-26-

УДК 544.016.2:(546.56+546.76+546.18+546.221)

ХАРАКТЕР ВЗАЄМОДІЇ В КВАЗІПОДВІЙНІЙ СИСТЕМІ CuCrP₂S₆-AgCrP₂S₆

Мотря С.Ф.¹, Пріц І.П.¹, Поторій М.В.², Милян П.М.¹, Малаховська-Росоха Т.О.¹, Товт В.В.¹

¹НДІ фізики і хімії твердого тіла УжНУ, 88000, Ужгород, Підгірна, 46; ²Ужгородський національний університет, 88000, Ужгород, Підгірна, 46

Сполуки типу $Me^{IM}P_2X_6$ (Me^{I-Cu} , Me^{III}-In, Cr; X-S, Se) утворюють Ag: кристалічні гратки з шаруватою структурою. У них проявляються сегнетоелектричні та анти-сегнетоелектричні розташування диполів [1-6]. Кристали CuInP₂S₆ є прикладом двопідграткових колінеарних сегнетоелектричних сполук, в яких реалізується перехід фазовий першого роду типу "порядок-безпорядок" Т_с=315 К. при У кристалах CuInP₂Se₆ спостерігаються два переходи центросиметричної фазові i3 параелектричної фази у нецентросиметричну сегнетофазу другого роду при Т_i=249 К та першого роду при Т_с=235 К.

В роботах [9-12] досліджувались взаємодії в квазіподвійних системах з участю тетрарних сполук типу $Me^{I}Me^{III}P_2X_6$ (Me^{I} -Cu, Ag; Me^{III} -In, Cr; X-S, Se). В даних системах встановлено утворення як неперервних рядів твердих розчинів, так і обмежених взаємних розчинностей вихідних компонентів.

Вивчення характеру фізико-хімічної взаємодії в системі $CuCrP_2S_6$ –AgCrP₂S₆ є продовженням дослідження вищевказаних систем.

Вихідними компонентами для одержання зразків системи $CuCrP_2S_6$ – AgCrP₂S₆ були попередньо синтезовані тернарні сполуки CuCrS₂ та AgCrS₂. Для синтезу сплавів системи CuCrP₂S₆–AgCrP₂S₆ тернарні сполуки CuCrS₂ та AgCrS₂ мілко подрібнювали з додаванням стехіометричних кількостей сірки та фосфору. Всі елементарні

компоненти були високого ступеня чистоти: Cu – B3, Cr – B3, P – B4, S – B4.

Синтез зразків проводили сплавленням компонентів у вакуумованих до 0.13 Па кварцових ампулах, використовуючи прямий однотемпературний метод в печах шахтного типу із зворотнім градієнтом (50 К) для запобігання сублімації летких компонентів.

Розробки технологічних режимів синтезу здійснювали на основі фізикохімічних властивостей елементарних, бінарних та тернарних компонентів. На першій стадії синтезу (до 670 К) проходять екзотермічні реакції утворення халькогенідів фосфору. Наступний підйом температури, з швидкістю ~ 100 К/добу до 770 К і 970 К, проводили з витримками по 24 год. на кожну При максимальній температурі стадію. (970 К) зразки витримували 19 діб. На цій стадії проходять гетерогенні реакції взаємодії $CuCrS_2$ та AgCrS₂ з халькогенідами фосфору. Пониження температури з 970 К до 670 К здійснювали з швидкістю 50 К/год. Гомогенізуючий відпал проводили при 473 К протягом 20 діб з наступним загартовуванням у льодяній воді.

Синтезовані зразки були компактними, гомогенними жовто-коричневого кольору.

Одержані сплави досліджували методом диференційного термічного аналізу (НТР-72, хромель-алюмелеві термопари). За результатами ДТА побудовано діаграму стану системи CuCrP₂S₆–AgCrP₂S₆ (рис. 1).

-27-

Система відносяться до перитектичного типу взаємодії (IV-й тип діаграм стану за Розебомом) і характеризуються утворенням широких областей граничних твердих розчинів катіон-катіонного заміщення на основі вихідних компонентів.

У квазіподвійній системі CuCrP₂S₆-АgCrP₂S₆ утворюються тверді розчини: α'- і α- на основі низько- і високотемпературної модифікації тетрарної сполуки CuCrP₂S₆, а також β- на основі сполуки AgCrP₂S₆. Солідус системи утворюють гілки первинних виділень α- і β-кристалів, які перетинаються в нонваріантній перитектичній точці з координатами 67 мол.% AgCrP₂S₆, 1075 К, характеризується проходженням яка нонваріантного перитектичного процесу $L+\alpha \Leftrightarrow \beta$.

Нонваріантний перитектичний процес L+ $\alpha \Leftrightarrow \beta$ в інтервалі концентрацій 22–45 мол. % AgCrP₂S₆ відбувається із повним вичерпанням розплаву L (надлишок кристалів α), що призводить до появи, нижче за температуру перитектичної горизонталі двофазної області співіснування кристалів $\alpha+\beta$. В інтервалах концентрацій 45–67 мол.% AgCrP₂S₆ перитектичний процес проходить із повним вичерпанням α -кристалів (надлишок L), що, у свою чергу, призводить до появи двофазної області L+ β .

Наявність поліморфізму сполуки $CuCrP_2S_6$ ускладнює фізико-хімічну взаємодію в системі. Так, у підсолідусній при 515 K відбувається частині перитектоїдний нонваріантний процес α+β⇔а'. Збільшення в сплавах концентрації $AgCrP_2S_6$ підвищує температуру поліморфного перетворення від 501 К до 515 К.

Ширина граничних твердих розчинів при температурах наявних нонваріантних процесів становить: при температурі перитектичного перетворення 1075 К – α до 20 мол.%, β до 55 мол.%; при температурі перитектоїдного перетворення 515 К – α' до 15 мол.%, β до 53 мол.%. Пониження температури призводить до звуження областей взаємної розчинності.

Утворення граничних твердих розчинів в системі $CuCrP_2S_6$ –AgCrP_2S₆ може бути пояснене тим, що вихідні сполуки мають різні кристалічні решітки (комірка CuCrP_2S₆ по параметру *с* в два рази більша, ніж в AgCrP_2S₆), радіуси катіонів у сполуках значно відрізняються один від одного ($r_{Cu+}=0.96$; $r_{Ag+}=1.26$).

Взаємодію в системах з утворенням неперервних рядів твердих розчинів можна пояснити кількісними критеріями В.М. Воздвиженського, які враховують як кристалохімічні, фізико-хімічні так i властивості речовин: $n_s \le 1,10$ і $4n_T^2 + n_v^2 \le 1$, де n_S=S_A/S_B при S_A>S_B – ентропійний фактор (відношення ентропій плавлення компонентів) n_T=1-T_A/T_B (T_A<T_B) – температурний фактор; $n_v = [(d_A/d_B)^3 + V_A/V_B - 2] + b$ – об'ємний або розмірний фактор (d_A і d_B, V_A і V_B) відповідно атомні діаметри і об'єми компонентів; b – поправка на різницю у їх валентності. Перший критерій характеризує ступінь однотипність хімічного зв'язку у компонентах, а другий – близькість їх фізикохімічних властивостей. В подальшому, при вивченні термодинамічних властивостей сполук CuCrP₂S₆ і AgCrP₂S₆ ці критерії можуть бути визначені.

Синтезовані сплави системи CuCrP₂S₆- $AgCrP_2S_6$ досліджені також методом рентгенофазового аналізу (ДРОН-4, Си К_авипромінювання). Індексування одержаних дифрактограм і розрахунок параметрів комірок відповідних складів проводили з використанням комплексу програм "Latic" та "Karta". В таблиці 1 наведено значення параметрів елементарних комірок досліджених зразках системи CuCrP₂S₆- $AgCrP_2S_6$, а на рис.2-5 – графіки їх залежності від складу.

За результатами рентгенофазового аналізу сплавів системи CuCrP₂S₆–AgCrP₂S₆ встановлено обмежену розчинність вихідних сполук.

№/П	Склад (мол. %) CuCrP ₂ S ₆ –AgCrP ₂ S ₆	a, Å	b, Å	c, Å	β, °
1	90 - 10	5.896	10.636	6.752	105.88
2	80 - 20	5.888	10.614	6.747	105.87
3	70 - 30	5.876	10.573	6.744	105.86
4	60 - 40	5.872	10.592	6.747	105.83
5	50 - 50	5.868	10.568	6.743	105.83
6	40 - 60	5.856	10.532	6.735	105.81
7	30 - 70	5.858	10.55	6.736	105.8
8	100	5.896	10.639	6.753	105.8

Таблиця 1. Параметри комірок твердих розчинів у системі CuCrP₂S₆-AgCrP₂S₆

АgCrP₂S₆ розчиняє при температурі відпалу 473 К менше 55 мол.% CuCrP₂S₆. Розчинність аргентумвмісної сполуки у хромвмісній не зафіксовано, оскільки при температурі відпалу 473 К вона, вочевидь, менше 10 мол.%. Для встановлення точної області твердих розчинів на основі CuCrP₂S₆ необхідно провести додаткові синтези сплавів в межах 10 мол.% $AgCrP_2S_6$ з інтервалом концентрацій 1-2 мол.%.

Параметри комірок в області твердих розчинів на основі AgCrP₂S₆ лежать в межах a=5.93-5.89; b=10.64-10.53; c=6.73-6.80 Å; $\beta=105.81-105.93^{0}$.

-29-

Рис. 2 Зміна параметру *a* в області β-твердих розчинів системи CuCrP₂S₆-AgCrP₂S₆

Рис. 4 Зміна параметру *с* в області β-твердих розчинів системи CuCrP₂S₆–AgCrP₂S₆

Визначення густини індивідуальних сполук $CuCrP_2S_6$ і $AgCrP_2S_6$ та сплавів на їх основі проводили пікнометричним методом.

Рис. 3 Зміна параметру *b* в області β-твердих розчинів системи CuCrP₂S₆–AgCrP₂S₆

твердих розчинів системи CuCrP₂S₆–AgCrP₂S₆

У табл. 2 наведено зміну питомої ваги сплавів в області β -твердих розчинів на основі AgCrP₂S₆.

	••	· ~	· 0	•	
	THTOMOS DOTH	$\Omega \Pi \Pi \Omega \Pi \Pi \Pi \Omega \Omega \Pi \Omega$	OTI K TDONT	IV nontitutin II0	$A \cap A \cap$
таолиня Z. эміна	нитомог ваги	сплавів в оола	UTT D-TBCD/I	их позчинів на	
		•	• · · · · · · • • P A		, eeneeringen 200

<u>N⁰</u> /π	Склад сплаву, мол. %	Mr	$ρ_{ekcn}$, γ/cm ³	$\rho_{R,r}/cm^3$
1	AgCrP ₂ S ₆	425.76	3.327	3.3565
2	90 AgCrP ₂ S ₆ -10 CuCrP ₂ S ₆	357.78	3.311	2.9164
3	80 AgCrP ₂ S ₆ -20 CuCrP ₂ S ₆	353.34	3.282	2.8927
4	70 AgCrP ₂ S ₆ -30 CuCrP ₂ S ₆	348.91	3.270	2.8745
5	60 AgCrP ₂ S ₆ -40 CuCrP ₂ S ₆	344.48	3.246	2.8331
6	50 AgCrP ₂ S ₆ -50 CuCrP ₂ S ₆	340.05	3.219	2.8066
7	CuCrP ₂ S ₆	369.88	3.112	2.7061

-30-

Пікнометрична густина сплавів системи $CuCrP_2S_6$ - AgCrP₂S₆ в області існування β -твердих розчинів знаходиться в межах ρ =3.112-3.327 г/см³.

Література

- 1. .Pfeiff R., Kniep R. Quaternary selenodiphosphates (IV): $M^{I}M^{III}[P_2S_6]$, ($M^{I}=Cu$, Ag; $M^{III}=Cr$, Al, Ga, In) //J. Alloys and Comp.-1992.-Vol.186.-P.111-133.
- Maisonneuve V., Evain M., Pagen C., Molnic P. Room temperature crystal structure of the layered phase CuInP₂S₆ //J. of Alloys and Comp.–1995.– Vol.218.–P.157–164.
- 3. Maisonneuve V., Cajipe V.B., Simon A., Millez R., Ravez J. Ferroelectric ordering in lamellar $CuInP_2S_6$ //Phys.Rev.B.-1997.-Vol.56, N9.-P.10860-10868.
- 4. Simon A., Ravez J., Maisonneuve V., Pagen C. Electric transition in the lamellar thiophosphate $CuInP_2S_6$ //Chem.Mat.-1994.-V.6, N9.-P.1575-1580.
- Bourdon X., Maisonneuve V., Cajipe V.B., Pagen C., Fischer J.E. Copper sublattice ordering in layered CuMP₂Se₆ (M-In, Cr) //J. of Alloys and Comp.-1999.-Vol.283.-P. 122-127.
- Cajipe V.B., Ravez J., Maisonneuve V., Simon A., Pagen C., Millez R., Fischer J.E. Copper ordering in lamellar CuMP₂S₆ (M-Cr, In)

transition to an antiferroelectric on ferroelectric phase //Ferroelectrics.-1996.-Vol.185.-P.135-138.

- Maisonneuve V., Pagen C., Cajipe V. Brief communication on CuCrP₂S₆: copper disorder stacting gistortions and magnetic ordering //Solid State Chem.-1995.-Vol.116.-P.208-210.
- 8. Colombet P., Leblanc A., Danot M., Rouxel Y. Structural Aspect and Magnetic Properties of the lamellar Compound $Cu_{0.5}Cr_{0.5}PS_3$ //J. Sol. State Chem.-1982.-Vol.41.-P.174-184.
- Мотря С.Ф., Приц И.П., Ворошилов Ю.В., Поторий М.В., Балог Й.С., Товт В.В. Физико химическое взаимодействие в системах CuInP₂S₆-CuInP₂Se₆ // Журнал неорганической химии.–2004.–Т.49, № 3.–С.533–536.
- Мотря С. Ф., Ворошилов Ю.В., Балог Й.С., Пріц І.П., Височанський Ю.М., Худолій В.О. Фізикохімічна взаємодія в системах CuInP₂S₆ -CuCrP₂S₆ //Українсь-кий хімічний журнал.–2003.– Т.69, №6.–С.75–78.
- 11.Пріц І.П., Поторій М.В., Товт В.В., Мотря С.В. Фізико-хімічна взаємодія в системі AgInP₂S₆-AgInP₂Se₆ //Наук. вісник УжНУ. Серія «Хімія».–2007.–Вип.17.–С.20–23.
- 12.Мотря С.Ф., Пріц І.П., Гасинець С.М., Поторій М.В. Дослідження фізико-хімічної взаємодії в системі CuInP₂Se₆-AgInP₂Se₆ //Науковий вісник УжНУ. Серія "Хімія".–2007.–№18.–С.178–181.

PHYSICO-CHEMICAL INTERACTION IN THE CuCrP₂S₆-AgCrP₂S₆ SYSTEM

Motrya S.F., <u>Prits I.P.</u>, Potoriy M.V., Milyan P.M., Malakhovska-Rosokha T.A., Tovt V.V.

The $CuCrP_2S_6$ - $AgCrP_2S_6$ system has been established using X-ray diffraction, differential thermal analysis and density determination. Studying of the interaction in $CuInP_2Se_6$ -AgInP_2Se_6 system shows complete miscibility in both solid and liquid states.