-18-

УДК 546:548.232.6

¹Смітюх О.В., асп.; ¹Марчук О.В., к.х.н., доц.; ¹Олексеюк І.Д., д.х.н., проф.; ²Федорчук А.О., д.х.н., проф.

КРИСТАЛІЧНА СТРУКТУРА СПОЛУК Y_{1.5}Pr_{1.5}Si_{1.75}Se₇ та Dy_{1.5}La_{1.5}Si_{1.66}Se₇

¹Кафедра неорганічної та фізичної хімії, Східноєвропейський національний університет імені Лесі Українки, пр. Волі 13, 43025 м. Луцьк, Україна ²Кафедра неорганічної та органічної хімії, Львівський національний університет ветеринарної медицини та біотехнологій, вул. Пекарська, 50, 79010 м. Львів, Україна е-mail: Oleg_M_1974@i.ua

Пошук перспективних матеріалів з якісно новими характеристиками на сьогодні ϵ важливим напрямом новітніх напівпровідникових технологій. Завданням останніх ϵ отримання матеріалів із наперед заданими властивостями, що забезпечують потреби споживачів напівпровідникових матеріалів. До таких матеріалів відносяться халькогенідні сполуки та сплави на їх основі, до складу яких входять рідкісноземельні метали [1, 2] та ін.

Представлена робота є одним із етапів систематичного дослідження квазіпотрійних систем $D^{IV}S_2 - R_2S_3 - R'_2S_3$ ($D^{IV} - Si$, Ge, Sn; R, R' – P3M [3, 4] та ін.).

Наважки зразків для дослідження були підготовлені з високочистих компонентів у кварцевих ампулах. Синтез сплавів проводили у вакуумованих контейнерах в електричній муфельній печі з програмним управлінням технологічними процесами МП-30 згідно режиму: нагрів до температури 1150°С із швидкістю 12°С/год; витримка за температури 1150°С протягом 4 годин; охолодження до температури 500°С із швидкістю 12°С/год; гомогенізуючий відпал за температури 500°С протягом 500 годин; гартування у холодну воду.

Рентгенівські порошкограми отримували на дифрактометрі DRON 4-13 (СиК α випромінення, $10^{\circ} \le 2\theta \le 100^{\circ}$, крок зйомки 0.02° , експозиція у кожній точці 20 с). Обробку отриманих порошкограм здійснювали за допомогою пакету програм CSD [5].

Кристалічна структура сполук $Y_{1.5}Pr_{1.5}Si_{1.75}Se_7$ та $Dy_{1.5}La_{1.5}Si_{1.66}Se_7$ вивчалася рентгенівським методом порошку. Дифрактограми відповідних складів були проіндексовані в гексагональній сингонії (просторова група $P6_3$). Умови рентгенівського експерименту та кристалографічні параметри тетрарних сполук наведені в табл. 1.

Параметри	$Y_{1.5}Pr_{1.5}Si_{1.75}Se_7$	Dy _{1.5} La _{1.5} Si _{1.66} Se ₇
Число формульних одиниць (Z)	2	2
Просторова група	<i>P</i> 6 ₃ (173)	<i>P</i> 6 ₃ (173)
а, (нм)	1,04825(3)	1,05951(4)
С, (НМ)	0,59683(2)	0,59982(3)
Об'єм комірки (нм ³)	0,56795(4)	0,58313(7)
Кількість атомів в комірці	23,5	23,3
Густина (обрахована) (г/см ³)	5,4957(4)	5,992
Адсорбційний коефіцієнт (1/см)	836,43	1146,57
Випромінювання і довжина хвилі (нм)	Cu 0,154185	Cu 0,154185
Дифрактометр	ДРОН 4-13	ДРОН 4-13
Спосіб обрахунку	Повнопрофільний	Повнопрофільний

Таблиця 1. К ристалографічні параметри тетрарних сполук Y_{1.5}Pr_{1.5}Si_{1.75}Se₇ та Dy_{1.5}La_{1.5}Si_{1.66}Se₇

© Смітюх О.В., Марчук О.В., Олексеюк І.Д., Федорчук А.О.

-19-

Програма для обрахунку	CSD	CSD
Кількість атомних позицій	6	6
Кількість вільних параметрів	19	30
2Θ та sin Θ/λ (макс.)	100,02; 0,497	100,02; 0,497
R_I	0,0673	0,0667
R_P	0,1394	0,1733
Фактор шкали	0,27647(1)	0,09145(0)
Вісь текстури і параметр	[111] 0,81(7)	[111] 1,2(2)

На рис. 1 та рис. 2 представлені експерименттальні і теоретичні дифрактограми сполук $Y_{1.5}Pr_{1.5}Si_{1.75}Se_7$ і $Dy_{1.5}La_{1.5}Si_{1.66}Se_7$ та різницеві між ними. У табл. 2 подані уточнені координати та параметри зміщення атомів у структурах сполук $Y_{1.5}Pr_{1.5}Si_{1.75}Se_7$ та $Dy_{1.5}La_{1.5}Si_{1.66}Se$.

сполуки Y_{1.5}Pr_{1.5}Si_{1.75}Se₇.

дифрактограми 1 іх різницева сполуки Dy_{1.5}La_{1.5}Si_{1.66}Se₇.

Y _{1.5} Pr _{1.5} Si _{1.75} Se ₇							
Атоми	ПСТ	x/a	<i>y/b</i>	z/c	$B_{i30} \times 10^2 (\text{Hm}^2)$		
R*	6(<i>c</i>)	0,1297(1)	0,3591(1)	0,0336(4)	0,58(2)		
Si1	2(<i>b</i>)	1/3	2/3	0,614(2)	0,3(4)		
Si2	2(a)	0	0	-0,204(3)	0,7(2)		
Se1	6(<i>c</i>)	0,2583(2)	0,1649(2)	0,0183(5)	1,17(4)		
Se2	6(<i>c</i>)	0,5210(2)	0,1072(2)	0,2686(4)	0,56(4)		
Se3	2(<i>b</i>)	1/3	2/3	0,2505(6)	0,72(7)		
R*-0.54(2) Y	$R^* - 0.54(2) Y + 0.46(2) Pr; Si1 - 0.750 Si$						
$Dy_{1.5}La_{1.5}Si_{1.66}Se_7$							
		Dy _{1.5} L	a _{1.5} Si _{1.66} Se ₇				
Атоми	ПСТ	Dy _{1.5} L	a _{1.5} Si _{1.66} Se ₇ y/b	z/c	<i>B</i> _{ізо} ×10 ² (нм ²)		
Атоми R**	ПСТ 6(<i>c</i>)	Dy _{1.5} L <i>x/a</i> 0,1281(2)	$ a_{1.5}Si_{1.66}Se_7 y/b 0,3580(2) $	<i>z/c</i> 0,0414(6)	<i>B</i> _{ізо} ×10 ² (нм ²) 1,08(3)		
Атоми R** Si1	ПСТ 6(<i>c</i>) 2(<i>b</i>)	Dy _{1.5} L x/a 0,1281(2) 1/3	a_{1.5}Si_{1.66}Se₇ <u>y/b</u> 0,3580(2) 2/3	<i>z/c</i> 0,0414(6) 0,633(2)	<i>B</i> _{ізо} ×10 ² (нм ²) 1,08(3) 1,8(4)		
Атоми R** Si1 M2	ПСТ 6(c) 2(b) 2(b)	Dy _{1.5} L x/a 0,1281(2) 1/3 0	a_{1.5}Si_{1.66}Se₇ <u>y/b</u> 0,3580(2) 2/3 0	<i>z/c</i> 0,0414(6) 0,633(2) -0,245(3)	В _{ізо} ×10 ² (нм ²) 1,08(3) 1,8(4) 0,5(2)		
Атоми R** Si1 M2 Se1	$ \begin{array}{r} \Pi CT \\ 6(c) \\ 2(b) \\ 2(b) \\ 6(c) \\ 6(c) \\ \hline $	Dy _{1.5} L x/a 0,1281(2) 1/3 0 1/3	a _{1.5} Si _{1.66} Se ₇ <u>y/b</u> 0,3580(2) 2/3 0 2/3	<i>z/c</i> 0,0414(6) 0,633(2) -0,245(3) 0,2618(10)	$\begin{array}{c} B_{\rm i30} \times 10^2 \ ({\rm Hm}^2) \\ 1,08(3) \\ 1,8(4) \\ 0,5(2) \\ 0,41(10) \end{array}$		
Атоми R** Si1 M2 Se1 Se2	ПСТ 6(c) 2(b) 2(b) 6(c) 6(c)	Dy _{1.5} L x/a 0,1281(2) 1/3 0 1/3 0,2583(3)	a _{1.5} Si _{1.66} Se ₇ <u>y/b</u> 0,3580(2) 2/3 0 2/3 0,1641(3)	<i>z/c</i> 0,0414(6) 0,633(2) -0,245(3) 0,2618(10) 0,0256(8)	$\begin{array}{r} B_{\rm iso} \times 10^2 \ ({\rm Hm}^2) \\ \hline 1,08(3) \\ \hline 1,8(4) \\ 0,5(2) \\ \hline 0,41(10) \\ \hline 1,68(7) \\ \end{array}$		
Атоми R** Si1 M2 Se1 Se2 Se3	$ \begin{array}{r} \Pi CT \\ 6(c) \\ 2(b) \\ 2(b) \\ 6(c) \\ 6(c) \\ 2(b) \\ \end{array} $	Dy _{1.5} L x/a 0,1281(2) 1/3 0 1/3 0,2583(3) 0,5196(3)	a _{1.5} Si _{1.66} Se ₇ <u>y/b</u> 0,3580(2) 2/3 0 2/3 0,1641(3) 0,1051(3)	<i>z/c</i> 0,0414(6) 0,633(2) -0,245(3) 0,2618(10) 0,0256(8) 0,2749(6)	$\begin{array}{c} B_{\rm iso} \times 10^2 \ ({\rm Hm}^2) \\ 1,08(3) \\ 1,8(4) \\ 0,5(2) \\ 0,41(10) \\ 1,68(7) \\ 0,88(6) \end{array}$		

Таблиця 2. Параметри атомів сполу	κΥ	$_{1.5}Pr_{1.5}Si_{1.5}$	1.75Se7	та Dy	$/_{1.5}La_{1.5}$	5Si1.66Se
-----------------------------------	----	--------------------------	---------	-------	-------------------	-----------

-20-

Для розшифрування структури тетрарної сполуки $Y^{3+}_{1.5}Pr^{3+}_{1.5}Si^{4+}_{0.75}Si^{2+}Se^{2-7}$ ПСТ 6с заселяли статистичною сумішшю атомів Y і Pr. Координаційне оточення катіонів наступне: R* (Y, La) – центрований в тригональній призмі з двома додатковими атомами [R*4Se₁3Se₂Se₃] (рис. 3); Si (II) – координований в октаедрі [Si(II)6Se₁], а атом Si(IV) має тетраедричне оточення із атомів Селену двох сортів: [Si(IV)3Se₂Se₃]. Довжини зв'язків R* – Se є адитивними величинами, оскільки атоми Y і Pr перебувають у статистичному розподілі.

В структурі тетрарної сполуки $Dy^{3+}_{1.5}La^{3+}_{1.5}Si^{4+}_{0.83}Si^{2+}_{0.83}Se^{2-7}$ ПСТ *6с* також заселена сумішшю атомів Dy і La (0.45 : 0.55). Переважання зайнятості позиції атомом Лантану пояснюється тим, що його

радіус є більшим за радіус атома Празеодиму. Цей фактор призводить до того, що в позиції Si2 скоординовується суміш Si(II) і Dy (0.83 : 0.17). Координаційне оточення атомів наступне: R** (Dy, La) центрований в тригональній призмі з двома додатковими атомами [R^{**}4Se₂3Se₃Se₁] (рис. 4); M2(Si, Dy) скоординовані в октаедрі [M₂6Se₂], а атом Si(IV) має тетраедричне оточення із двох сортів атомів Селену: [Si(IV)3Se₂Se₁].

Вивчення кристалічної структури тетрарних сполук $Y^{3+}_{1.5}Pr^{3+}_{1.5}Si^{4+}_{0.75}Si^{2+}Se^{2-}_7$ та $Dy^{3+}_{1.5}La^{3+}_{1.5}Si^{4+}_{0.83}Si^{2+}_{0.83}Se^{2-}_7$ є перспективним оскільки в цих сполуках силіцій перебуває у двох валентних станах Si (II) та Si (IV). На перспективу планується дослідження електричних та магнітних властивостей цих нових тетрарних сполук.

Рис. 3. Елементарна комірка сполуки $Y_{1.5}Pr_{1.5}Si_{1.75}Se_7$ та координаційні многогранники атомів Si(IV), Si(II) та R(Y, Pr).

Рис. 4. Елементарна комірка сполуки Dy_{1.5}La_{1.5}Si_{1.66}Se₇ та координаційні многогранники для атомів Si(IV), Si(II)Dy та R(Dy, La).

-21-

Висновки

Вперше синтезовано нові тетрарні сполуки складу $Y_{1.5}Pr_{1.5}Si_{1.75}Se_7$ і $Dy_{1.5}La_{1.5}Si_{1.66}Se_7$ та методами РСА вивчено їх кристалічну структуру. Встановлено, що вони кристалізуються в гексагональній сингонії.

Список використаних джерел

1. Daszkiewicz M., Pashynska Yu., Marchuk O., Gulay L. Crystal structure of $R_3Co_{0.5}GeS_7$ (R = rare earth). (Collected Abstracts of the 55st Polish Crystallographic Meeting. Wroclaw (Poland), 27-29 June, 2013, A. 47.

2. Pashynska Yu.O., Daszkiewicz M., Marchuk O.V., Gulay L. D. Crystal structure of Sm₃Fe_{0.5}SnS₇.

Матеріали VII Міжнар. наук. конф. «Релаксаційні, нелінійні й акустооптичні процеси та матеріали». Луцьк: *Вежа-Друк*, 2014. С. 39–41.

3. Смітюх О.В., Харкевич Л.М., Марчук О.В., Федорчук А.О. Олексеюк І.Д., Кристалічна структура сполуки $Y_{15}^{3+}La_{15}^{3+}Si_{0.75}^{4+}Si^{2+}Se^{2-7}$. XII Всеукр. конф. мол. вч. та студ. з акт. питань хімії. Збірка праць., м. Харків: Ексклюзив. 2016. С. 58. Смітюх О.В., Савчук Р.М., 4. Марчук О.В., Олексеюк І.Д., Федорчук А.О. Кристалічна $Y^{3_{+}}_{1.5}Pr^{3_{+}}_{1.5}Si^{4_{+}}_{0.75}Si^{2_{+}}Se^{2_{-}}_{7.}$ структура сполуки Збірник тез доповідей XVIII Наук. молод. конф. «Проблеми та досягнення сучасної хімії» (17-20 травня 2016 року, м. Одеса). Київ: ТОВ НВП «Інтерсервіс», 2016. С. 132.

5. Akselrud L., Grin Y. WinCSD: Software package for crystallographic calculations (Version 4). *J. Appl. Cryst.* 2014, 47, 803–805.

Стаття надійшла до редакції: 16.11.2016.

THE CRYSTAL STRUCTURE OF COMPOUNDS Y_{1.5}Pr_{1.5}Si_{1.75}Se₇ AND Dy_{1.5}La_{1.5}Si_{1.66}Se₇

Smitiukh O.V., Marchuk O.V., Olekseyuk I.D., Fedorchuk A.O.

The existence of new quaternary compounds $Y_{1.5}Pr_{1.5}Sis_{7}(space group P6_3)$, Pearson code hP23, a = 10.4825(3) Å, c = 5.9683(2) Å, $R_I = 0.0673$ and $Dy_{1.5}La_{1.5}Si_{1.66}Se_7$ (space group $P6_3$, Pearson code hP23, a = 10.5951(4) Å, c = 5.9982(3) Å, $R_I = 0.0667$). The method of powder studied their crystal structure. Atoms YPr and DyLa located in trigonal prisms with two additional atoms, Si^{II}Dy and Si^{II} localized in the octahedron, and the atoms Si^{IV} are localized in tetrahedrons.