding.

We find the value of G ′′. To do this, we carry out a 
computational experiment. In the finite element model 
(Fig. 7) the following boundary conditions are accepted: 
along the left edge of the modeled rectangle – the sym-
metry condition, along the lower one – the prohibition 
of vertical displacements, and along the upper edge in 
the longitudinal direction the force of 500 N/m is given.

Defining the G ′′ parameter. In the use of the finite 
element model, boundary conditions are set and the 
SST in the layer of the wound cable is defined. The re-
sults of the measurements are processed using (4). At 
the same time, the geometrical parameters of the RRC 
varied. The results of the computational experiments 
have been tabulated.

Considering the ratios t/d and h/d to be variables, we 
find an approximate function that connects them. The 
approximating polynomial for defining the torsional 
stiffness coefficient of the RRC body of the winding can 
be written as follows
	 G ′′(h, t) = s1 + s2 ⋅ h + s3 ⋅ t + s4 ⋅ h2 + s5 ⋅ h ⋅ t + s6 ⋅ t2.	 (6)

Here
	 { s }T = {s1  s2  s3  s4  s5  s6}.	 (7)

This is a vector of unknown quantities established by 
the method of least squares with minimizing the squares 
of the deviations of the polynomial G ′′(η,τ).

In this case

''
, 1 2 3

1 1
2 2 2

4 5 6

(

) ,

m n

i j i j
i j

i j i j

G s s s

s s s
= =

D = - + + ⋅h + ⋅t +

+ ⋅h + ⋅t ⋅h + ⋅t

∑∑

where m, n denote the number of rows and columns in 
the Table.

We find the partial derivatives of the value Δ. Equat-
ing them to zero, we obtain the system of equations for 
defining the coefficients of the vector { s }, namely

Fig. 6. Modeling of the process of transverse compression 
of the RRC packet

Fig. 7. The boundary conditions for a finite element mod-
el for defining the parameter G ′′

Table
Values of the coefficient G ′′ depending 

on the geometrical parameters of the rubber-rope cable

h/d
t/d

1.200 1.300 1.400 1.600 1.800 2.000
1.700 4.172 3.151 2.642 2.144 1.895 1.740
1.900 3.725 2.827 2.369 1.926 1.702 1.567
2.100 3.388 2.591 2.182 1.781 1.525 1.456
2.300 3.117 2.405 2.038 1.675 1.490 1.377
2.500 2.893 2.254 1.920 1.596 1.421 1.316
2.700 2.702 2.126 1.821 1.520 1.363 1.266
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We reduce this system to the standard form as fol-
lows
	 [A] ⋅ { s } = {C },	  (8)
where {s} is a column vector of unknown quantities (7).

Next, we write down the matrix of the system (8) and 
the column vector of free terms

The definition of the coefficient kG. For this purpose, 
a stress-strain state in a packet from the RRC-3150 belt 
was studied by computational experiment, at the same 
time the number of layers of the belt in the packet was 
varied and the torsional stiffness coefficient of each 
layer was defined by (4). The edge effect that occurs 
when a layer of the ribbon contacts the surface of the 
organ of the winding was simulated in the boundary 
conditions by prohibiting vertical and horizontal move-
ments of the lower edge of the RRC layer. Further we 
denote that Gi,j is the torsional stiffness coefficient for 
of the i th layer in the packet with the total number of 
layers j. As a result of the calculations, the matrix [G] 
was obtained.

Proceeding from (4), we define the hardening coef-
ficient for the torsional stiffness parameter

	 kG i, j = Gi, j/G ′,	 (11)

and we obtain the matrix [kG i,j]. In order to generalize 
the results of calculations related to the elements of the 
matrix [kG i,j], we find an approximating function of the 
following form
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Using the Gaussian elimination method, we obtain 
the results of solving the system of equations (8) with 
three decimal places, that is

	 sT = {0.664  0.518  0.211 - 0.156  0.252  0.002}. 	(9)

Thus, the coefficients of the polynomial (6) are de-
fined

G ′′(h, t) = 0.664 + 0.518 ⋅ h + 0.211 ⋅ t -
	 - 0.156 ⋅ h2 + 0.252 ⋅ h ⋅ t + 0.002 ⋅t2.	 (10)

The coefficient G ′′ in expression (10) is defined tak-
ing into account the ratios t/d and h/d, given in the table. 
Thus, this equation can be used to define torsional stiff-
ness coefficient of the winding, taking into account only 
the geometry of the structure and the physical and me-
chanical properties of the components for series-pro-
duced standard sizes of RRC-1300–RRC-6000 belts.

The values of the vector {k} are defined by the meth-
od of least squares at the same time

k = {3.279  1.964  0.651  1.318  5.617  1.556  0.791}.	 (13)

Taking into account the expressions (11‒13), we ob-
tain the final version of the equation for defining the tor-
sional stiffness coefficient of the i th layer in the rubber-
rope cable packet with the total number of layers j, that is

( )

( ) ( )
( )
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2

2

1

1
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.
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i i j

i i j

G i j

- - -

- - -

 + ⋅h+ ⋅t- ⋅h +
′ h t = ×  + ⋅h⋅t+ ⋅t 

 + ⋅ ⋅ - + ×  + ⋅ ⋅ 

	 (14)

The analytical expression used to define the torsion-
al stiffness coefficient of the i th layer in the RRC package 
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with the total number of layers j is suitable for calculat-
ing the parameters of the series-produced standard sizes 
of the RRC-1300 – RRC-6000 belts (Table).

Analytical model of the RRC body of the winding. We 
model the winding in the form of a hollow cylinder of ho-
mogeneous orthotropic material reinforced with an infi-
nitely thin spiral, the pitch of which is equal to the thick-
ness of the cable and the stiffness characteristics corre-
spond to the indices of the rope. We will assume that in 
the radial direction the body of the winding experiences 
an unconstrained compression, characterized by a vari-
able along the radius modulus of elasticity, which is de-
fined from the following expression: Ei = Er ⋅ B(η, τ, i, j), 
where Er is the modulus of elasticity of the rubber.

Similarly for the shear modulus Gi = Gr · G ′(η, τ, i, j), 
where Gr is the shear modulus of the rubber.

Since the stiffness of the rope is many times higher 
than the stiffness of the corresponding rubber layer, 
then, defining the potential deformation energy in tor-
sion of the body of the winding, we can limit ourselves 
to three components of the total potential energy, that is 
P = Pc + Pr + Pg, where Pc is the total potential energy 
of the rope extension; Πr and Πγ are the total potential 
energy of compression and shear of winding turns.

In the polar coordinate system it is convenient to 
characterize the displacement of the rope by the value of 
the angle of rotation of its turn, which corresponds to 
the following ratio: θ = V/r, where V is the circumferen-
tial displacement of the rope; r is the radius of the spiral.

Extension strain of the rope is
	 ej = q′ + (u/r),	 (15)
where q′ is the derivative of the value q with respect to 
the circumferential coordinate j; u is the radial dis-
placement of the rope.

We denote extension force of the rope by N, defining 
this parameter as follows
	 N = Bc ⋅ ej,	 (16)
where Bc is the extension stiffness of the rope.

The rope has the form of an Archimedean spiral, 
which means

r (j) = r (0) + (h ⋅ j/2p).
As well as the ratio (h/R0)  1, the derivative r (j)′ 

can be neglected. We will assume that ri(j) = ri(0) = R0 + 
+ h · (i + 0.5) if i = 1, …, j + 1.

Variation of the total potential energy of rope exten-
sion is

( )

( ) ( ) ( ) ( )

2 2

1 10 0

1
2 2

1
0 0

2 2 0 0
.

j j
i

c i i i i i i
i i i

i i i i i ij

i i i i i i

u
N r d N r d

r

N r N r

N r d N u d

p p

j
= =

+

p p

=

 δ
δP = ⋅ ⋅δe j = ⋅ ⋅ δθ + j = 

 
 p ⋅ ⋅δθ p - ⋅ ⋅δθ -
 

=  
′- ⋅ ⋅δθ j+ ⋅δ φ 

 

∑ ∑∫ ∫

∑
∫ ∫

We will also assume that the deformations of the ma-
trix of anisotropic material are constant in the space be-
tween the turns of the ropes, they have the following 
values
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here Ri = R0 = (i - 1) ⋅ h.
These strain values correspond to the stresses de-

fined from such expressions
	 sri = Ei ⋅ eri;  ti = Gi ⋅ gi.	 (18)

Variation of the potential tensile energy of the ma-
trix is
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Variation of the potential shear energy of the matrix 
is
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On the basis of certain equations we obtain the equi-
librium equations, that is
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We write the boundary conditions for the obtained 
parameters
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	  (21)

where P is the additional tension force of the cable.
Substituting expressions (15–18) into equations 

(19), (20), we obtain the systems of linear equations with 
constant coefficients, namely
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with i = 2, …, j - 1.
The general result of solving the systems of equations 

(19) and (20) has the following form
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where λk, akj, bkj are the roots and elements of the matrix 
of the functions of the forms of the characteristic sys-
tems of equations (22, 23); Сθj, Dθj, Сuj, Duj, are the inte-
gration constants that are defined from the boundary 
conditions.

We analyze the structure of the systems of equations 
(22) and (23). The system (22) contains the parameter 
which is proportional to the following ratio

	 2
3
0

.c j

j

B R h
t R G

⋅ ⋅
κ =

⋅ ⋅
	 (25)

It occurs at the second derivatives. Therefore, the 
rate of decay of the solution in the vicinity of the point 
of the cable descend is proportional to the value eκj. In 
system (23), the similar parameter determines the rela-
tionship between the values θ and u. The parameters at 
the second derivatives are of the order of unity. Hence it 

follows that it is permissible to solve systems (22, 23) by 
an iteration method. At the first stage we assume that 
the radial displacements of the rope are equal to zero in 
system (22). At the second stage the corresponding ra-
dial values are found from system (23) from the found 
values of the circumferential displacements. The error in 
the results of applying the iteration method relative to 
the real ranges of the RRC and the bobbin winding did 
not exceed 10 %. The results of computational experi-
ments covering the change in the ratios of the parame-
ters h/d, t/d, R0 /d, rj /R0, Bc /G · t · R0, are shown in 
Fig. 8.

We define the stiffness characteristics for the shear of 
the experimental sample of the rubber-rope cable RRC-
1300 on a tearing machine (Fig.  9). According to the 
testing program, the samples 500 mm long were made 
from RRC-1300. One rope of the cable was clamped in 
the upper plunger, and the second – in the lower one, 
then stretched in the range from 2035 to 14250  MPa. 
During the loading process the deformations of the 
sample were measured.

For each experiment the value of the magnitude of the 
shear modulus of the rubber cable matrix G was calcula

Fig. 8. The dependence curve of Gj/Chcb on the param-
eter κ

Fig. 9. The testing of the rope on the tearing machine
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ted. After a set of values had been obtained, they were 
checked for crude errors. The root-mean-square devia-
tion σ* for the G value was 1 MPa. As well as in the previ-
ous experiments, the homogeneity of the variance of the 
results and the influence of the factor on the response 
were proved. It was also concluded that the distribution of 
the cable shear modulus in the sampling obeys the normal 
law and at a confidence probability of 95 % the deviation 
of the limits of the confidence interval from the mathe-
matical expectation is 0.9 %, that is G = (1 ± 0.009)MPa.

Fig. 10 shows a schematic diagram of an experimen-
tal plant for defining the shear stiffness of the body of the 
winding of the rubber-rope cable. The following param-
eters of the body of the winding were used: the coeffi-
cient of longitudinal stiffness of the winding layer 
Bc =  6658; the cable shear modulus G =  1  MPa; cable 
thickness h = 10 mm; cable width b = 43 mm; the num-
ber of ropes in the cables is 2; initial radius of the bobbin 
R0 = 500 mm; the number of turns in the winding is 20.

The shear stiffness was determined by measuring the 
deformation of the body of the winding after loading 
and unloading. On bobbin 9, under the influence of 
load 1 weighing Q cable 2 was wound up to the necessary 
radius R, then it was loaded up to 500 N. For this pur-
pose, additional loads 3 were hung to wire rope clips 4 in 
the following order: 100 N, 100 N, 200 N, 100 N. At the 
same time, using a dial gauge 5, linear displacement of 
the cable was measured, which ran on the bobbin. This 
indicator is connected with the cable by a thin wire, 
which is attached to wire rope clips 6. The latter ones 
slided along the cable guides. Then the loads were taken 
off in the reverse order and the unloading of the body of 
the winding was made. The thread, on which the loads 
weighing from 100 to 300 N were hung up, was thrown 
over pulley  7. The cycle of loading-unloading was re-
peated 5–6 times. The experiment was carried out while 
changing the tension of the cable Q, under the action of 
which the winding takes place. Since the experimental 
plant includes the series connection of two links, each of 
which has different stiffness (the bobbin organ of the 
winding of the RRC and the string of the cable), the 
value of the given parameter with regard to the RRC 
body of the winding is calculated according to the fol-
lowing formula

,st equiv
hcb

st equiv

C C
C

C C
⋅

=
-

where Cequiv is the equivalent value of the stiffness of the 
computational scheme preconditioned by the indices of 
the indicator; Cst is the stiffness of the string of the cable 
(Cst = Bc /L = 14.5 MN/mm if L = 10 m).

As well as in the previous cases, the tests showed ho-
mogeneity of the variance of the results and the influ-
ence of the factor on the response. An analytical depen-
dence of the stiffness of the RRC body of the winding 
has also been established and the law of distribution of 
its parameters by the Pearson criterion has been re-
vealed.

Fig.  11 shows the graphical schemes of the depen-
dence of the displacement on the loading of the upper 
layer of the cable under the conditions of cyclic loading 
and unloading of the body of the winding of the first 
type. In this case the curves of cyclic deformation are 
characterized by a relatively small area of the hysteresis 
loop; almost full repetition of the shape of the loop dur-
ing the consequent cycles of the loading; approximately 
the same dependence of the displacement on the load-
ing and unloading forces. These facts indicate that there 
is no slipping of the turns of the winding, as well as the 
belonging of the object under investigation to linear 
elastic solid bodies.

In Fig. 12 the graphs of dependencies of the body of 
the winding stiffness on the parameter ρ (ρ = R0 /Rmax) 
for different values of the κ criterion are built. Here the 
curve of the reduced theoretical dependence Cт = f (ρ) is 
also shown. It is built taking into account the results of 
the calculating formula for the parameters of the cable 
RRC-1300. The graphs illustrate two different mecha-
nisms of deformation of the body of the winding, de-
pending on the value of the κ criterion, which coincides 
with the conclusions obtained theoretically. For exam-
ple, if κ ≥ 48, then the curves of the experimental and 
theoretical dependence of the stiffness on the ρ param-

Fig. 10. The scheme of the experimental plant for study-
ing the winding of the rubber-rope cable

Fig. 11. The curves of the dependence of the cable dis-
placements on the loading

Fig. 12. The curves of the dependence of the stiffness of 
the rubber-rope cable winding on its reduced radius
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eter almost coincide. The maximum deviation takes 
place for a small number of turns and is 16 %.

Summarizing the results of studies of the model of 
the bobbin organ of the winding, it is possible to draw 
the following conclusions:

1. The nonlinear character of changing the reduced 
stiffness characteristics of the RRC packet layers is 
caused by the peculiarity of the interaction of the first 
layer of the packet with the surface of the bobbin. This 
interaction can be taken into account by applying the 
coefficient of a torsional stiffness hardening, for which 
an analytical expression is obtained by processing the 
results of a computational experiment. The equations 
are suitable for calculating the parameters of the series-
produced standard sizes of the RRC-2500 – RRC-6000 
belts.

2. An analytical model has been developed that takes 
into account the shear and compression of the soft rub-
ber layers of the cable. In this model the rope is pre-
sented in the form of an infinitely thin spiral, the stiff-
ness characteristics of which correspond to the real ele-
ment. The entire body of the winding is modeled as a 
cylinder, the reduced stiffness characteristics of which 
correspond to a reinforced spiral rope.

3. The stiffness of the body of the winding depends 
quadratically on its outer diameter, and the local stiff-
ness depends little on the diameter value. Therefore, for 
a small number of turns, the stiffness of a homogeneous 
body exceeds local stiffness. However, in this case the 
value of the total compliance is of the same order as the 
compliance of the homogeneous body, i.e. it is small 
enough. The danger of dynamic effects occurring in the 
bobbin hoist during emergency and service braking oc-
curs with a large number of turns in the winding when 
the stiffness of the homogeneous body is much less than 
the local stiffness and the value of the total torsional 
stiffness of the body of the winding can be defined by the 
proposed formula with the precision sufficient for dy-
namic analysis.

4.  To distinguish between the local and homoge-
neous mechanism of the reaction of the body of the 
winding the criterion κ is proposed, the value of which is 
directly proportional to the square roots of the longitu-
dinal stiffness of the rope, the outer radius of the wind-
ing, as well as the cable thickness, and inversely propor-
tional to the square roots of the packaging pitch of the 
ropes in the cable, to the cube roots of the radius of the 
shell and the value of the reduced torsional stiffness of 
the matrix of the body of the winding. The most charac-
teristic value, which separates both types of the reaction 
of the winding, was considered to be κ = 48.
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М. В. Полушина

Державний вищий навчальний заклад „Національний гір-
ничий університет“, м. Дніпро, Україна, e-mail: mmf@ua.fm

Мета. Розробка математичної моделі напруже-
но-деформованого стану тіла намотки бобінних пі-
діймальних машин із ґумотросовим канатом.

Методика. Використані методи математичного 
та обчислювального експерименту на основі скін-
ченно-елементного аналізу.

Результати. Розв’язуючи задачі на визначення 
крутильної жорсткості тіла намотки ґумотросового 
канату (ҐТК), фізичну модель її бобінного органа 
уявили у вигляді композиту, де армування канату 
вважається нескінченно тонкою спіраллю із жор-
сткісними характеристиками металевого троса, а 
матриця – гумовою оболонкою. Після обробки ре-
зультатів обчислювального експерименту з визна-
чення параметрів тіла намотки ҐТК, здійсненого 
методом комп’ютерного скінченно-елементного 
моделювання, отримали аналітичний вираз для 
розрахунку її коефіцієнта жорсткості на кручення, 
з якого випливає висновок про квадратичну залеж-
ність між жорсткістю тіла намотки та її зовнішнім 
діаметром, причому локальна жорсткість конструк-
ції від значення діаметра залежить несуттєво. Не-
безпека виникнення в бобінах підйомника дина-
мічних ефектів може мати місце, коли намотка має 
багато витків.

Наукова новизна. Встановлені закономірності 
впливу параметрів ґумотросового канату на кру-
тильну жорсткість тіла його намотки. Нелінійний 
характер зміни розглянутих характеристик жор-
сткості кожного шару намотки в пакеті ҐТК викли-
каний особливістю взаємодії першого шару з по-
верхнею бобіни. Цю взаємодію можна простежити, 
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застосовуючи коефіцієнт посилення жорсткості на 
кручення, обчислюваний за допомогою отримано-
го шляхом обробки результатів обчислювального 
експерименту аналітичного виразу.

Практична значимість. Розроблена математична 
модель визначення жорсткості намотки ґумотросо-
вого канату дозволяє знаходити такі значення па-
раметрів бобінного підйомника, що дозволять 
уникнути небезпеки появи динамічних ефектів під 
час аварійного та робочого гальмування пристрою, 
викликаних крутильною жорсткістю тіла намотки.

Ключові слова: бобінна підіймальна машина, ґумо-
тросовий канат, багатошарова намотка, тіло на-
мотки, крутильна жорсткість намотки

Влияние параметров резинотросового 
каната на крутильную жесткость тела 

намотки
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Цель. Разработка математической модели на-
пряженно-деформированного состояния тела на-
мотки бобинных подъемных машин с резинотросо-
вым канатом.

Методика. Использованы методы математиче-
ского и вычислительного эксперимента на основе 
конечно-элементного анализа.

Результаты. Для решения задачи по определе-
нию жесткости на кручение тела намотки резино-
тросового каната (РТК) физическую модель ее бо-
бинного органа представили в виде композита, 
считая армировку каната бесконечно тонкой спи-
ралью, имеющей жесткостные характеристики ме-

таллического троса, а матрицу – резиновой обо-
лочкой. После обработки результатов вычисли-
тельного эксперимента по определению параме-
тров тела намотки РТК с использованием метода 
компьютерного конечно-элементного моделиро-
вания было получено аналитическое выражение 
для расчета ее коэффициента жесткости на круче-
ние, из которого следует вывод о квадратичной за-
висимости между жесткостью тела и ее наружным 
диаметром, причем локальная жесткость конструк-
ции от значения диаметра зависит несущественно. 
Опасность возникновения в бобинном подъемнике 
динамических эффектов может иметь место при 
большом числе витков в намотке.

Научная новизна. Установлены закономерности 
влияния параметров резинотросового каната на 
крутильную жесткость тела его намотки. Нелиней-
ный характер изменения жесткостных характери-
стик каждого слоя намотки в пакете РТК вызван 
особенностью взаимодействия первого слоя с по-
верхностью бобины. Это взаимодействие можно 
проследить, применяя коэффициент увеличения 
жесткости на кручение, вычисляемый из получен-
ного путем обработки результатов вычислительно-
го эксперимента аналитического выражения.

Практическая значимость. Разработанная мате-
матическая модель определения жесткости намот-
ки резинотросового каната позволяет находить та-
кие значения параметров бобинного подъемника, 
при которых будет исключена опасность появле-
ния динамических эффектов во время аварийного 
и рабочего торможения устройства, вызванных 
крутильной жесткостью тела намотки.

Ключевые слова: бобинная подъемная машина, ре-
зинотросовый канат, многослойная намотка, тело 
намотки, крутильная жесткость намотки
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