-30-

УДК 548.3

Сідей В.І., к.х.н., с.н.с.

ВЗАЄМОДІЯ В СИСТЕМАХ НА ОСНОВІ ТЕРНАРНИХ ГАЛОГЕНІДІВ Rb₃(Cs₃)Sb₂(Bi₂)Br₉(I₉) ТА K₂(Rb₂,Cs₂)TeBr₆(I₆): МОДЕЛЬ ЗВ'ЯЗКОВОЇ ВАЛЕНТНОСТІ

ДВНЗ «Ужгородський національний університет», НДІ фізики і хімії твердого тіла; 88000, м. Ужгород, вул. Підгірна, 46. e-mail: sidey@yandex.ua

Проведені на кафедрі неорганічної хімії УжНУ, систематичні дослідження характеру фізико-хімічної взаємодії у квазібінарних системах на основі тернарних галогенідів $Rb_3(Cs_3)Sb_2(Bi_2)Br_9(I_9)$ (I) i $K_2(Rb_2,Cs_2)TeBr_6(I_6)$ (П), що є похідними структурного сімейства перовскіту, виявили ряд спільних закономірностей, котрі успішно були інтерпретовані в рамках концепції кристалохімічних радіусів [1-4]. Так, найхарактернішими рисами вищезгаданих систем є (а) зменшення температур плавлення й кристалізації твердих розчинів на основі сполук I і II при взаємному заміщенні іонів Br- і І- (до ~50 мол.% іншого компоненту) і (б) монотонне зростання температур плавлення й кристалізації твердих розчинів на основі сполук I і II при заміщенні катіонів А+ більшими катіонами-За умови ізоструктурності аналогами. вихідних тернарних компонентів, спостерігається утворення неперервного ряду твердих розчинів (НРТР) заміщення [з температурним мінімумом в точці з ~50 мол.% іншого компоненту для варіанту (а) і без температурного мінімуму для (б)]; якщо ж структури вихідних тернарних сполук системи різні, то спостерігається цілком передбачуваний розрив розчинності [при евтектичному для (а) і перитектичному для (б) типі взаємодії].

Спільні риси систем на основі тернарних сполук **I** і **II** є, безперечно, наслідком однотипної будови цих фаз. Структуру перовскіту й споріднених фаз формує щільна упаковка (ЩУ) нескінченних шарів $\{AX_3\}$, де A – катіон, X – аніон (Рис. 1). Укладання шарів $\{AX_3\}$ відбувається так, щоб безпосереднього контакту між катіонами A не було, і в результаті кожен такий катіон оточено дванадцятьма сусідніми аніонами X, розміщеними у вершинах кубооктаедра або антикубооктаедра $[AX_{12}]$ [4]. Утворені так координаційні поліедри $[AX_{12}]$ об'єднуються між собою квадратними гранями, формуючи нескінченний тримірний каркас (Рис. 2). Вільний простір між поліедрами $[AX_{12}]$ має форму октаедричних пустот ЩУ, кількість яких дорівнює кількості атомів А. Заповнення атомами В всіх вищезгаданих октаедричних пустот призводить до брутто-формули тернарної фази ABX_3 (звичайні перовскіти і їх політипні видозміни), заповнення половини пустот $-A_2BX_6$, двох третин $-A_3B_2X_9$ і т.д.

Рис. 1. Ідеалізоване представлення нескінченних шарів {*AX*₃} у структурах перовскітів (катіони *A* зображені світлими кружками, аніони *X* – темними)

Рис. 2. Об'єднані в каркас поліедри [*AX*₁₂] у структурах перовскітів.

-31-

Максимально можлива стійкість ЩУ шарів {АХ₃} досягається при співвідношенні іонних радіусів катіона А й аніона Х r(A)/r(X) = 1. Зазначимо, що для катіонів K⁺, Rb⁺, Cs⁺ i anionib Br⁻, I⁻ співвідношення іонних радіусів завжди менше 1 [5]; навколо меншого центрального катіона важче розміститись 12-ти аніонам галогену, а отже структури I і II характеризуються внутрішніми напругами й дещо пониженою стійкістю (особливо для структур з меншими катіонами К⁺ і Rb⁺). Для таких структур, заміщення менших катіонів більшими зменшує сумарну різницю іонних радіусів лужного металу й галогену, стійкість ЩУ підвищується й супроводжується зростанням температур плавлення й кристалізації від компоненту з меншим за розміром іоном лужного металу до компоненту з більшим іоном. З огляду на вищесказане, перитектична взаємодія чи утворення НРТР заміщення без температурного максимуму виглядають цілком закономірними для систем на основі сполук I і ІІ із заміщенням іону лужного металу.

Аналогічним чином – з використанням концепції кристалохімічних радіусів - можна успішно пояснити евтектичний тип взаємодії чи утворення НРТР заміщення з температурним мінімумом для систем на основі сполук I і II зі взаємним заміщенням аніонів Br⁻ і I⁻. Дійсно, при заміщенні іонів галогену очікується деформація ЩУ і збільшення внутрішніх напруг, що супроводжується зниженням температур плавлення й кристалізації твердих розчинів у порівнянні з вихідними компонентами. Пройшовши температурний мінімум, подальше збільшення концентрації "іншого" іонів галогену призводить вже до зростання температур плавлення й кристалізації, оскільки ЩУ в системі вже починає формуватися на основі саме цього "іншого" галогену (зокрема, серед міжаніонних контактів у ЩУ починають домінувати контакти між аніонами одного й того ж сорту, рівномірно розміщеними у просторі), і зростання його концентрації починає зменшувати загальну деформацію ЩУ й підвищувати її стійкість.

Враховуючи подібність кристалічних структур і хімічного складу сполук **I** і **II**, а також спільні риси квазібінарних систем на їх основі, логічним було допустити утворення широких областей твердих розчинів у системах, утворених одночасно представниками сполук I і II. Однак досліджені на сьогодні системи між сполуками І і ІІ [6, 7] не виявили тенденції до утворення широких областей твердих розчинів, і цей факт ніяк не пояснити в рамках можна концепції кристалохімічних радіусів, оскільки іони лужного металу й галогену в обох вихідних сполуках систем були однаковими, а іони Sb^{3+} , Bi^{3+} і Te^{4+} є невеликими [5] і легко розміщуються в октаедричних пустотах ЩУ. Вочевидь, пояснення слабкої взаємної розчинності сполук I і II вимагало альтернативної кристалохімічної моделі.

Детальний аналіз одержаної інформації виявив, що вищезгадані особливості можна успішно пояснити з використанням більш складної й більш універсальної емпіричної кристалохімічної моделі – *моделі зв'язкової* валентності [8, 9].

Модель зв'язкової валентності (МЗВ; в англомовній літературі – the bond valence model) [8, 9] в її сучасному вигляді широко застосовується в структурній неорганічній хімії для перевірки коректності визначених кристалічних структур і для передбачення міжатомних відстаней у структурах з відомим хімічним складом та відомою кристалохімічною топологією.

Ключовим поняттям МЗВ є зв'язкова валентність (ЗВ), що визначається як частина "класичної" валентності (в сучасному трактуванні: кількість чи фракція електронної пари Льюїса), що припадає на кожен конкретний зв'язок між центральним атомом (іоном) A координаційної сфери $[AX_n]$ та протилежно зарядженим лігандом X. Таким чином, в МЗВ кожен хімічний зв'язок між умовними катіонами й аніонами у структурі розглядається як направлений; і сукупність таких зв'язків формує топологічний граф структури, де в ролі вузлів і ребер графа виступають відповідно атоми (іони) і хімічні зв'язки.

Ключовою ідеєю МЗВ є стійка нелінійна кореляція між величиною ЗВ і довжиною хімічного зв'язку. Числове значення ЗВ (s_{AX}), виражене у валентних одиницях (в.о.), для розглядуваного зв'язку A - X зазвичай розраховується за емпіричною формулою

$s_{AX} = \exp[(r_0 - r_{AX})/b],$

де r_{AX} – міжатомна відстань, r_0 та b – емпірично встановлені константи або

-32-

параметри ЗВ, величини яких залежать від природи атомів (іонів) A і X (r_0 відповідає міжатомній відстані з формально одинарним зв'язком; b часто приймається як 0.37 Å). Для конкретної пари атомів (іонів) A/X, параметри ЗВ (r_0 і b) підбираються таким чином, щоб суми ЗВ, розраховані з міжатомних відстаней A - X координаційних сфер [AX_n], були рівними чи максимально близькими до очікуваних числових значень ступенів окиснення атомів A [10, 11].

Однак, проблема пояснення слабкої взаємної розчинності сполук **I** і **II** легко вирішується на *якісному* рівні МЗВ – тобто без застосування розрахунків, пов'язаних із параметризацією типів хімічного зв'язку, а розглядаючи лише топологічні відмінності структур цих сполук (див. нижче).

В обох групах сполук (**I** і **II**) катіони A^+ оточені 12-ма аніонами X^- , на кожен зв'язок A - X координаційної сфери $[AX_{12}]$ припадає ~1/12 в.о.; і у цьому плані сполуки **I** і **II** є ідентичними. Якщо не брати до уваги елемент *B*, то кожен аніон X^- у структурах сполук **I** і **II** оточений 4-ма катіонами A^+ (за умови співвідношення кількості атомів *A* і *X* 1 : 3, їх взаємні координаційні числа мають те ж саме співвідношення) і віддають на зв'язки A - X (або ж X - A) $4 \times \sim 1/12 = \sim 1/3$ в.о. Таким чином, на зв'язки X - B в аніонів $X^$ залишається $\sim 2/3$ в.о.; однак розподіл цього залишку валентності у структурах сполук **I** і **II** суттєво відрізняється.

Розгляньмо граф зв'язків B - X у структурах сполук **I** і **II** (Рис. 3). На Рис. 3 зображено по одній формульній одиниці (у межах інтервалів повторюваності, позначених стрілками) сполук **I** і **II** із врахуванням розподілу атомів по сусіднім шарам $\{AX_3\}$.

Октаедричні пустоти формуються між шарами $\{AX_3\}$ трьома атомами X одного шару і трьома атомами X сусіднього шару. Можна бачити, що для сполук I ($A_3B_2X_9$) октаедричні пустоти заповнені атомами B на 2/3, тоді як у структурах сполук II (A_2BX_6) атоми B заповнюють половину октаедричних пустот.

Рис. З яскраво ілюструє дуже важливу відмінність між структурами сполук I і II. Так, атоми X у структурах сполук I поділяються на *два* топологічно різні сорти: із 9-ти атомів X три є містковими (ці атоми позначені як X') і 6 кінцевими, тоді як у структурах сполук II всі атоми галогену X є кінцевими й топологічно еквівалентними. Важливо відмітити, що топологічно еквівалентні атоми обов'язково не € симетрично еквівалентними, але для всіх без винятку структур сполук I співвідношення топологічно еквівалентних кількостей кінцевих атомів галогену Х і топологічно еквівалентних місткових атомів Х' є величиною сталою – 2 : 1 (6 : 3).

Рис. 3. Схема хімічних зв'язків <i>В</i> — <i>X</i> у
структурах сполук I і II. Зображено по одній
формульній одиниці (у межах інтервалів
повторюваності, позначених стрілками) із
врахуванням розподілу атомів по сусіднім шарам
$\{AX_3\}.$

Кінцеві атоми Х сполук І увесь свій залишок валентності (~2/3 в.о.) віддають на утворення одного хімічного зв'язку Х — В, тоді як місткові атоми галогену Х' ділять залишок валентності на створення двох зв'язків X' - B, кожному з яких відповідає величина ЗВ ~1/3 в.о. Як результат такого розподілу величин ЗВ, хімічні зв'язки X' - Bзначно довші від зв'язків Х—В. У структурах сполук II величини ЗВ всіх зв'язків Х — В приблизно рівні між собою і складають ~2/3 в.о. (тобто ~4/6 в.о.); відповідно, сам атом В розміщується в центрі координаційного октаедра, а не зміщений до однієї з граней (як це спостерігається для структур сполук I).

Правильність наших розрахунків можна продемонструвати, підрахувавши суми ЗВ для атомів (іонів) *B*, які ми ще не розглядали. -33-

Для Sb³⁺(Bi³⁺) у структурах сполук I сума 3B складає $3 \times \sim 2/3$ в.о. + $3 \times \sim 1/3$ в.о. = ~ 3 в.о. (як і очікувалось в M3B); для Te⁴⁺ у сполуках II сума 3B також рівна очікуваній величині ~ 4 в.о. (або $6 \times \sim 2/3$ в.о.).

З огляду на вищесказане, заміщення в матриці структури сполук І навіть незначної частини іонів $Sb^{3+}(Bi^{3+})$ іонами Te^{4+} (чи навпаки – для структур сполук II) неминуче призводить до радикальної перебудови всієї схеми зв'язків B - X, а також до необхідності компенсувати надлишок ЧИ дефіцит сум ЗВ окремих атомів серйозними деформаціями їх хімічних зв'язків (подовженнями при надлишку і скороченнями при дефіциті), несумісними з симетрією вихідної тернарної сполуки і з існуванням цілісної ЩУ атомів А і Х. Саме такі деформації і є, на нашу думку, головною причиною слабкої взаємної розчинності сполук I і II у твердому стані [6, 7]: при таких деформаціях існування твердих розчинів на основі вихідних тернарних сполук стає енергетично невиправданим.

Список використаних джерел

1. Peresh E.Yu., Lazarev V.B., Kun S.V., Barchii I.E., Kun A.V., Sidei V.I. Mixed halides $A_{3}^{I}B_{2}^{V}C_{9}^{VII}$ ($A^{I} = Rb$, Cs; $B^{V} = Sb$, Bi; $C^{VII} = Br$, I) and their solid solutions. *Inorg. Mater.* 1997, 33(4), 362-365.

2. Peresh E.Yu., Sidei V.I., Zubaka O.V. Phase relations in the systems $A_2TeI_6 - Tl_2TeI_6$ (A - K, Rb,

Cs) and A_2 TeBr₆ – A_2 TeI₆ (A – K, Rb, Cs, Tl(I)). *Inorg. Mater.* 2005, 41(3), 298-302.

3. Peresh E.Yu., Sidei V.I., Zubaka O.V. Systems based on A_2 TeC₆ (A = K, Rb, Cs, and Tl(I); C = Br and I) compounds with peritectic interactions. *Russ. J. Inorg. Chem.* 2009, 54(2), 315-318.

4. Peresh E.Yu., Sidei V.I., Zubaka O.V., Stercho I.P. $K_2(Rb_2,Cs_2,Tl_2)TeBr_6(I_6)$ and $Rb_3(Cs_3)Sb_2(Bi_2)Br_9(I_9)$ perovskite compounds. *Inorg. Mater.* 2011, 47(2), 208-212.

5. Бокий Г.Б. Кристаллохимия. М.: *Наука*, 1971. С.400.

6. Stercho I.P., Barchiy I.E., Peresh E.Yu., Sidey V.I., Malakhovska T.O. Phase diagrams of the $Cs_3Sb_2I_9 - Cs_2TeI_6$ and $Rb_3Sb_2I_9 - Rb_2TeI_6$ systems. *Chem. Met. Alloys* 2013, 6(3-4), 192-195.

7. Stercho I.P., Barchii I.E., Malakhovskaya T.A., Pogodin A.I., Sidei V.I., Solomon A.M., Peresh E.Yu. Physicochemical interaction in the $Cs_3Sb_2Br_9 - Cs_2TeBr_6$ system: the phase diagram and the nature of the interaction of components. *Russ. J. Inorg. Chem.* 2015, 60(2), 225-229.

8. Brown I.D. The Chemical Bond in Inorganic Chemistry: The Bond Valence Model. New York: *Oxford University Press*, 2002. P.288.

9. Brown I.D. Recent developments in the methods and applications of the bond valence model. *Chem. Rev.* 2009, 109(12), 6858-6919.

10. Brown I.D., Altermatt D. Bond-valence parameters obtained from a systematic analysis of the Inorganic Crystal Structure Database. *Acta Crystallogr.* 1985, B41(4), 244-247.

11. Brese N.E., O'Keeffe M. Bond-valence parameters for solids. *Acta Crystallogr*. 1991, B47(2), 192-197.

Стаття надійшла до редакції: 29.10.2015.

THE INTERACTION IN THE SYSTEMS BASED ON THE TERNARY HALIDES Rb₃(Cs₃)Sb₂(Bi₂)Br₉(I₉) AND K₂(Rb₂,Cs₂)TeBr₆(I₆): THE BOND VALENCE MODEL

Sidey V.I.

The physico-chemical interaction between the ternary halides $Rb_3(Cs_3)Sb_2(Bi_2)Br_9(I_9)$ [$A_3B_2X_9$] (I) and $K_2(Rb_2,Cs_2)TeBr_6(I_6)$ [A_2BX_6] (II) in the I–II quasibinary systems has been qualitatively explained by using the bond valence model. It has been established that the rather low mutual solubility of the compounds I and II is mainly caused by the serious topological and valence differences of the *B* – *X* chemical bonds present in the structures of the compounds. Thus, replacement of the *B* atom in the matrix of the above compounds (I or II) with the counterpart *B* atom (of II or I) must unavoidably lead to serious rearrangement and strong distortions of the *B* – *X* chemical bonds, incompatible with the crystal structure symmetry of the starting ternary compounds.