УДК 535.42 Б.Б. Роскін, О.О. Грабар, К.Є. Глухов Ужгородський національний університет, 88000, Ужгород, вул. Волошина, 54 e-mail: boris.roskin@gmail.com

ЧОТИРИХВИЛЬОВА ВЗАЄМОДІЯ У ЛЕГОВАНИХ ФОТОРЕФРАКТИВНИХ КРИСТАЛАХ Sn₂P₂S₆

Проведено експериментальне дослідження чотирихвильової взаємодії, зокрема обернення хвильового фронту у петльовій схемі самонакачуваного фазоспряжуючого дзеркала, на основі фоторефрактивних кристалів $Sn_2P_2S_6$ з домішками Те та Sb. Також проведено теоретичне моделювання чотирихвильової взаємодії з використанням фоторефрактивних параметрів даних кристалів, отриманих експериментально. Встановлено застосовність моделі для опису чотирихвильової взаємодії взаємодії у кристалі $Sn_2P_2S_6$:Те.

Ключові слова: фоторефрактивний, кристал, обернення хвильового фронту, чотирихвильова взаємодія, Sn₂P₂S₆.

Вступ

Схеми отримання фазового спряження описані в літературі [1, 2], при цьому використовують фоторефрактивні (ФР) кристали. Зокрема найбільш ефективною є петльова схема самонакачуваного фазоспряжуючого дзеркала (СНФСД), яка була реалізована на таких ФР кристалах як BaTiO₃:Rh [3], KNbO₃ [4]. Bucoki ΦP параметри мають кристали Sn₂P₂S₆, як чисті, так леговані різними домішками (Sb, Te), що виділяються малими часами формування гратки, а також великими значеннями підсилення Г [5-9]. Такі властивості кристалів Sn₂P₂S₆, а також чутливість у червоній та інфрачервоній області спектра, робить їх перспективними матеріалами для практичних застосувань.

Як було вже зазначено, при внесенні домішок в $Sn_2P_2S_6$ його ФР параметри змінюються. Зокрема, наприклад, підсилення Γ для $Sn_2P_2S_6$ з домішками Те 1 % складає 10 см⁻¹, $Sn_2P_2S_6$:Sb – Γ =20 см⁻¹, а для чистого $Sn_2P_2S_6 - \Gamma = 4 \div 7$ см⁻¹ (для λ =633 *нм*) [5]. Проте, при збільшенні Γ зростає поглинання α . Підсилення Γ , в свою чергу, залежить від геометричних розмірів кристала, зокрема довжини, а також – кута між променями взаємодії. Тому доцільним також є проведення теоретичного моделювання взаємодії променів на товщині кристалу.

У роботі проведено експериментальне дослідження обернення хвильового фронту з використанням схеми СНФСД та проведене моделювання чотирихвильової взаємодії (ЧХВ) у кристалах Sn₂P₂S₆ з домішками Te ta Sb.

Методика проведення експерименту

Схема експериментальної установки приведена на рис. 1. Накачка здійснювалася напівпровідниковим лазером з довжиною хвилі випромінювання λ=660 нм. Тут присутні чотири основні промені взаємодії: промені накачки І₃ та І₁; І₄ – виникає внаслідок фоторефрактивного розсіювання променя I₃. Промінь I₂ фазоспряжений до *I*₃ та виникає внаслідок дифракції променя накачки І₁ на гратці, записаній променями *I*₄ та *I*₃. Інтенсивності променів взаємодії вимірювались як до зразка, так і після (див. рис. 1), оскільки отримані результати в подальшому використовувались для моделювання ЧХВ. Інтенсивність фазоспряженого променя вимірювалась за допомогою розділюючої пластинки S (рис. 1).

Рис. 1. Експериментальна схема дослідження чотирихвильової взаємодії у фоторефрактивних кристалах: S – розділювач променів, D – діафрагма, M₁ та M₂ – дзеркала, ● – розташування датчика вимірювання інтенсивності.

Результати експерименту та моделювання ЧХВ

На рис. 2 приведено одну з основних характеристик СНФСД – відбивну здатність, для $Sn_2P_2S_6$:Те та $Sn_2P_2S_6$:Sb, відповідно. Відбивна здатність характеризує ступінь перекачки енергії з основного променя I_3 в обернений I_2 :

$$\left|\rho\right|^{2} = \frac{I_{2}(0)}{I_{3}(0)} \cdot 100\% \tag{1}$$

Отримані результати добре узгоджуються з попередніми роботами [5-9] та ін. При подальшому збільшенні інтенсивності накачки $|\rho|^2$ виходить на насичення, а при ще більших інтенсивностях відбувається руйнування ефекту.

Для зразка з домішками телуру отримана максимальна відбивна здатність порядку 5 % при інтенсивності накачки 2,21 Bm/cm^2 , тоді як для $Sn_2P_2S_6$:Sb – 13 % при – 0,39 Bm/cm^2 . Тобто, ефективність обернення хвильового фронту у зразка з домішками Sb значно більша при менших інтенсивностях накачки, але при більших інтенсивностях з'являлися шкідливі теплові ефекти, що призводять до руйнування ефекту.

Опис ЧХВ було розглянуто в [1, 2]. Зокрема в [4] приведені самі рівняння ЧХВ з використанням різних наближень. Згідно з геометрією експерименту, у нашому випадку були використані рівняння в наближенні пропускаючих ґраток, а

Рис. 2. Залежність відбивної здатності від інтенсивності падаючого випромінювання для $Sn_2P_2S_6$:Те (а) та – $Sn_2P_2S_6$:Sb (б).

враховуючи поглинання та напрямок підсилення, рівняння приведені в [4] мають вигляд:

$$\frac{\mathrm{d}}{\mathrm{d}z}A_{1} = \frac{1}{2}\Gamma\left(A_{1}A_{2}^{*} + A_{3}A_{4}^{*}\right)A_{2}/I_{0} + \frac{1}{2}\alpha A_{1}$$

$$\frac{\mathrm{d}}{\mathrm{d}z}A_{2} = -\frac{1}{2}\Gamma^{*}\left(A_{1}^{*}A_{2} + A_{3}^{*}A_{4}\right)A_{1}/I_{0} + \frac{1}{2}\alpha A_{2}$$

$$\frac{\mathrm{d}}{\mathrm{d}z}A_{3} = -\frac{1}{2}\Gamma\left(A_{1}A_{2}^{*} + A_{3}A_{4}^{*}\right)A_{4}/I_{0} - \frac{1}{2}\alpha A_{3}$$

$$\frac{\mathrm{d}}{\mathrm{d}z}A_{4} = \frac{1}{2}\Gamma^{*}\left(A_{1}^{*}A_{2} + A_{3}^{*}A_{4}\right)A_{3}/I_{0} - \frac{1}{2}\alpha A_{4}$$
(2)

де A_1 , A_2 , A_3 , A_4 – комплексні амплітуди, що відповідають інтенсивностям I_1 , I_2 , I_3 , I_4 (див. рис. 1), $I_0 = I_1 + I_2 + I_3 + I_4$ – сумарна інтенсивність. У нашому випадку доцільно оперувати не амплітудами, а інтенсивностями, тому

$$A_i = \sqrt{2I_i} \cdot e^{i\varphi}, \qquad i = 1..4.$$
 (3)

Розв'язком рівнянь (2) є амплітуди взаємодіючих променів як функції z, тобто товщини кристалу L. Використовуючи експериментальні значення інтенсивностей, рівняння (2) та враховуючи (3) проведено моделювання взаємодії променів у кристалі Sn₂P₂S₆:Те. Диференціальні рівняння (2) розв'язувались чисельно методом Рунге-Кутта в програмному пакеті Maple.

Початковими умовами для розв'язку рівнянь (2) є виміряні інтенсивності для кристала $Sn_2P_2S_6$:Те при z=0 (див. рис. 1: $I_1 - I_1(0), I_2 - I_2(0), I_3 - I_3(0), I_4(0)=0$). Як характеристики самого кристала використано поглинання $\alpha=0,75 \text{ сm}^{-1}$ [3] та товщина L=0,6 см ($Sn_2P_2S_6$:Те). Константа двохвильової взаємодії Γ отримувалась шляхом підбору і варіювалась в деяких межах (див. табл. 1). Отримані значення Γ відповідають попереднім дослідженням [5-10].

Результатом чисельного розв'язку рівнянь (2) були інтенсивності кожного з променів взаємодії як функції товщини кристала. Зокрема моделювання ЧХВ у кристалі $Sn_2P_2S_6$:Те приведене на рис. 3. На рисунку наглядно видно процес взаємодії променів. Частина інтенсивності променя I_3 іде на поглинання, а частина перекачується в I_4 . Аналогічно частина енергії I_1 переходить в I_2 . Також з рис. З видно, що значна частина інтенсивності переходить в I_4 . Цей промінь характеризує

Рис. 3. Модельний розрахунок чотирихвильової взаємодії в кристалі Sn₂P₂S₆:Te.

ФР розсіювання, з якого лише частина енергії бере участь у взаємодії. Для наглядності на рис. З (б) приведений ідеальний випадок ЧХВ для даного кристала, тобто при $\alpha=0$.

У таблиці 1 наведено порівняння модельних розрахунків інтенсивностей променів накачки $I_3(L)_{M}$ та $I_1(L)_{M}$ з відповідними експериментальними даними $I_3(L)$ та $I_1(L)$, відповідно.

Таблиця 1

$I_1(L)_M,$ Bm/cM^2	$I_1(L),$ Bm/cm^2	δ_{I_1} , %	$I_3(L)_M,$ Bm/cM^2	$I_3(L)_M,$ Bm/cM^2	$\delta_{\scriptscriptstyle I_3}$, %	Г, см ⁻¹	$\overline{\Gamma}$, cm^{-l}
0,3519	0,3087	6,54	0,7498	0,7578	0,53	5,3	
0,2353	0,2512	3,27	0,6091	0,6047	0,36	5,41	5.2
0,1901	0,2387	11,33	0,57198	0,5749	0,25	5,42	5,5
0,1423	0,1676	8,15	0,3998	0,4045	0,58	5,1	

Порівняння модельних та експериментальних даних

Тут також приведені їх відносні похибки. Як видно, максимальне відносне відхилення для променя I_1 становить близько 11 %, а для основного променя накачки не досягає значення одного відсотка.

Висновок

Проведено експериментальне дослідження обернення хвильового фронту у кристалах Sn₂P₂S₆:Sb та Sn₂P₂S₆:Te з використанням схеми СНФСД. Отримано основну характеристику даної схеми – відбивну здатність для зразка з домішками Sb – 13 % при 0,39 Bm/cm^2 , тоді як для Sn₂P₂S₆:Te – 5 % при 2,2 Bm/cm^2 .

Використовуючи експериментальні дані проведено моделювання ЧХВ у ФР кристалі $Sn_2P_2S_6$:Те. У результаті порівняння модельних та експериментальних даних встановлено досить точне співпадіння експерименту з модельними розрахунками, що дає можливість використовувати дану модель для опису ЧХВ в кристалах $Sn_2P_2S_6$:Те та оптимізації обернення хвильового фронту в даних кристалах.

СПИСОК ВИКОРИСТАНОЇ ЛІТЕРАТУРИ

- Cronin-Golomb M., White J.O., Yariv A., Fischer B. Theory and applications of four-wave mixing in photorefractive media // IEEE J. Quantum Electron. – 1984. - Vol. 20. -№. 1. - P. 12-30.
- Yeh P. Introduction to photorefractive nonlinear optics. Wiley Series in Pure and Applied Optics, New York / Chichester/Brisbane/Toronto/Singapore: Wiley-Interscience, 1993. – P. 432.
- Huot N., Jonathan J.M. C., Roosen G., Rytz D. Characterization and optimization of a ring self-pumped phaseconjugate mirror at 1.06 μm with BaTiO₃:Rh // J. Opt. Soc. Am. B – 1998. – Vol. 15. – P. 1992–1999.
- Rytz D., Shen De Zhong Self-pumped phase conjugation in potassium niobate (KNbO₃) // Appl. Phys. Letters – 1989. – Vol.54. – P. 2625–2627.

- Grabar A., Jazbinsek M., Shumelyuk A., Montemezzani G., Vysochanskii Yu., Günter P. Photorefractive Effects in Sn₂P₂S₆ // Springer Series in Optical Sciences – 2007. – Vol.114. – P. 327– 362.
- Jazbinšek M., Montemezzani G., Günter P., Grabar A., Stoika I., Vysochanskii Yu. Fast Near-infrared Selfpumed Phase Conjugation with Photorefractive Sn₂P₂S₆ // J. Opt. Soc. Am. B – 2003. – Vol.20. – P. 1241– 1246.
- Jazbinšek M., Haertle D., Montemezzani G., Günter P., Grabar A., Stoika I., Vysochanskii Yu. Wavelength Dependence of Visible and Near-Infrared Photorefraction and Phase Conjugation in Sn₂P₂S₆ // J. Opt. Soc. Am. B – 2005. – Vol.22. – P. 2459–2467.

8. Bach T., Jazbinšek M., Günter P.,

Grabar A., Stoika I., Vysochanskii Yu. Self Pumped Optical Phase Conjugation at 1.06 μ m in Te-doped Sn₂P₂S₆ // Opt. Express – 2005. – Vol.13. – P. 9890– 9896.

 Bach T., Jazbinšek M., Montemezzani G., Günter P., Grabar A., Vysochanskii Yu. Tailoring of infrared photorefractive properties of Sn₂P₂S₆ crystals by Te and Sb doping // J. Opt.

Стаття надійшла до редакції 02.06.2013

Soc. Am. B – 2007. – Vol.24. – P. 1535– 1541.

 Kedyk I., Mattey P., Gadret G., Bidault O., Grabar A., Fedyo K., Stoika I., Prits I., Vysochanskii Yu. Investigation of the dielectric, optical and photorefractive properties of Sbdoped Sn₂P₂S₆ crystals // Physics B: Lasers and Optics – 2008. – Vol. 92. – P. 549–554.

B.B. Roskin, A.A. Grabar, K.E. Glukhov Uzhhorod National University, 88000, Uzhhorod, Voloshina Str., 54

FOUR-WAVE MIXING IN DOPED PHOTOREFRACTIVE CRYSTALS Sn₂P₂S₆

The four-wave mixing in the ring-loop self-pumped phase conjugate mirror scheme is studied experimentally using $Sn_2P_2S_6$ photorefractive crystals doped with Te and Sb. Theoretical modeling of the four-wave mixing is also performed with obtained experimentally photorefractive parameters of these crystals. An applicability of the model to four-wave interactions in the $Sn_2P_2S_6$:Te crystal is established.

Keywords: photorefractive, crystal, wavefront reversal, four wave mixing, Sn₂P₂S₆.

Б.Б. Роскин, А.А. Грабар, К.Е. Глухов Ужгородский национальный университет,88000, Ужгород, ул. Волошина, 54

ЧЕТЫРЕХВОЛНОВОЕ ВЗАИМОДЕЙСТВИЕ В ЛЕГИРОВАННЫХ ФОТОРЕФРАКТИВНЫХ КРИСТАЛЛАХ Sn₂P₂S₆

Экспериментально исследовано четырехволновое взаимодействие в петлевой схеме самонакачивающегося фазовосопряженного зеркала на основе фоторефрактивных кристаллов $Sn_2P_2S_6$ с примесями Те и Sb. Также проведено теоретическое моделирование четырехволнового взаимодействия с использованием полученных экспериментально фоторефрактивных параметров данных кристаллов. Установлена применимость модели для описания четырехволнового взаимодействия в кристалле $Sn_2P_2S_6$:Те.

Ключевые слова: фоторефрактивный, кристалл, обращения волнового фронта, четырехволновое взаимодействие, $Sn_2P_2S_6$.