-63-

УДК 544.236.2

Цісар О.В., асп.; Піскач Л.В., к.х.н., доц.; Марушко Л.П., к.х.н., доц.; Олексеюк І.Д., д.х.н., проф; Замуруєва О.В., к.ф.-м.н., н.сп.; Парасюк О.В., к.х.н., доц.

СКЛОУТВОРЕННЯ В СИСТЕМІ Tl₂Se–Ga₂Se₃–GeSe₂

Східноєвропейський національний університет імені Лесі Українки, np. Boлi 13, 43025 м. Луцьк, Україна; e-mail: oksana_tsisar@i.ua

Халькогенідне напівпровідникове скло є технологічно важливими матеріалами, які мають цікаві фізичні властивості, включаючи низьку енергію фононів, значну оптичну нелінійність, велику світлочутливість i високу іонну провідність. Вони широко використовуються в багатьох галузях оптики та електроніки завдяки високій прозорості в ІЧ області спектра [1]. Одним із шляхів розширення застосування та просування у нові області є легування та модифікація матеріалів. Додавання талію в халькогенідні стекла супроводжується помітною зміною їх структурних і фізичних властивостей, які можуть бути потенційно використані, наприклад, в акустооптичних пристроях [2].

В останніх дослідженнях системи $Tl_2Se-GeSe_2$ [3] було встановлено існування трьох тернарних фаз, які відрізняються характером плавлення: Tl_4GeSe_4 і Tl_2GeSe_3 – утворюються конгруентно при 661 К і 706 К відповідно, а $Tl_2Ge_2Se_5$ – інконгруентно при 778 К.

Склоутворення в системі Т1-Gе-Se досліджено в працях [4-9]. Область склоподібного стану в цій системі за даними [4] локалізована поблизу бінарної системи Ge-Se. Максимальний вміст талію в складі скла досягає ~ 35% в режимі загартування розплаву на повітрі. В області, що прилягає до сполуки GeSe₂, яка не утворюється як скло, в застосовуваному режимі загартування отримуються кристалічні сплави. По перерізах GeSe₂-Tl, GeSe₂-Tl₂Se GeSe₂-TlSe склоподібні сплави одержані лише при вмісті талію більше 22 ат.%. У системі Tl₂Se-GeSe₂ згідно [5, 6] склоутворення виявлено в інтервалі концентрацій 50-63 мол.% GeSe₂ і за даними [7, 8] до 73 мол.% GeSe₂. У системі T1₄GeSe₄–GeSe₂ в склоподібному стані одержано сплави із вмістом GeSe₂ 55-75 мол.% [9]. Одержані скла стійкі до водних розчинів мінеральних кислот-неокисників, але реагують з розбавленими лугами. Стекла системи T1–Ge–Se показали індуковану тиском кристалізацію, яка має застосування в оптико-електронних приладах [10].

Дані про склоутворення і властивості стекол у системі Ga-Ge-Se описані в роботах Стекла [11-13]. отримували шляхом загартування у льодяну воду від температури 1270 К. Область склоутворення витягнута від бінарної системи Ge-Se вздовж перетину Ga₂Se₃-GeSe₂. Максимальна кількість галію, що входить до складу скла - 23 ат.%. Авторам [14] при режимі гарту від 1270 К вдалося ввести в склад скла системи Ga₂Se₃-GeSe₂ 28 мол.% Ga₂Se₃. Германій селенід є ефективним склоутворювачем, що привернув увагу як матриця функціональних мембран для іоноселективної потенціометрії, особливо лля іонів важких металів.

Експериментальна частина

Для дослідження області склоутворення в системі Tl₂Se-Ga₂Se₃-GeSe₂ було синтезовано 60 сплавів. Шихта компонувалася із високочистих елементів (не менше 99,99 мас. %). Всі зразки поміщали у кварцеві ампули і відкачували до тиску 1,33·10⁻² Па. Для запобігання розбризкування розплаву в процесі гартування, а також для зменшення втрат на конденсацію парової фази стінками ампул використовували термостатування їх верхньої частини шнуровим азбестом. Після цього проводився нагрів із швидкістю 20-30 К/год до 1300 К. Витримування при максимальній температурі становило 6 годин, після чого ампули із розплавом загартовувалися в холодній воді.

Скловидний стан сплавів контролювався рентгенофазовим (дифрактометр ДРОН-4-13, СиК_а-випромінювання) та металографічним (мікротвердометр Leica, VMHT Awto, збільшення x3811) аналізами.

Визначення характеристичних температур проводилося диференційно-термічним методом аналізу на дериватографі системи F. Paulik, J. Paulik, L. Erdey, з використанням Pt/Pt–Rh термопари. Нагрів печі здійснювали зі швидкістю 10 К/хв, охолодження – в інерційному режимі. Оптичні вимірювання проводились за допомогою монохроматора МДР-208 за кімнатної температури 297 К. При цьому виготовлялись плоско-паралельні зразки товщиною ~0.1 мм з відполірованими поверхнями оптичної якості.

На рис. 1. показана встановлена область склоутворення у системі Tl₂Se–Ga₂Se₃–GeSe₂. Більшість виготовлених зразків розташовані по шести променях.

Рис. 1. Область склоутворення в квазіпотрійній системі Tl₂Se-Ga₂Se₃-GeSe₂.

При вибраному режимі гарту у склоподібному стані на стороні Tl₂Se-GeSe₂ отримуються сплави i3 максимальним вмістом Tl₂Se 45 мол. %. Існує вузька неперервна смуга склоутворення від 13 до 33 мол. % Ga₂Se₃, яка перетинає весь концентраційний трикутник. По променю із GeSe₂ на сторону Tl₂Se-Ga₂Se₃ (75 мол. % Tl₂Se) спостерігається розрив області склоутворення. По променю $GeSe_2$ -TlGaSe₂ в область склоутворення вдалося ввести 10 мол. % Tl₂Se. По променю із GeSe₂ на сторону Tl₂Se-Ga₂Se₃ (25 мол. % Tl₂Se) максимальний вміст Ga₂Se₃ становить 33 мол. %, що є більше ніж у системі Ga₂Se₃-GeSe₂. Дифрактограми стекол системи по досліджуваних променях подано на рис. 2.

-65-

Рис. 2. Дифрактограми сплавів системи Tl₂Se–Ga₂Se₃–GeSe₂ загартованих від 1300 К по досліджуваних променях: I – Tl₂Se–GeSe₂, II – Tl₂Se–Ga₂Se₃ III – Tl₄GeSe₄–"Tl₈Ga₂Se₇", IV – GeSe₂–"Tl₃GaSe₃", V – GeSe₂–TlGaSe₂, VI – GeSe₂–"TlGa₃Se₅" (склади подано в координатах квазіпотрійної системи).

Для деяких склоподібних сплавів системи встановлено характеристичні температури (температура склування Tg, кристалізації T_c та плавлення T_m) і на їх основі розраховано приведені температури склування (Tgr= Tg/Tm) (табл. 1).

<u>№</u> 3	Склад сплаву, мол.%				тν	тν	τV	Eq. oV
$/\Pi$	Tl ₂ Se	Ga ₂ Se ₃	GeSe ₂	1 g, K	I_c, Λ	ι _m , Λ	ι _{gr} , Λ	Eg, ev
1	2,5	7,5	90	500	749	959	0.52	1.97
2	5	15	80	497	730	920	0.54	1.95
3	7,5	22,5	70	490	696	913	0.54	1.89
4	10	30	60	483	675	928	0.52	1.93
5	5	5	90	577	719	962	0.60	1.84
6	10	10	80	561	690	976	0.57	1.88
7	23	6	71	491	571	760	0.65	-
8	30	6	64	480	532	754	0.64	-
9	40	3	57	461	532	695	0.66	-
10	26	7	67	495	554	756	0.65	-
11	40	-	60	483	544	751	0.64	-
12	35	-	65	464	530	769	0.60	-
13	30	-	70	473	552	770	0.61	-
14	80	20	-	479	543	988	0.48	-

Таблиця 1. Характеристичні параметри скла і ширина енергетичної щілини склоподібних сплавів квазіпотрійної системи Tl₂Se–Ga₂Se₃–GeSe₂

-66-

Спектральні залежності коефіцієнтів поглинання α від енергії фотонів hv при кімнатній температурі склоподібних сплавів

Рис. 3. Спектральна залежність коефіцієнта поглинання для: sample 1 – 5Tl₂Se–90GeSe₂–5Ga₂Se₃; sample 2 – 2,5Tl₂Se–90GeSe₂–7,5Ga₂Se₃.

При введенні до GeSe₂ (склоутворювач) сполук Tl₂Se та Ga₂Se₃ $(2 \le x \le 33)$ (модифікатори) спостерігається зміщення краю поглинання в високоенергетичну область спектра. В області прозорості (в низькоенергетичній області) домішкових максимумів не виявлено.

За даними спектрального розподілу коефіцієнта поглинання в області краю поглинання оцінено ширину енергетичної щілини Eg (за енергією квантів світла для яких α≈550 см⁻¹). В табл. 1 подано залежність E_{g} від складу склоподібних сплавів. Збільшення Е_е при збільшенні концентрації Tl₂Se та Ga₂Se₃ (модифікаторів), на нашу думку пов'язано з деформацією склоутворюючої матриці при введенні іонів Tl + та Ga⁺ які мають більший радіус в порівнянні з [15]. Германієм Наслідком позиційного розупорядкування положення атомів некристалічних матеріалів £ утворення хвостів щільності станів на краю дозволених енергетичних зон, веде що до появи експоненційної залежності коефіцієнта поглинання. Така експоненційна залежність спостерігається $\alpha(hv)$ зi сторони високоенергетичної ділянки спектра, що свідчить про виконання правила Урбаха,

системи Tl₂Se–Ga₂Se₃–GeSe₂ по ізоконцентратах 90, 80 мол.% GeSe₂ в представлені на рис. 3, 4.

Рис. 4. Спектральна залежність коефіцієнта поглинання для: sample 1 – 10Tl₂Se–80GeSe₂–10Ga₂Se₃; sample 2 – 5Tl₂Se–80GeSe₂–15Ga₂Se₃.

який описує край смуги власного поглинання невпорядкованих систем [16]. З енергетичної коефіцієнта поглинання залежності та правила Урбаха визначена характеристична енергія ($\Delta = d(h\nu)/d(\ln \alpha)$), що визначає ступінь розмиття краю поглинання. Параметр Δ для всіх досліджуваних зразків лежить в діапазоні 0,10-0,20 eB і узгоджується з даними робіт [17, 18], в яких стверджується, що параметр нахилу урбахівського краю для найрізноманітніших склоподібних систем має значення ∆≈0,05–0,25 еВ. У нашому випадку величина Δ залежить від складу склоподібних сплавів. При збільшенні концентрації (модифікаторів) Tl₂Se та Ga₂Se₃ спостерігається збільшення крутизни краю поглинання (зменшення розмиття), що можна інтерпретувати зменшенням величини випадкового потенціального рельєфу для електронів в хвостах щільності станів, які примикають до країв зон.

Висновки

Методом рентгенофазового аналізу встановлено область склоутворення у квазіпотрійній системі Tl₂Se–Ga₂Se₃–GeSe₂. Для стекол системи визначено характеристичні -67-

температури. Досліджено спектри оптичного поглинання склоподібних сплавів. Встановлено, що оптична ширина забороненої зони змінюється від 1.84 до 1.97 еВ.

Список використаних джерел

1. Виноградова Г.З. Стеклообразование и фазовые равновесия в халькогенидных системах. М.: *Наука*, 1984. С. 176.

2. Abdel-Aziz M.M., El-Metwally E.G., Fadel M., Labib H.H., Afifi M.A. Optical properties of amorphous Ge–Se–Tl system films. *Thin Solid Films*. 2001, 386, 99–104.

3. Glukh O.S., Sabov M.Yu., Barchii I.E., Tsigika V.V., Sidei V.I. Formation of ternary compounds in the Tl₂Se–GeSe₂ system. *Inorg. Mater*. 2009, 45(10), 1092–1096.

4. Борисова З.У. Халькогенидные полупроводниковые стекла. Л.: ЛГУ, 1983. С. 344.

5. Бабанлы М.Б., Кулиева Н.А. Системи T1₂Se-GeSe₂ и T1Se-GeSe (GeSe₂). *Журн. неорган. химии.* 1983, 28(6), 1557–1560.

6. Linke D., Giiter M., Krug F. Glasbildung und Phasentrennung in den Systemen Tl–Ge–Se und Pb–Ge–Se. *Z Anorg. Allg. Chem.* 1978, 444(7), 217–236.

7. Михайлов М.Д., Тверьянович А.С. Способность к стеклообразованию в системах As-Те и T1₂Se-GeSe₂. *Химия и физика твердого тела*. 1980, 831, 28–34.

8. Туркина Е.Ю., Орлова Г.М. Взаимодействие компонентов и стеклообразование в системе TISe-Tl₄GeSe₄-GeSe₂. *Журн. неорган. химии.* 1983, 28 (8), 2083–2086.

9. Староста В.И. Взаимодействие в системах $T1_2S(Se)$ -Si(Ge,Sn)S₂(Se₂) и получение моно-

кристаллов образующихся сложных халькогенидов: Автореф. дис. ... канд. хим. наук: 02.00.01, УжДУ. Ужгород, 1984.

10. Naik G.M., Parthasarathy G., Gopal E.S.R., Narayanan P.S. Crystallization of bulk TI–Ge–Se glasses under high pressure. *J. Mater. Sci. Lett.* 1985, 4, 1017–1020.

11. Mitkova M.I., Boncheva-Mladenova Z. Glasbildung im system Ge–Se–Ga. C. R. Acad. Bulg. Sci. 1975, 28(2), 189–193.

12. Thiebault C., Guen L., Eholie R. Contribution a l'etude du systeme ternaire Ga–Ge–Se. *Bull. Soc. Chim. France.* 1975, 122(5/6), 967–972.

13. Ollitrault-Fichet R., Eholie R., Rivet J. Etude des verres de chalkogenures. Formers daus le ternaire Ga – Ge – Se. *Ann. Chim. France*. 1977, 2(1), 31–40.

14. Олексеюк І.Д., Парасюк О.В., Божко В.В., Галян В.В., Петрусь І.І. Склоутворення в квазіпотрійних системах Zn(Cd,Hg)Se–Ga₂Se₃–GeSe₂. *Наукові записки Рівненського пед-інституту*. 1997, 3, 148–152.

15. Саван Я. Исследование кристаллизации стекол в системе Cu – As – Se. *Неорган. материалы.* 1969, 5(3), 492.

16. Parasyuk O.V., Reshak A.H., Klymuk T.L., Mazurets I.I., Zamuruyeva O.V., Myronchuk G.L., Owsik J. Photothermal poling of glass complexes Ag₂S–Ga₂S₃–P₂S₅. *Opt. Commun.* 2013, 307, 1–4.

17. Клява Я.Г. Правило Урбаха и континуальная неупорядоченность в некристаллических твердых телах. *Физ. тв. тела.* 1985, 27(5), 1350–1353.

18. Вайнштейн И.А., Зацепин А.Ф., Кортов В.С., Щапова Ю.В. Правило Урбаха в стеклах PbO–SiO₂. Физ. тв. тела. 2000, 42(2), 224–229.

Стаття надійшла до редакції: 18.05.2017.

GLASS FORMATION IN THE Tl₂Se-Ga₂Se₃-GeSe₂ SYSTEM

Tsisar O.V., Piskach L.V., Marushko L.P., Olekseyuk I.D., Zamuruyeva O.V., Parasyuk O.V.

Glass-formation region in the quasi-ternary system $Tl_2S-Ga_2S_3-GeS_2$ was investigated by quenching molten alloys from 1300 K using X-ray phase analysis method. Glassy alloys with a maximum Tl_2Se content of 45 mol.% were obtained on the side $Tl_2Se-GeSe_2$. A continuous narrow strip of glass formation from 13 to 33 mol.% Ga_2Se_3 crosses the entire concentration triangle. A gap in the glass formation area is observed on the ray from $GeSe_2$ to the side $Tl_2Se-Ga_2Se_3$ at 75 mol.% Tl_2Se . Up to 10 mol.% Tl_2Se could be introduced into glasses at the $GeSe_2-TlGaSe_2$ ray. Maximum content of 33 mol.% Ga_2Se_3 was found in the glasses on the ray from $GeSe_2$ to the side $Tl_2Se-Ga_2Se_3$ at 25 mol.% Tl_2Se .Characteristic thermal parameters and optical absorption spectra of the glasses of the system were investigated. The variations of the bandgap energy were determined.