УДК 538.913+538.951+534.22 М.Д. Раранський, В.Н. Балазюк, М.І. Мельник, О.М. Горда, М.М. Гунько Чернівецький національний університет імені Юрія Федьковича, 50012, Чернівці, вул. Коцюбинського, 2

e-mail: ftt2010@bigmir.net

АНІЗОТРОПІЯ ПРУЖНИХ ВЛАСТИВОСТЕЙ, СТУПІНЬ ІОННОСТІ І СТРУКТУРНА СТАБІЛЬНІСТЬ МОНОКРИСТАЛІВ З ҐРАТКОЮ ТИПУ NaCl, CsCl і CaF₂

Проведено вивчення впливу анізотропії пружних властивостей на характер хімічного зв'язку та структурну стабільність монокристалів з гратками типу NaCl, CsCl і CaF₂. Виявлено кореляцію між ступенем іонності f_i , анізотропією кристалів A і структурною стабільністю кристалічних ґраток. Показано, що визначальну роль у формуванні характеристичних поверхонь модулів Юнга іонних кристалів відіграє розмірний фактор. Запропоновано новий ультразвуковий метод визначення ступеня іонності лужно-галоїдних кристалів без вимірювання енергетичних параметрів.

Ключові слова: анізотропія, ступінь іонності, структурна стабільність, модуль зсуву, модуль всебічного стиску, координаційне число.

Вступ

Пружні властивості кристалів адекватно відображають природу сил міжатомної взаємодії в кристалічній гратці. Оскільки модулі пружності визначаються через потенціали міжатомної взаємодії і вимірюються експериментально з високою точністю, виникає можливість проведення аналізу силових моделей в рамках динамічної теорії кристалічних ґраток та вивчення впливу характеру хімічного зв'язку на фізичні властивості твердих тіл. Першими модельними об'єктами досліджень були іонні кристали, які у переважній більшості мають прості кубічні ґратки типу NaCl (просторова група симетрії O_h^5 - Fm3m) та CsCl (просторова група симетрії $O_h^1 - Pm3m$). Модель парної і центральної взаємодії атомів у кристалічній ґратці М. Борна [1] виявилась достатньо задовільною для опису сил зв'язку в іонних кристалах і розрахунку модулів пружності C_{iikl}. У відповідності до даної моделі та з урахуванням симетричності тензора модулів пружності С_{іјкl} слідує, що для кристалів кубічної сингонії повинно виконуватись співвідношення Коші $C_{12} = C_{44}$ (у позначеннях Фойгта). У той же час для багатьох

іонних кристалів співвідношення Коші виконується тільки наближено. Відхилення від співвідношення Коші свідчить про наявність нецентральних багаточастинкових сил взаємодії між атомами та, відповідно, перерозподіл електронної густини і зміну характеру хімічного зв'язку. Фактор пружної анізотропії А >1 для ізокатіонного ряду LiF→LiCl→LiBr→LiI, тобто дані кристали є анізотропними. Іонний зв'язок, зумовлений електростатичною взаємодією позитивних і негативних іонів, є наближенням, про що свідчить ступінь іонності даних кристалів $f_i < 1$. Отже, кристали мають іонно-ковалентний характер хімічного зв'язку. Класичні методи Полінга, Філліпса і Харрісона [2-4], основані на визначенні ступенів іонності і ковалентності кристалів через енергетичні параметри (ефектронегативності $\chi_{A,B}$, ширину забороненої зони E_g , матричні елементи іонного V_2 і ковалентного V₃ зв'язків), не забезпечують належної точності.

Метою даної роботи є вивчення впливу анізотропії пружних властивостей на характер хімічного зв'язку та структурну стабільність монокристалів з ґраткою типу NaCl, CsCl I CaF₂. Вибір даних кристалів для дослідження обумовлений їхнім широ-

ким практичним застосуванням для виготовлення елементів оптичних систем, сенсорів електромагнітного та ядерного випромінювань, інжекційних лазерів та лазерів на центрах окраски. Для розрахунку модулів Юнга E_i , модулів зсуву C_s , факторів пружної анізотропії А, характеристичних температур Дебая в та параметрів Грюнайзена у використані модулі пружності С_{іі} монокристалів LiF, KCl, NaCl, CaF₂ ta SnSe, PbS, PbSe, PbTe, визначені нами методом суміщення відбитих ультразвукових ехо-імпульсів [5-9], та деяких іонних кристалів, отримані іншими авторами [10, 11]. Визначені залежності ступеня іонності f_i від фактора пружної анізотропії А, модуля зсуву C_s, модуля пружності С₄₄ та співвідношення іонних Побудовані радіусів. характеристичні поверхні модуля Юнга лужно-галоїдних кристалів, флюоритів і халькогенідів олова. Запропоновано визначення ступеня іонності монокристалів ультразвуковим методом.

Експеримент

Монокристали LiF, KCl, NaCl та CaF₂ вирощувались із розплаву у напрямку [100], a PbS, PbSe, PbTe – методом Бріджмена. Топографія дефектів кристалічної будови вивчалася Х-хвильовими методами Берга-Баррета і Ланга [12]. Встановлено, що густина дислокацій в лужно-галоїдних монокристалах не перевищувала $2,7 \cdot 10^{-2} c M^{-2}$, а халькогенідів Pb $4.5 \cdot 10^{-3} cm^{-2}$. Для проведення ультразвукових досліджень із ділянок монокристалів, вільних від мозаїчних блоків. вирізались зразки у вигляді паралелепіпедів розміром 10мм×10мм×30мм з огранкою кристалографічними площинами типу {100} і {110}. Орієнтація кристалографічних площин здійснювалась на дифрактометрі ДРОН-3М з точністю ±5'. Періоди кристалічних граток а визначалися зі зміщень дифракційних максимумів високих порядків в $Cu_{K_{\alpha}}$ - і Ni_{K_a} -випромінюваннях. Точність визначення періодів складала ±0,0002 Å. Густина зразків р визначалась гідростатичним зважуванням та Ххвильовим дифракційним методом. Швидкість поширення УЗ хвиль v_i у певних кристалографічних напрямках вимірювалась за методикою суміщення ехо-імпульсів на частоті 10 *МГц*. Похибка у визначенні швидкості v_i не перевищувала 0,5% [12].

Результати та їх обговорення

а) Структура іонних кристалів

Класичними представниками іонних кристалів є лужногалоїдні сполуки $A^{1}B^{7}$, електронна структура яких добре вивчена і описана у багатьох підручниках і монографіях [1-3]. Вони мають кристалічну гратку типу NaCl, де іони кожного сорту утворюють гранецентровану кубічну (ГЦК) ґратку, координаційне число (КЧ) 6:6. Виключенням є галогеніди цезію, для яких зі збільшенням іонного радіуса аніона г_А кристалічна ґратка типу NaCl стає нестабільною (CsF зберігає ґратку типу NaCl, CsCl може кристалізуватись як з ґраткою типу NaCl, так і з об'ємноцентрованою кубічною (ОЦК) ґраткою типу CsCl, a CsBr та CsI – з ОЦК граткою [13]). Галогеніди міді CuF, CuCl, CuBr, CuI та AgI кристалізуються з утворенням ґратки типу сфалерита (ZnS). Сполуки AgF, AgCl, AgBr утворюють гратку типу NaCl. Дані сполуки мають замкнуту 4d-оболонку і іонний остов типу криптона. Кристалічну гратку типу NaCl утворюють також деякі халькогенідні сполуки типу A^4B^6 – SnTe, PbS, PbSe, PbTe. Розрахунок зонної структури показує, що електронна структура халькогенідів Рb побудована в основному на *p*-орбіталях, а s-орбіталі утворюють глибокі, повністю заповнені зони і дають малий внесок в утворення хімічного зв'язку [14]. Характерними іонними сполуками флюорити CaF2, SrF2, BaF2 і PbF2, просторова група симетрії O_h⁵ - Fm3m. Іони Са утворюють гранецентровану гратку, а іони F зміщені на *a*/4 у напрямку [111] і мають тетраедричне оточення. Координаційні числа CaF₂ – 8:4. Саме тому кристали флюоритів мають іонний, а не ковалентний зв'язок.

б) Хімічний зв'язок і структурна стабільність кристалів

Електростатична (кулонівська) енергія взаємодії іонів V_E дає основний внесок в енергію хімічного зв'язку іонних кристалів (~90%). Енергія відштовхування V_R складає ~10 – 12% і лише 1 – 2% енергії зв'язку обумовлені силами Ван-дер-Ваальса [15]. Перша похідна повної енергії зв'язку V_{Π} по віддалі (між іонами) визначає довжину хімічного зв'язку d, а друга – пропорційна модулю всебічного стиску $B = \frac{C_{11} + 2C_{12}}{3}$. Експериментальні значення *B* для ряду іонних кристалів наведені у таблиці 1. Для даних кристалів $B \sim 1/d^{-3}$. Теоретичні й експериментальні величини міжатомних віддалей *d* і модулів пружності *C_{ij}* узгоджуються задовільно. Для кристалів з граткою типу NaCl, CsCl і CaF₂ зберігається наступне співвідношення між модулями пружності *C*₁₁ > *C*₁₂ ≥ *C*₄₄.

За Полінгом [2] різниця електронегативностей атомів у сполуці *AB* рівна

$$\Delta \chi_{AB} = \chi_A - \chi_B = 0,208 \cdot [D_{AB} - \frac{(D_{AA} + D_{BB})}{2}]^{1/2}, \qquad (1)$$

де D_{AA} , D_{BB} , D_{AB} – енергії дисоціації молекул атомів A, молекул атомів B та молекули AB.

Ступінь іонності f_i^P хімічного зв'язку визначається за співвідношенням

$$f_i^P = 1 - \exp[-\alpha(\Delta \chi_{AB})^2].$$
 (2)

У залежності від типу гетерополярної сполуки константа пропорційності $\alpha = 0,22 \div 0,29$ [16].

Оскільки енергія дисоціації є функцією повної енергії V_{Π} і електронегативності χ_{AB} , то із співвідношень (1), (2) слідує, що ступінь іонності f_i^P відображає характер сил хімічного зв'язку в кристалі. Для досліджуваних монокристалів ступінь іонності $f_i^P < 1$ (див. таблицю 1). Отже, дані кристали мають іонно-ковалентний тип хімічного зв'язку, який виникає за рахунок часткового перекриття хвильових функцій сусідніх атомів. Взаємодія між атомами (іонами), яка виникає внаслідок перекриття хвильових функцій і за рахунок електростатичних сил, описується в моделі "парної і центральної взаємодії". Для кристалів з граткою NaCl і CsCl, які утримуються у рівновазі тільки центральними силами взаємодії, повинно виконуватись співвідношення Коші $C_{12} = C_{44}$ [1]. Дане співвідношення зручно використовувати у безрозмірних одиницях

$$g = \frac{C_{44}}{C_{12}} = 1.$$
 (3)

Співвідношення (3) часто використовують для аналізу характеру сил зв'язку між атомами у кристалах, оскільки відхилення gвід одиниці прямо означає появу сил нецентральної взаємодії. Аналіз величин g, наведених у таблиці 1, показує, що відхилення від співвідношення Коші для більшості кристалів виходить за межі похибок експериментальних вимірювань модулів пружності C_{12} і C_{44} . Спроба пошуку кореляції між величинами g і ступенями іонності f_i^P виявилась невдалою. Отже, відхилення від співвідношення Коші тільки якісно відображає появу ковалентної складової хімічного зв'язку.

Важливою характеристикою хімічного зв'язку є стійкість кристалічної ґратки до деформації, яка для кристалів кубічної сингонії описується фактором пружної анізотропії

$$A = \frac{2C_{44}}{C_{11} - C_{12}} = \frac{C_{44}}{C_S},\tag{4}$$

де модулі пружності C_{44} і зсуву C_S є мірами опору деформаціям, зумовленим напруженнями, прикладеними в площині (100) у напрямку [010] і в площині (110) у напрямку [$\overline{1}$ 10], відповідно. Якщо A = 1, то монокристал за своїми пружними властивостями подібний до полікристалічних тіл, тобто є пружно ізотропним. Як показано в роботі [4], деформаційний зсув у кристалі, пов'язаний зі зміною величини модуля пружності C_{44} у першому наближенні не змінює довжини хімічного зв'язку d. У той же час величина потенціалу сил відштовхування заповнених оболонок лужних і галоїдних іонів дає основний внесок у модуль зсуву C_s . Тому для більшості монокристалів, наведених у таблиці 1, $C_S > C_{44}$. Винятком є монокристали LiF, LiCl, LiBr, LiI і PbF₂, для яких $C_{44} > C_S$, і тільки для BaF₂ $C_S = C_{44}$, тобто A = 1.

Таблиця 1

^ '	•	• •		•	•
Основні параметри	линяміки	кристялічної	грятки	лослілжуваних	монокристялів
o enobili napasierpi		mpneruun mor	-P****	Accurding Dumma	Tomorphorum

Крист.	r_K / r_A	С ₄₄ , ГПа	C_S , ГПа	g	f_i^{P}	A	В, ГПа	γ(μ)	θ, Κ
CaF ₂	0,78	33,37	59,85	0,771	0,89	0,559	83,13	1,325	502,75
SrF ₂	0,9	31,3	40,25	0,728	0,89	0,778	69,83	1,540	372,96
BaF ₂	1,03	24,9	24,9	0,618	0,91	1,000	56,90	1,830	277,56
PbF ₂	0,94	24,54	20,8	0,520	0,92	1,180	61,07	2,107	265,047
LiF	0,51	63,42	32,68	1,323	0,862	1,939	69,83	1,756	696,436
NaF	0,73	28	36,4	1,152	0,871	0,769	48,57	1,286	473,837
KF	1,0	12,8	25,45	0,859	0,889	0,503	31,87	1,229	317,181
RbF	1,2	9,1	22,25	0,728	0,889	0,409	27,33	1,212	223,19
LiCl	0,37	24,9	13,4	1,102	0,648	1,858	31,53	1,862	390,56
NaCl	0,54	12,74	18,38	1,041	0,665	0,696	24,57	1,287	305,67
KCl	0,73	6,3	16,8	1,016	0,7	0,375	17,4	1,067	223,35
RbCl	0,82	4,8	15,2	0,787	0,7	0,316	16,23	1,092	161,38
CsCl	0,97	8	13,6	0,87	0,709	0,588	18,27	1,292	158,52
LiBr	0,34	19,1	10,3	1,016	0,578	1,854	25,67	1,925	247,72
NaBr	0,5	9,9	14,35	0,861	0,596	0,69	21,07	1,376	209,41
KBr	0,67	5,1	14,55	0,879	0,635	0,351	15,5	1,09	164,89
RbBr	0,76	3,8	13,3	0,776	0,635	0,286	13,76	1,066	127,42
CsBr	0,84	7,5	10,97	0,831	0,645	0,684	16,34	1,39	135,67
LiI	0,32	13,5	7,25	0,964	0,463	1,862	18,83	1,971	175,66
NaI	0,44	7,2	10,7	0,8	0,482	0,673	16,13	1,402	154,84
KI	0,6	3,8	11,55	0,809	0,525	0,329	12,4	1,096	126
RbI	0,68	2,8	11	0,777	0,525	0,255	10,93	1,034	101,28
CsI	0,75	6,3	8,9	0,94	0,537	0,708	12,63	1,344	115,109
AgCl	0,73	6,3	11,95	0,174	0,283	0,527	44,17	2,366	146,04
AgBr	0,63	7,2	11,65	0,218	0,208	0,618	40,77	2,305	135,03
SnTe	0,48	11,64	52,86	1,813	0,004	0,219	41,67	0,86	180,11
PbS	0,69	24,64	48,72	0,835	0,014	0,510	62,10	1,247	229,23
PbSe	0,65	16,01	54,65	1,097	0,011	0,290	51	0,983	185,75
PbTe	0,59	13,47	50,10	1,74	0,012	0,267	41,13	0,889	163,36
TlBr	0,69	7,56	11,5	0,514	0,326	0,661	22,47	1,663	115,04
TlCl	0,75	7,6	12,4	0,497	0,407	0,613	23,57	1,634	125,06

Між ступенем іонності f_i^P та анізотропією A існує певна кореляція. Найменший ступінь іонності у халькогенідів Sn і Pb $f_i^P \rightarrow 0$ (рис. 1). Дані сполуки мають ненасичений характер хімічного зв'язку, який визначає їх порівняно високу ефект-

ронну поляризованість і є причиною аномально великого значення діелектричної проникливості [14]. Халькогеніди Рb відносяться до віртуальних сегнетоелектриків, у яких спостерігаються явні ознаки наближення фазового переходу NaCl ↔ ZnS, але вони зберігають кристалічну гратку типу NaCl аж до нуля градусів Кельвіна. Незначна ступінь іонності у галогенідів Ag i Tl, які мають кристалічні гратки типу NaCl i CsCl відповідно. Для лужно-галоїдних кристалів ступінь іонності зростає прямо пропорційно росту електронегативностей χ галогенідів – $\chi_{I} < \chi_{Br} < \chi_{Cl} < \chi_{F}$. Структурна стабільність граток типу NaCl і CsCl обговорена детально в [1–3]. Сполуки, які кристалізуються з граткою типу флюориту CaF₂ мають найвищу ступінь іонності $f_i^P \approx 1$.

Рис. 1. Кореляція між ступенями іонності f_i^P і анізотропією кристалів А

Зауважимо, що різке зростання ступеня іонності f_i^P приводить до росту анізотропії A, а, отже, до зменшення структурної стабільності монокристалів і, відповідно, до фазових переходів зі зміною кристалічної ґратки NaCl \rightarrow CsCl \rightarrow CaF₂, збільшенням щільності пакування, та, відповідно, зміною координаційних чисел – 6:6; 8:8; 8:4. Фазовий перехід типу ZnS \rightarrow NaCl обговорено у роботі [9] для ряду напівпровідникових бінарних сполук типу A^2B^6 . Зростає також константа Маделунга а (1,748 \rightarrow 1,763 \rightarrow 2,519), яка характеризує електростатичну енергію взаємодії V_E у кристалічній ґратці.

в) Вплив розмірного фактора на структурну стабільність

Характерно, що ріст ступеня іонності f_i обернено пропорційний до іонного

радіуса аніона r_A ($r_A(I) > r_A(Br) > r_A(CI) > r_A(F)$). Тому доцільно розглянути внесок розмірного фактора r_K/r_A (r_K – іонний радіус катіона) у модуль зсуву C_S . Величини r_K і r_A взяті з роботи [16].

Прості геометричні розрахунки показують, що при критичному значенні $r_K/r_A = 0,414$ менші металеві іони дотикаються тільки до аніонів і не торкаються між собою. Тоді сильний хімічний зв'язок виникає між найближчими сусідами – галоїдними іонами вздовж напрямку [110]. Враховуючи, що іонні радіуси залежать також від перекриття електронних орбіт іонів і визначаються наближено, до таких кристалів слід віднести у першу чергу ізокатіонний ряд LiF \rightarrow LiCl \rightarrow LiBr \rightarrow LiI. Модуль зсуву C_S швидко зростає і анізотропія A > 1 (рис. 2).

Рис. 2. Внесок розмірного фактора r_K/r_A в модуль зсуву C_S іонних кристалів та характеристичні поверхні модулів Юнга

При подальшому зростанні розмірного фактора r_K/r_A швидкість зміни модуля зсуву C_S спадає, зменшується анізотропія A і структура типу NaCl є найбільш стабільлужно-галоїдних ною лля більшості кристалів. Якщо розмірний фактор $r_{K}/r_{A} \ge 0.8$, то кристалічна гратка типу NaCl уже не може забезпечити найбільш щільного іонів, різке пакування а зменшення при цьому модуля зсуву C_{S} у ряді CsCl \rightarrow CsBr \rightarrow CsI (див. рис. 2 і табл. 1) сприяє фазовому переходу від гратки NaCl до CsCl. При цьому щільність пакування зростає і координаційне число збільшується з 6 до 8. Внесок розмірного фактора у модуль пружності C_{44} дещо компенсує зміну залежності $C_S(r_K/r_A)$ і, у відповідності до співвідношення (4), анізотропія галогенідів цезію $A = 0.6 \div 0.7$.

При суттєвому зменшенні розмірного фактора від критичного значення 0,414 ($r_K \ll r_A$) хімічний зв'язок здійснюється в основному між аніонами. Металеві катіони, які знаходяться в октаедричних пустотах, при підвищенні температури можуть легко дифундувати через жорстку підгратку аніонів, створюючи явище суперіонної провідності. Така ситуація може реалізуватися в іонних сполуках Li, CuBr, CuCl, AgBr, AgI та інших.

Вплив розмірного фактора виявлений нами і у поведінці макромодулів іонних кристалів. На рис. 3 наведені характеритичні поверхні модулів Юнга лужногалоїдних кристалів, флюоритів і халькогенідів Рb. Для прикладу розглядаються тільки хлориди лужних металів, оскільки характеристичні поверхні модуля Юнга ізокатіонних рядів мають аналогічну форму (див. рис. 2). Перетини характеристичних поверхонь площинами (100), (010) і (001) виявляють екстремальні значення модуля Юнга у певних кристалографічних напрямках. Розмірний фактор r_K/r_A в ізоаніонному ряді LiCl \rightarrow NaCl \rightarrow KCl \rightarrow RbCl \rightarrow CsCl змінюється у співвідношенні 0,375 : 0,541 : 0,734 : 0,823 : 0,911, а фактор пружної анізотропії А – 1,858 : 0,696 : 0,375 : 0,310 : 0,588. відзначалось, Як уже при $r_K/r_A \ge 0,8$ кристалічна гратка стає нестабільною і відбувається фазовий перехід типу NaCl \rightarrow CsCl. Фактор пружної анізотропії різко зростає $A_{CsCl} \neq A_{NaCl}$, і характеристична поверхня сполуки CsCl стає подібною до характеристичної поверхні сполуки NaCl. Отже, визначальну роль у формуванні характеристичних поверхонь модулів Юнга відіграють розміри катіонів r_K .

В ізоаніонному ряді

 $CaF_2 \rightarrow SrF_2 \rightarrow BaF_2 \rightarrow PbF_2$ розмірний фактор r_K/r_A змінюється плавно і знаходиться у співвідношенні 0,781 : 0,902 : : 1,037 : 0,947, і кристалічна ґратка типу $CaF_2(O_h^5 - Fm3m)$ не змінюється. Відношення факторів пружної анізотропії A наступне 0,559:0,778:1,00:1,18. Тому анізотропія характеристичних поверхонь поступово зменшується, і характеристична поверхня модуля Юнга перетворюється у сферу для BaF₂ (як і для монокристалів W). Монокристали PbF₂ виявляють слабку анізотропію характеристичної поверхні (A = 1,18).

Рис. 3. Характеристичні поверхні модулів Юнга лужногалоїдних кристалів, флюоритів і халькогенідів Рb

Для ізокатіонного ряду халькогенідів Pb розмірний фактор $r_K/r_A > 1$, а фактор пружної анізотропії $A = 0,27 \div 0,51$. Тому характеристичні поверхні модуля Юнга є типічними для стійких сполук галогенідів Na, K, Rb, які кристалізуються з утворенням ґратки типу NaCl. Характеристична поверхня модуля Юнга для галогенідів Li є типічною для бінарних сполук з ґраткою сфалериту ZnS (CuCl, CuBr, CuI [9]). Зростання ступеня ковалентності й анізотропії галогенідів Li створює передумови фазового переходу від гратки NaCl до гратки ZnS зі зміною координаційного числа від 6 до 4.

Важливими параметрами хімічного зв'язку у гетерополярних сполуках є ступінь іонності f_i та полярність P, які визначаються через функції електронегативностей χ_i атомів. Полярність $P = \frac{\mu_{AB}}{eR} (\mu_{AB} - \mu_{AB})$ дипольний момент, e – заряд електрона, R – між'ядерна віддаль) характеризує асиметрію розподілу електронної густини $\rho(x, y, z)$, яка виникає внаслідок перекриття електронних орбіталей атомів при їх електростатичній взаємодії. Між ступенем іонності та полярністю кристалів існує наступний зв'язок [18]:

$$f_i = P \left(1 - \frac{\alpha_A - \alpha_B}{R^3} \right)^{-1}, \tag{5}$$

де $\alpha_{A,B}$ – статична поляризованість іонів.

Рис. 4. Залежність ступеня іонності f_i^P від модуля всебічного стиску В лужно-галоїдних сполук

Дані параметри, які є основними характерристиками іонних сполук, наведені в роботах [17–19]. Оскільки f_i та P є ізотопними величинами, слід очікувати належної кореляції між ступенем іонності f_i і макромодулем B (див. табл. 1). На рис. 4 наведена залежність ступеня іонності f_i від модуля всебічного стиску B, що дає можливість отримати емпіричне співвідношення між ними:

$$f_i = 0.44 + \left(\frac{B - 13}{167}\right)^{0.5}.$$
 (6)

Отже, ступінь іонності лужно-галоїдних кристалів можна визначити ультразвуковим методом із пружних модулів C_{44} і C_{12} з високою точністю без вимірювання енергетичних параметрів.

У роботі наведені також динамічні параметри – параметри Грюнайзена і характеристичні температури Дебая θ, які описують ангармонійність коливань атомів у кристалічній ґратці іонних сполук та характер хімічного зв'язку.

Висновки

Відхилення від співвідношень Коші д не може слугувати мірою іонності, а лише якісно відображає появу ковалентної складової хімічного зв'язку. Швидке зростання ступеня іонності приводить до зменшення структурної стабільності кристалічних ґраток і, відповідно, до фазових переходів NaCl \rightarrow CsCl \rightarrow CaF₂ зі зміною координатційних чисел $6:6 \rightarrow 8:8 \rightarrow 8:4$. Виявлено вплив розмірного фактора r_K/r_A на модуль зсуву C_S та модуль Юнга. Показано, що визначальну роль у формуванні характеристичної поверхні модуля Юнга відіграють розміри катіонів r_K. Запропоновано ультразвуковий метод визначення ступеня іонності лужно-галоїдних кристалів.

СПИСОК ВИКОРИСТАНОЇ ЛІТЕРАТУРИ

- 1. Борн М. Динамическая теория кристаллических решеток / М. Борн, Хуан Кунь. – М.: ИЛ, 1958. – 488 с.
- Pauling L. The Nature of the Chemical Bond / L. Pauling. – Ithaca: Cornell Univ. Press, 1960. – 644 p.
- Phillips J.C. Bonds and Bands in Semiconductors / J.C. Phillips – New York and London: Acad. Press., 1973. – 288 p.
- Харрисон У. Электронная структура и свойства твердих тел. т.1 / У. Харрисон – М.: Мир, 1983. – 381 с.
- Raransky M.D. Some parameters of crystal lattice dynamics in CaF₂, LiF, NaCl and KCl / M.D. Raransky, V.N. Balazyuk, V.M. Sergeev, M.I. Melnyk // Jornal of Phys. studies. – 2011. – V.15, №3. – P. 3401–3404.
- Раранський М.Д. Анізотропія пружних властивостей та характер хімічного зв'язку монокристалів Cd_{1-x}Mn_xTe / М.Д. Раранський, В.Н. Балазюк, М.І. Мельник, О.М. Кнігініцька та ін. // Металофізика і новітні технології – 2012. – т.34, №7. – С. 935–948.
- Кнігініцька О.М. Анізотропія пружних властивостей та динаміка кристалічної гратки халькогенідів PbS, PbSe, PbTe / О.М. Кнігініцька, М.Д. Раранський, В.Н. Балазюк // Міжнародна конференція студентів і молодих науковців з теоретичної та експериментальної фізики ЕВРИКА-2012, 19-22 квітня 2012 р.: тези доповідей. – Львів, Україна, 2012. – С. D15.
- Раранский Н.Д. Гистерезис скорости ультразвуковых волн и упругие свойства твердых растворов Cd_{1-x}Zn_xSb / Н.Д. Раранский, В.Н. Балазюк, Н.И. Мельник, О.Н. Книгиницкая, В.Б. Гевик, М.Н. Гунько // Восточно-Европейский журнал передовых технологий. – 2012. – т.59, в.5/10. – С. 33–37.
- Раранський М.Д. Хімічний зв'язок, анізотропія і структурна стабільність монокристалів / М.Д. Раранський,

Стаття надійшла до редакції 20.12.2013

В.Н. Балазюк, М.І. Мельник, І.Г. Курек, О.М. Горда, М.М. Гунько // Фізика і хімія твердого тіла – 2013. – т.34, №4. – С. 815–821.

- Физическая акустика. Динамика решетки / Под ред. У. Мэзона – М.: Мир, 1968. – 392 с.
- 11. Францевич И.Н. Упругие постоянные и модули упругости металлов и немееталлов / И.Н. Францевич, Ф.Ф. Воронов, С.А. Бакута. – К.: Наукова Думка, 1982. – 286 с.
- Раранський М.Д. Пружні властивості та динаміка кристалічної гратки деяких напівпровідникових монокристалів / М.Д. Раранський, В.Н. Балазюк, З.Д. Ковалюк. – Чернівці: Золоті литаври, 2012. – 200 с.
- 13. Миркин Л.И. Справочник по рентгеноструктурному анализу поликристаллов / Л.И. Миркин – М.: ФМЛ, 1961. – 863 с.
- 14. Martinez G. Electronic structure of PbS and PbTe / G. Martinez, M. Schluter, M. L. Cohen // Phys. Rev. B. – 1975. – v.11, №2. – P. 651–659.
- 15. Киттель Ч. Введение в физику твёрдого тела / Чарльз Киттель. – М.: Наука, 1978. – 791 с.
- 16. Murphy L. R. Evolution and test of Pauling's electronegativity scale / L.R. Murphy, T.L. Meek, A.L. Allred, L.C. Allen // J. Phys. Chem. A. – 2000. – v.104, №24. – P. 5867–5871.
- Бокий Г.Б. Кристаллохимия / Г.Б. Бокий – М.: Наука, 1971. – 400 с.
- Matcha R. L. Theory of the chemical bond / R.L. Matcha, S.C. King // J. Amer. Chem. Soc. – 1976. – v.98, №12. – P. 3415–3420.
- Яковлев В.М. Определение степени ионности и энергии гетерополярной химической связи в терминах электроотрицательности / В.М. Яковлев, В.А. Терентьев // Весник СамГУ. Естественные науки. – 2001. – №4(22). – С. 152–174.

M.D. Raransky, V.N. Balazyuk, M.I. Melnyk, O.M.Gorda, M.M. Gunko Yu. Fedkovych Chernivtsi National University, 2, Kotsyubinsky Str., 58012 Chernivtsi

ANISOTROPY OF ELASTIC PROPERTIES, THE DEGREE OF IONICITY AND STRUCTURAL STABILITY OF SINGLE CRYSTALS WITH LATTICE TYPE NaCl, CsCl AND CaF₂

The influence of the anisotropy of the elastic properties on the nature of chemical bonding and structural stability of single crystals with lattices such as NaCl, CsCl and CaF₂ was studied. The correlation between the degree of ionicity f_i , anisotropy of crystals A and structural stability of crystal lattices was detected. It was shown that dimensional factor plays a decisive role in the formation of characteristic surfaces of Young's modulus of ion crystals. A new ultrasound method for determining the degree of ionicity of alkali-halide crystals without measurement of power parameters was proposed.

Keywords: anisotropy, degree of ionicity, structural stability, shear modulus, comprehensive compression module, coordination number.

Н.Д. Раранский, В.Н. Балазюк, Н.И. Мельник, О.М. Горда, М.М. Гунько

Черновицкий национальный университет имени Юрия Федьковича, 58012, Черновцы, ул. Коцюбинского, 2

АНИЗОТРОПИЯ УПРУГИХ СВОЙСТВ, СТЕПЕНЬ ИОННОСТИ И СТРУКТУРНАЯ УСТОЙЧИВОСТЬ МОНОКРИСТАЛЛОВ С РЕШЕТКОЙ ТИПА NaCl, CsCl и CaF₂

Проведено изучение влияния анизотропии упругих свойств на характер химической связи и структурную стабильность монокристаллов с решеткой типа NaCl, CsCl и CaF₂. Обнаружена корреляция между степенью ионности fi, анизотропией кристаллов A и структурной стабильностью кристаллических решеток. Показано, что определяющую роль в формировании характеристических поверхностей модулей Юнга ионных кристаллов играет размерный фактор. Предложен новый ультразвуковой метод определения степени ионности щелочно-галоидных кристаллов без измерения энергетических параметров.

Ключевые слова: анизотропия, степень ионности, структурная стабильность, модуль сдвига, модуль всестороннего сжатия, координационное число.