-34-

УДК 546.683+546.817+546.221+546.23+546.24+544.015.3

¹Філеп М.Й., к.х.н., н.с.; ²Сабов М.Ю., к.х.н., доц.; ¹Малаховська Т.О., к.х.н., с.н.с.; ³Соломон А.М., к.ф.-м.н., с.н.с.

ФІЗИКО-ХІМІЧНА ВЗАЄМОДІЯ У СИСТЕМАХ Tl₄PbS₃-Tl₄PbSe₃ TA Tl₄PbS₃-Tl₄PbTe₃

¹НДІ Фізики і хімії твердого тіла, ²Кафедра неорганічної хімії, ДВНЗ «Ужгородський національний університет» 88000, м. Ужгород, вул. Підгірна 46; ³Інститут електронної фізики НАН України, 88017, м. Ужгород, вул. Університетська 21; e-mail:mfilep23@mail.ru

Щорічний ріст світового споживання енергії обумовлює значний інтерес до пошук нових альтернативних джерел енергії. Особливе місце посідають термоелектричні елементи (ТЕ), що знаходять використання завдяки їх надійності, простоті експлуатації безшумність [1, 2]. Однак широке та практичне використання ΤE в побуті обмежується їх низькою ефективністю. Тому, напрямків неорганічного одним i3 матеріалознавства є цілеспрямований пошук покращення функціональних нових та термоелектричних параметрів відомих матеріалів. Значна увага при вивчені систем приділяється багатокомпонентних встановленню меж твердих розчинів, для отримання матеріалів з передбачуваними характеристиками.

Експериментальна частина

Вихідні бінарні халькогеніди Талію (І) та Плюмбуму (ІІ) одержували з елементарних компонентів (чистота не менше 99.99 мас.%) у вакуумованих кварцових ампулах згідно методик [3-5].

Тернарні фази Tl₄PbS₃, Tl₄PbSe₃ та Tl₄PbTe₃ одержували сплавлянням відповідних бінарних халькогенідів Tl₂S(Se,Te) і вакуумованих PbS(Se,Te) У кварцових однотемпературним ампулах прямим методом. Максимальна температура синтезу 910 K (витримка становила 24 год.), температура відпалу зразків 570 K _ (витримка 168 год.).

Синтез сплавів систем $Tl_4PbS_3-Tl_4PbSe_3$ та $Tl_4PbS_3-Tl_4PbTe_3$ здійснювали із попередньо синтезованих тернарних сполук прямим однотемпературним методом. Максимальна температура синтезу становила 860 К ($Tl_4PbS_3-Tl_4PbSe_3$) та 950 К

Ідентифікацію бінарних і тернарних халькогенідів Tl₄PbS₃(Se₃, Te₃) (табл. 1) та дослідження сплавів на їх основі проводили методами диференційного термічного (ДТА, комбінована хромель-алюмелева термопара, здійснювали нагрів за допомогою нагрівача РИФ-101) та програмованого рентгенівського фазового аналізу (РФА, дифрактометр ДРОН-4.07, CuK_aвипромінювання, Ni-фільтр).

Результати та їх обговорення

Сполуки Tl₄PbSe₃ та Tl₄PbTe₃ плавляться конгруентно при температурах 803 [6] та 880 К [7] відповідно. Фаза Tl₄PbS₃ утворюється за перитектичною реакцією L+PbS↔втм-Tl₄PbS₃ при температурі 725 К [8]. Тернарні фази кристалізуються у тетрагональній сингонії (табл. 1).

Близькість параметрів кристалічної гратки фаз $Tl_4PbS_3(Se_3,Te_3)$ (табл. 1) та високі значення термоелектричної добротності фаз $Tl_4PbSe_3(Te_3)$ [6, 9] обумовлюють доцільність дослідження фазових рівноваг на основі даних сполук з метою пошуку та встановлення меж граничних твердих розчинів.

-35-

1120(00,10), 100(00,10) 10 1141 003(003,103)					
Фаза	ПГ	Z	Параметри		
			гратки		
			a, Å	c, Å	
Tl_2S	R3H	27	12.200	18.170	[10]
			12.147	18.162	експ.
Tl ₂ Se	P4/ncc	10	8.520	12.680	[11]
			8.555	12.580	експ.
Tl ₂ Te	I4/mcm	4	8.931	12.609	[12]
			8.926	12.569	експ.
PbS	Fm-3m	4	5.931	_	[13]
			5.911	_	експ.
PbSe	Fm-3m	4	6.124	_	[13]
			6.123	_	експ.
PbTe	Fm-3m	4	6.461	_	[13]
			6.458	_	експ.
Tl ₄ PbS ₃	_	Ι	8.346	12.526	[5]
			8.339	12.532	експ.
Tl ₄ PbSe ₃	P4/ncc	4	8.534	12.687	[14]
			8.511	12.640	експ.
Tl ₄ PbTe ₃	I4/mcm	4	8.841	13.056	[9]
			8.831	12.969	експ.
п	Π		TT1 D1 C		

Таблиця 1. Розраховані та експериментальні кристалографічні параметри сполук Tl₂S(Se Te) PbS(Se Te) та Tl₄PbS₂(Se₂ Te₂)

<u>Примітка.</u> Просторова група Tl_4PbS_3 не встановлена.

Перерізи Tl_4PbS_3 — Tl_4PbSe_3 та Tl_4PbS_3 — Tl_4PbTe_3 , що реалізуються у потрійних взаємних системах Tl_2S +PbSe \leftrightarrow Tl_2Se-PbS, Tl_2S +PbTe \leftrightarrow Tl_2Te+PbS відповідно [15], є частково квазібінарними у температурному інтервалі існування фази Tl_4PbS_3 .

Для дослідження фізико-хімічної взаємодії на перерізах $Tl_4PbS_3-Tl_4PbSe_3$ та $Tl_4PbS_3-Tl_4PbTe_3$ синтезовано по 11 зразків через кожні 10 мол.%.

Системи Tl₄PbS₃–Tl₄PbSe₃ (I) та $Tl_4PbS_3-Tl_4PbTe_3$ (II) є політермічними перерізами потрійних взаємних систем $Tl_2S+PbSe \leftrightarrow Tl_2Se-PbS$ та Tl₂S+PbTe↔Tl₂Te+PbS і перетинають поля первинної кристалізації сполук з конгруентним характером плавлення PbS, Tl₄PbSe₃ та Tl₄PbTe₃. Гілки первинних виділень кристалів, що утворюють ліквідус системи, перетинаються у перевальній точці з кординатами: 74 мол.% Tl₄PbSe₃, 711 К (I) (рис. 1) та 50 мол.% Tl₄PbS₃, 689 К (II) (рис. 2).

В обох системах, перитектичний нонваріантний процес L+PbS↔втм-Tl₄PbS₃, який починається в системі Tl₂S-PbS,

переходить у моноваріантний перитектичний процес всередині потрійних взаємних систем і характеризується рівноважним стехіометричним співвідношенням розплаву L та кристалів PbS.

Рис. 1. Діаграма стану системи Tl₄PbS₃-Tl₄PbSe₃. 1-L, 2-L+Tl₄PbSe₃, 3-L+PbS, 4-[Tl₄PbSe₃], 5-L+Tl₄PbSe₃+PbS, 6-L+PbS+втм-Tl₄PbS₃, 7-Tl₄PbSe₃+втм-Tl₄PbS₃, 8-[втм-Tl₄PbS₃], 9-втм-Tl₄PbS₃+нтм-Tl₄PbS₃, 10-Tl₄PbSe₃+нтм-Tl₄PbS₃, 11-[нтм-Tl₄PbS₃]

Рис. 2. Діаграма стану системи $Tl_4PbS_3-Tl_4PbTe_3$. 1–L, 2–L+ Tl_4PbTe_3 , 3–L+PbS, 4– $[Tl_4PbTe_3]$, 5– L+PbS+ Tl_4PbTe_3 , 6–L+PbS+втм- Tl_4PbS_3 , 7– $[втм-Tl_4PbS_3]$, 8– $Tl_4PbTe_3+втм-Tl_4PbS_3$, 9– $втм-Tl_4PbS_3$, 10– $Tl_4PbTe_3+нтм-Tl_4PbS_3$, 11– $[Tl_4PbTe_3+втм-Tl_4PbS_3]$

Даний перитектичний процес проходить із пониженням температури у сплавах концентраційного відрізку 77–100 мол.% Tl_4PbS_3 від 725 до 694 К (I) та 84–100 моль.% Tl_4PbS_3 від 725 до 655 К (II) та за сталої температури 694 К, 74–10 моль.% Tl_4PbS_3 (I) та 655 К, 84–10 моль.% Tl_4PbS_3 (I). -36-

Межі граничних твердих розчинів на основі нтм- Tl_4PbS_3 у (І) та (ІІ) становлять менше 10 мол.%, Tl_4PbSe_3 не менше 10 мол.%, а Tl_4PbTe_3 не менше 30 мол.%.

Висновки

Методами ДТА та РФА досліджено фізико-хімічну взаємодію системах V Tl₄PbS₃-Tl₄PbSe₃ Tl₄PbS₃-Tl₄PbTe₃. та Встановлено, що політермічні перерізи Tl₄PbS₃-Tl₄PbSe₃(Te₃) є квазібінарними у температурному інтервалі існування фази Tl₄PbS₃. Встановлено межі граничних твердих розчинів та координати перевальних точок у досліджуваних системах.

Список використаних джерел

1. Фреїк Д.М., Никируй Л.І., Криницький О.С. Досягнення і проблеми термоелектрики 1. Історичні аспекти (Огляд). *Фізика і хімія твердого тіла.* 2012, 13(2), 297–318.

2. Tritt T.M., Subramanian M.A., Guest Editors Thermoelectric Materials, Phenomena, and Applications: A Bird's Eye View. *MRS Bulletin*. 2006, 31, 188–198.

3. Самсонов Г.В. Дроздова С.В. Сульфиды. М.: *Металлургия*, 1972. С. 304.

4. Оболончик В.А. Селениды. М.: Металлургия, 1972. С. 296.

5. Чижиков Д.М., Счастливый В.П. Теллур и теллуриды. М.: *Наука*, 1966. С. 280.

6. Malakhovska-Rosokha T.O., Sabov M.Yu., Barchii I.E., Peresh E.Yu. Phase equilibria in the Tl₂Se–PbSe system and growth and properties of Tl₄PbSe₃ single crystals. *Inorg. Mater.* 2011, 47(7), 700–702.

7. Малаховська Т.О., Сабов М.Ю., Барчій І.Є., Переш Є.Ю. Деякі особливості фізико-хімічної взаємодії у системі Tl₂Te–PbTe. *Науковий вісник Ужгородського ун-ту. Серія «Хімія»*. 2008, 19, 8– 10.

8. Філеп М.Й., Сабов М.Ю., Барчій І.Є., Соломон А.М. Фізико-хімічна взаємодія у системі Tl₂S– PbS. *Науковий вісник Ужгородського ун-ту. Серія* «Хімія». 2011, 2(26), 9–12.

9. Kosuga A., Kurosaki K., Muta H., Yamanaka S. Thermoelectric properties of Tl-X-Te (X=Pb, Sn, Ge) systems. *J. Appl. Phys*, 2006, 886, 063705 1–4.

10. Ман Л.И. Определение структуры Tl₂S методом дифракции электронов. *Кристаллография*. 1970, 15(3), 471–476.

11. Стасова М.М., Вайнштейн Б.К., Электронографическое определение структуры Tl₂Se. *Кристаллография*. 1950, 3(2), 141–147.

12. Matsumoto H., Kurosaki K., Muta H., Yamanaka S. Thermoelectric Properties of the Thallium-Tellurium Binary Compounds. *Mater. Transactions*. 2009, 50(7), 1582–1585.

13. Александрова О.А., Максимов А.И., Мошников В.А., Чеснокова Д.Б. Халькогениды и оксиды елементов IV группы. Получение, исследование, применение. Санкт-Петербург: *Технолит*, 2008. С. 240.

14. Malakhovska T.O., Sabov M.Yu., Peresh E.Yu., Pavlyuk V., Marciniak B. Crystal structure of the Tl₄PbSe₃ ternary compound. *Chem. Met. Alloys.* 2009, 2, 15–17.

15. Філеп М.Й., Барчій І.Є., Сабов М.Ю. Взаємодія компонентів у тернарних взаємних системах $Tl_2S+PbSe \leftrightarrow Tl_2Se+PbS$ та $Tl_2S+PbTe \leftrightarrow Tl_2Te+PbS$. *Науковий вісник Ужгородського ун-ту. Серія «Хімія»*. 2012, 1(27), 22–24.

Стаття надійшла до редакції: 16.09.2016.

PHYSICO-CHEMICAL INTERACTION IN THE Tl₄PbS₃-Tl₄PbSe₃ AND Tl₄PbS₃-Tl₄PbTe₃ SYSTEMS

Filep M.J., Sabov M.Yu., Malakhovska T.O., Solomon A.M.

Using the DTA and XRD methods the physico-chemical interaction in the $Tl_4PbS_3-Tl_4PbSe_3$ (I) and $Tl_4PbS_3-Tl_4PbTe_3$ (II) systems were investigated. Established that polythermal sections $Tl_4PbS_3-Tl_4PbSe_3(Tl_4PbTe_3)$ intersect the fields of the primary crystallization of congruently melting compounds PbS, Tl_4PbSe_3 and Tl_4PbTe_3 . The lines of primary crystallization of the crystals intersects in the points with coordinates 74 mol.% Tl_4PbSe_3 , 711 K (I) and 50 mol.% Tl_4PbS_3 , 689 K (II). The limits of boundary solid solutions based on $Itm-Tl_4PbS_3$ in (I) and (II) are less than 10 mol.%, Tl_4PbSe_3 at least 10 mol.%, and Tl_4PbTe_3 at least 30 mol.%.