-8-

УДК 548.3 + 546.34'19'23

Сідей В.І., к.х.н., с.н.с.; Семрад О.О., к.х.н., доц.; Штейфан А.Я., н.с.

ЩОДО ПРИРОДИ ПОЛІМОРФІЗМУ ТЕРНАРНОГО СЕЛЕНІДУ LiAsSe₂

ДВНЗ «Ужгородський національний університет», НДІ фізики і хімії твердого тіла; 88000, м. Ужгород, вул. Підгірна, 46. e-mail: sidey@yandex.ua

Досліджена й нещодавно опублікована нами квазібінарна система Li₂Se – As₂Se₃ характеризується утворенням єдиної проміжної тернарної сполуки LiAsSe₂, що плавиться конгруентно при температурі 808 К і зазнає поліморфного переходу $\alpha \leftrightarrow \beta$ температурі 737 K [1]. Високопри температурна фаза α-LiAsSe₂ кристалізується кубічному структурному типі NaCl В [просторова група *Fm-3m*; параметр гратки a = 5.61(1) Å] зі статистичним заповненням позиції катіона (тобто позиції Na⁺) іонами Li⁺ та As³⁺ [1,2]; тоді як низькотемпературна фаза β-LiAsSe₂ кристалізується в моноклінній структурі з просторовою групою Сс і характеризується сильно деформованими координаційними октаедрами [LiSe₆] i $[AsSe_6]$ [2].

З огляду на технологічність (пов'язану з водорозчинністю сполуки LiAsSe₂) та перспективність широкого застосування LiAsSe₂ в якості напівпровідникового і нелінійно-оптичного матеріалу [2], головною метою цієї нашої роботи було дослідити й використанням встановити моделі (3 зв'язкової валентності [3-5] та концепції іонних радіусів [3]) ймовірні причини вищезгаданого поліморфного перетворення $\alpha \leftrightarrow \beta$ сполуки LiAsSe₂.

Розроблена Л. Полінгом і розвинута І.Д. Брауном модель зв'язкової валентності (M3B; в англомовній літературі – "the bond valence model") [3-5] протягом останніх років набула загального визнання в структурній неорганічній хімії. Найбільш широко МЗВ застосовується для перевірки коректності кристалічних визначених структур, ЛЛЯ передбачення міжатомних відстаней v структурах з відомим хімічним складом та відомою кристалохімічною топологією, а також для оцінки стійкості кристалічних структур [4,5]. Зв'язкова валентність (ЗВ) визначається яκ частина "класичної" валентності (y сучасному трактуванні: фракція електронної пари кількість чи Льюїса), що припадає на кожен конкретний зв'язок між центральним атомом (іоном) А координаційної сфери [АХ_n] та протилежно зарядженим лігандом Х. Числове значення ЗВ (s_{AX}) , виражене у валентних одиницях (в.о.), для розглядуваного зв'язку А – Х зазвичай розраховується за емпіричною формулою $s_{AX} = \exp[(r_0 - r_{AX})/b]$, де r_{AX} – міжатомна відстань, r₀ та b – емпірично встановлені константи або параметри ЗВ, величини яких залежать від природи атомів (іонів) A і $X(r_0)$ відповідає міжатомній відстані з формально одинарним зв'язком; *b* часто розглядається як "універсальна константа" 0.37 Å). У двох відомих фундаментальних роботах [6,7] параметри r_0 та b = 0.37 Å були визначені для близько тисячі пар А/Х різних сортів атомів (іонів); при цьому, незважаючи на фіксовану величину b, для переважної більшості типів опубліковані зв'язку параметри $(r_0; b)$ демонструють задовільну якість.

У якісно розшифрованих стійких впорядкованих структурах сума ЗВ навколо кожного із симетрично незалежних атомів близька до формального числового значення ступеня окиснення – відхилення його зазвичай не перевищує 10%. Для надійно структурної моделі. визначеної значні відхилення сум ЗВ від ступенів окиснення і/або нерівномірний розподіл сум ЗВ між однотипними атомами свідчать про відносну нестабільність досліджуваної структури. Оскільки методологічна коректність i надійність результатів структурного дослідження LiAsSe₂ [2] не викликають сумніву, очікувалось, що аналіз одержаної в β-LiAsSe₂ [2] структурної моделі за допомогою МЗВ може виявити ознаки нестабільності цієї структури. Слід, однак, -9-

відмітити, що коректний аналіз кристалічної високотемпературної структури фази α -LiAsSe₂ за допомогою M3B був неможливим через природні обмеження цієї моделі, котрі не дозволяють аналізувати структури з частковим чи статистичним заповненням кристалографічних позицій атомами [4,5].

Аналіз структурної моделі β -LiAsSe₂ [2] за допомогою M3B включав наступні етапи: (а) розрахунок міжатомних відстаней у структурі β -LiAsSe₂ з використанням програми *PLATON* [8] (оскільки список опублікованих у [2] міжатомних відстаней був неповним, цей етап був необхідним); (б) розрахунок поправки Δr_0 на температуру структурного дослідження (T = 100 K) [2] за методикою Брауна [9] (розрахунок показав, що така поправка знаходиться в межах звичайного стандартного відхилення параметру r_0 і тому не потребує врахування); (в) розрахунок сум ЗВ для кожного симетрично незалежного атома структури використанням програми β-LiAsSe₂ 3 VALENCE [10] і параметрів $r_0 = 2.09$ Å (для пари іонів Li^+/Se^{2-}), $r_0 = 2.39$ Å (для пари іонів As^{3+}/Se^{2-}) ta b = 0.37 Å [7]; міжатомні відстані задавались із презиційністю 0.001 Å. Суми 3B. розраховані для атомів кристалічної структури β-LiAsSe₂ наводяться в Таблиці 1.

Атом	Координаційна сфера	Сума ЗВ (в.о.)	Відхилення (%)
Li	[LiSe ₆]	0.894	-11
As	$[AsSe_6]$	3.117	+4
Se1	[SeLi ₂ As ₄]	2.132	+6
Se2	[SeLi ₄ As ₂]	1.880	-6

Таблиця 1. Суми 3В для атомів у кристалічній структурі β-LiAsSe₂

Аналіз Таблиці 1 показує дефіцитність суми ЗВ для Li⁺, надлишковість суми ЗВ для As³⁺, а також нерівномірний розподіл сум ЗВ між іонами Se²⁻, один з яких характеризується надлишковістю (Se1), а інший – дефіцитністю (Se2) суми ЗВ. Сукупність вищезгаданих особливостей сум ЗВ свідчить про відносну нестабільність кристалічної структури β -LiAsSe₂ і пояснює схильність цієї структури до поліморфізму.

Іншою ознакою певної нестабільності структури β -LiAsSe₂ є значна деформація координаційних сфер і суттєва різниця між найкоротшими й найдовшими міжатомними відстанями в цих сферах (відповідно, 2.748 Å і 2.911 Å для [LiSe₆] та 2.327 Å і 3.374 Å для [AsSe₆]). Згідно з головною формулою M3B $s_{AX} = \exp[(r_0 - r_{AX})/b]$, така різниця свідчить про вкрай нерівномірний розподіл валентних електронів (електронних пар Льюїса) навколо центральних атомів координаційних сфер, а у випадку [AsSe₆] – додатково ще й про високу стереоактивність неподіленої пари електронної конфігурації досягається, як відомо, при

максимально симетричному розподілі валентних електронів навколо атомів, тому значні деформації координаційних сфер у структурі однозначно свідчать про деяку нестабільність цієї структури.

У рамках концепції іонних радіусів (варіант концепції жорстких сфер, де атоми й іони розглядаються як жорсткі сферичні частинки певних розмірів), нестабільність структури β-LiAsSe₂ можна пояснити занадто малими "октаедричними" іонними радіусами катіонів (0.76 Å для Li⁺ і 0.58 Å для As³⁺ [11]), які не дозволяють цим катіонам утворити стійкі координаційні октаедри з іонами Se²⁻, що характеризуються радіусом 1.98 Å [11]. Нижня межа співвідношення іонних радіусів катіона й аніона для утворення стійкого октаедричного оточення складає 0.414 (або $\sqrt{2}$ – 1) [3], що для аніонів Se^{2–} вимагає мінімально можливого іонного раліуса катіонів 0.82 Å. Деформації координаційних cφep [LiSe₆] i [AsSe₆] y cтруктурі β-LiAsSe₂ можуть бути інтерпретовані як тенденція до утворення координаційних сфер із меншим координаційним числом.

-10-

Вочевидь, при нагріванні β-LiAsSe₂ в першу чергу зростає амплітуда теплового коливання катіонів Li⁺ і As³⁺; як наслідок, ефективні розміри цих катіонів зростають, наближаючись до розмірів октаедричних пустот між щільноупакованими іонами Se²⁻, і відбувається поліморфне перетворення $\beta \rightarrow \alpha$. Протилежне явище відбувається при охолодженні α-LiAsSe₂: ефективні розміри Li⁺ i As³⁺ зменшуються, високосиметричне октаедричне оточення цих катіонів аніонами Se²⁻ перестає бути стабільним, і сполука LiAsSe₂ зазнає поліморфного перетворення $\alpha \rightarrow \beta$.

На Рис. 1 зображено проекцію (на площину елементарної xy) комірки гіпотетичної бінарної сполуки АХ, що кристалізується в структурному типі NaCl і характеризується співвідношенням іонних радіусів катіона і аніона 0.414 : 1. При такому співвідношенні іонних радіусів аніони (світлі кульки) формують ідеальну щільну упаковку [3], всі октаедричні пустоти якої заповнені катіонами (чорні кульки). Використовуючи величину іонного радіусу аніона r(X), параметр ґратки а такої структури можна виразити як $4r(X)/\sqrt{2}$ (Рис. 2).

Рис. 1. Елементарна комірка бінарної сполуки AX, що кристалізується в структурному типі NaCl і характеризується співвідношенням іонних радіусів катіона й аніона 0.414 : 1 (проекція на площину *xy*).

Дійсно, гіпотенуза прямокутного трикутника, зображеного на Рис. 2, дорівнює чотирьом іонним радіусам аніона Xрозглядуваної структури. Ця ж гіпотенуза рівна $a\sqrt{2}$, де a – параметр кубічної ґратки. Звідси параметр a легко розраховується для вищезгаданої структури як $4r(X)/\sqrt{2}$.

Для іонного радіусу Se²⁻ (1.98 Å [11]), розрахований параметр *a* ідеалізованої кубічної структури типу NaCl дорівнює $(4 \times 1.98 \text{ Å})/\sqrt{2} = 5.60 \text{ Å}$, що в межах одного стандартного відхилення відповідає експериментальній величині *a* = 5.61(1) Å, одержаній нами для загартованого зразка α -LiAsSe₂ при

Рис. 2. Співвідношення іонного радіусу аніона r(X) і параметру ґратки *а* структури, зображеної на Рис. 1 (для зручності катіони не показані); $a = 4r(X)/\sqrt{2}$.

кімнатній температурі [1]; і цей факт свідчить на користь нашої гіпотези про переважне зростання ефективних розмірів *катіонів* при переході низькотемпературної модифікації β -LiAsSe₂ у високотемпературну α -LiAsSe₂.

Величина a = 5.5573(6) Å, опублікована для α -LiAsSe₂ у [2], є очікувано меншою, оскільки відповідає T = 100 К.

Насамкінець слід зауважити, що явище підвищення симетрії кристалічної структури при нагріванні ми вже раніше спостерігали для інших структур, побудованих на базі деформованої щільної упаковки [12]. Як і для структури LiAsSe₂, підвищення симетрії структур K_2 TeBr₆ та K_2 SnCl₆ при нагріванні відбувається, вочевидь, за рахунок зростання амплітуди теплового коливання катіонів і збільшення (таким чином) їх ефективних розмірів до величин, сумісних зі стійкою й високосиметричною щільною упаковкою. Як результат, при нагріванні такі структури стабілізуються у структурному типі вищої симетрії.

З огляду на вищезгадане, можна очікувати, що описаний у цій нашій роботі підхід зможе успішно використовуватись для пояснення поліморфізму цілої низки інших сполук, структури яких побудовані на базі деформованої щільної упаковки.

Список використаних джерел

1. Semrad E.E., Sidei V.I., Solomon A.M. Li₂Se–As₂Se₃ pseudobinary join in the Li–As–Se system and properties of LiAsSe₂. *Inorg. Mater.* 2013, 49(3), 235-238.

2. Bera T.K., Jang J.I., Song J.H., Malliakas C.D., Freeman A.J., Ketterson J.B., Kanatzidis M.G. Soluble semiconductors $AAsSe_2$ (A = Li, Na) with a direct-band-gap and strong second harmonic generation: a combined experimental and theoretical study. J. Am. Chem. Soc. 2010, 132(10), 3484-3495. 3. Pauling L. The Nature of the Chemical Bond. Ithaca: *Cornell University Press*, 1960. P. 644.

4. Brown I.D. The Chemical Bond in Inorganic Chemistry: The Bond Valence Model. New York: *Oxford University Press*, 2002. P. 288.

5. Brown I.D. Recent developments in the methods and applications of the bond valence model. *Chem. Rev.* 2009, 109(12), 6858-6919.

6. Brown I.D., Altermatt D. Bond-valence parameters obtained from a systematic analysis of the Inorganic Crystal Structure Database. *Acta Crystallogr.* 1985, B41(4), 244-247.

7. Brese N.E., O'Keeffe M. Bond-valence parameters for solids. *Acta Crystallogr.* 1991, B47(2), 192-197.

8. Spek A.L. Single-crystal structure validation with the program *PLATON*. *J. Appl. Crystallogr*. 2003, 36(1), 7-13.

9. Brown I.D., Dabkowski A., McCleary A. Thermal expansion of chemical bonds. *Acta Crystallogr*. 1997, B53(5), 750-761.

10. Brown I.D. *VALENCE*: a program for calculating bond valences. *J. Appl. Crystallogr.* 1996, 29(4), 479-480.

11. Shannon R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. *Acta Crystallogr.* 1976, A32(5), 751-767.

12. Sidey V.I., Zubaka O.V., Solomon A.M., Kun S.V., Peresh E.Yu., X-ray powder diffraction studies of Tl_2TeBr_6 and Tl_2TeI_6 . J. Alloys Compd. 2004, 367(1), 115-120.

Стаття надійшла до редакції: 10.09.2014.

ON THE NATURE OF THE POLYMORPHISM OF THE TERNARY SELENIDE LiAsSe₂

Sidey V.I., Semrad O.O., Shteyfan A.Ya.

In order to elucidate the reasons for the polymorphism observed for LiAsSe₂, the crystal structures of α -LiAsSe₂ and β -LiAsSe₂ have been analyzed by using the ionic radii concept; additionally, the crystal structure of β -LiAsSe₂ has been analyzed by using the bond valence model. Both the ionic radii concept and the bond valence model have indicated a rather high instability for the structure of β -LiAsSe₂. Thus, the ionic radii of Li⁺ and As³⁺ are too small to form stable and undistorted coordination octahedra [LiSe₆] and [AsSe₆]; the bond valence sums calculated for the cations Li⁺ and As³⁺ of β -LiAsSe₂ are deficient and surplus, respectively, while the two symmetrically independent Se²⁻ anions of this structure are characterized by strongly uneven distribution of the bond valence sums. One may expect that heating of β -LiAsSe₂ leads to a preferential increase of the thermal motion magnitude for the small cations; such cations have larger effective sizes, the difference between the ionic radii of the cations and anions becomes smaller and the distorted coordination octahedra [LiSe₆] become the regular ones in the structure of α -LiAsSe₂.