УДК 539.172 В.М. Мазур, Д.М. Симочко, З.М. Біган, П.С. Деречкей Інститут електронної фізики НАН України, 88017, Ужгород, вул. Університетська, 21 e-mail: nuclear@email.uz.ua

ДОСЛІДЖЕННЯ МЕХАНІЗМІВ ЗБУДЖЕННЯ МЕТАСТАБІЛЬНИХ СТАНІВ ВАЖКИХ ІЗОТОПІВ ТЕЛУРУ В РЕАКЦІЇ (уп) В ОБЛАСТІ 10-20 МЕВ

Приведено перерізи збудження ізомерних станів важких ізотопів телуру ^{123m}Te, ^{127m}Te і ^{129m}Te в реакціях (γn) в інтервалі енергій 10-20 MeB. Показано роль статистичного і напівпрямого механізмів в реакціях (γn)^m. Для досліджуваних ядер, проаналізовано вплив природи і структури низькозбуджених станів на перерозподіл імовірності гамма-переходів між рівнями негативної парності – членами h_{11/2} сім'ї в сторону більшого заселення ізомерних станів.

Ключові слова: фотонейтронні реакції, статистичний механізм, переріз, гігантський дипольний резонанс.

Вступ

Одним з ефективних методів перевірки адекватності статистичної теорії ядерних реакцій, основаної на гіпотезі складового ядра, є вимірювання і порівняння з теоретичними обчисленнями ізомерних відношень (відношення перерізів (виходів) утворення дочірнього ядра в ізомерному (m) та основному (g) станах, тобто станах, спіни яких суттєво відрізняються).

На даний час перерізи реакцій (γ , n)^m, ізомерні відношення їх виходів в області 10-20 МеВ для важких ізотопів телуру (^{123m}Te, ^{127m}Te і ^{129m}Te) залишаються недостатньо вивченими. В наявності є всього кілька робіт [1, 2], присвячених визначенню ізомерних відношень виходів в окремих енергетичних точках, в основному, вище енергії гігантського дипольного резонансу.

Важкі ізотопи телуру цікаві тим, що дозволяють вивчити залежність ізомерних відношень від зміни числа нейтронів при заповненні оболонки $1h_{11/2}$, яка і формує ізомерний стан, а також тим, що для цих ізотопів проведено за допомогою реакцій (*n*, γ), (*d*,*p*) та (*d*,*f*) досить детальне вивчення природи і структури рівнів низькоенергетичних збуджень [3-6].

Для вимірювання ізомерних відношень використовувалася активаційна методика. Опромінення досліджуваних взірців телуру проводилося на пучку гальмівних гамма-

Рис. 1. Ділянка експериментального гамма-спектру від опроміненого взірця телуру.

квантів мікротрону М-30 відділу фотоядерних процесів Інституту електронної фізики НАН України в області максимальних енергій гальмівного гамма-випромінювання $E_{\gamma max}$ =10-20 МеВ. Гамма-спектри від наведеної активності опромінених мішеней вимірювалися гамма-спектрометрами на базі напівпровідникового НРGе-детектора об'ємом 175см³ фірми ORTEC. Роздільна здатність детектора складала ~ 2 кеВ для лінії 1332 кеВ кобальту-60. Більш детально експериментальна методика описана в [7].

Фрагмент експериментального гаммаспектру наведеної активності взірця телуру опроміненого при $E_{\gamma max} = 14$ МеВ приведений на рис. 1. На рис. 1 п – номер каналу аналізатора; N – кількість імпульсів у каналі. Час опромінення складав 2 год., час "охолодження" – 4 години і час вимірювання 16 год.

Таблиця 1

Nº n∕n	Ізотопи	B _n , MeB	J^{π}	E _{i30} , MeB	Ε _γ , κeΒ	T1/2	α, %	p, %
1	^{123m} Te		11/2-	247,5	159	119,2 днів	84,0	100
2	^{123g} Te	9,4	$1/2^{+}$		_	$>9,2\cdot10^{6}$	_	
						років		
3	^{127m} Te		$11/2^{-1}$	88,26	659	109 днів	0,013	97,6
4	^{127g} Te	8,8	3/2+		417	9,35 год	0,993	
5	^{129m} Te		11/2-	105,5	696	33,6 год	3,19	63,17
6	^{129g} Te	8,42	$3/2^{+}$		459	69,3 хв	7,7	

Спектроскопічні характеристики ядер ізотопів телуру

Спектроскопічні характеристики досліджуваних ядер бралися із робіт [8-11] і приведені в таблиці 1.

В таблиці 1 В_n – поріг реакції (γn), J^π – спін-парність, Е_{ізо} – енергія ізомерного рівня, Е_γ – енергія гамма-лінії, Т_½ – період напіврозпаду, α – інтенсивність гамма-лінії, р – коефіцієнт розгалуження.

Вихід заселення ізомерних станів для ізотопів ¹²³ Те, ¹²⁷ Те і ¹²⁹ Те визначався по

площі фотопіків аналітичних гамма-ліній відповідно 159 кеВ, 417 кеВ і 696 кеВ. Для розрахунку ізомерних відношень для ізотопів ¹²³Te, ¹²⁷Te та ¹²⁹Te використовувалася формула Ванска-Ріенпо [12]. Одержані залежності експериментальних ізомерних відношень виходів від максимальної енергії гальмівного гамма-спектру $d=f(E_{\gamma max})$ для реакцій ¹²⁴Te(γn)^{123m}Te, ¹²⁸Te(γn)^{127m}Te і ¹²⁹Te(γn)^{128m}Te приведені точками на рис. 2. Вказані похибки – середньоквадратичні.

Рис. 2. Експериментальні ізомерні відношення виходів для ізотопів телуру.

Рис. 3. Порівняння експериментальних перерізів (повні точки) з теоретичними розрахунками (трикутники). Для реакції ¹³⁰Те(γn)^{129m}Те приведені додаткові розрахунки (світлі трикутники).

Як видно із рисунку 2, у всіх розглянутих випадках ізомерні відношення

 $d=f(E_{\gamma max})$, починаючи від порогу реакції $(\gamma n)^m$, швидко наростають, і в області 20-

22 МеВ виходять на насичення.

Суцільними кривими на рис. 2 приведені результати апроксимації експериментальних ізомерних відношень d=f(E_{γmax}) кривими Больцмана:

$$d = A + \frac{\left(B - A\right)}{1 + e^{\frac{E - E_0}{\Delta E}}} \tag{1}$$

Апроксимація здійснювалась методом найменших квадратів в інтервалі від порогу $(\gamma, n)^m$ реакції до 20 МеВ. Одержані в результаті такої процедури значення параметрів A, B, E₀(MeB) ΔE (MeB) приведені в таблиці 2.

Таблиця 2

Ізотоп	А	В	E ₀ (MeB)	$\Delta E(MeB)$
¹²³ Te	0,228(4)	-0,1513(30)	12,03(31)	2,71(5)
¹²⁷ Te	0,315(20)	-0,0496(20)	13,92(19)	1,99(20)
¹²⁹ Te	0,440(6)	-0,053(6)	14,13(6)	1,97(8)

Параметри кривих Больцмана

Наявність експериментальних залежностей ізомерних відношень виходів від енергії гамма-квантів $d=f(E_{\gamma max})$ дозволили, використовуючи наявні експериментальні повні перерізи (γn) реакцій для ізотопів телуру [13], розрахувати перерізи заселення ізомерних станів σ_m з метою їх подальшого порівняння з теоретичними розрахунками.

Визначення експериментальних перерізів σ_m велося методом оберненої матриці [14]. При цьому виходи реакції (χn)^m згладжувалися. Одержані експериментальні перерізи збудження ізомерних станів з $J^{\pi}=11/2^{-1}$ в реакціях ¹²⁴ Те(χn)^{123m} Те, ¹²⁸ Те(χn)^{127m} Те і ¹²⁹ Те(χn)^{128m} Те приведені точками на рис. 3. Вказані похибки – середньоквадратичні.

Як видно з рисунків 2 і 3, по мірі росту маси ізотопів телуру з A=124 до A=130 ізомерне відношення виходів d=Y_m/Y_g і відповідно величина перерізів $\sigma_m(E)$ реакцій (γ,n)^m росте. Це збільшення заселення ізомерних станів ізотопів телуру корелює із заселенням зовнішньої підоболонки 1h_{11/2}. Для порівняння експериментальних результатів з теоретичними оцінками нами проведено розрахунки перерізів реакцій за допомогою програмного пакету TALYS-1.4 [15].

Теоретичні розрахунки

Для порівняння експериментальних результатів з теоретичними оцінками нами проведено розрахунки перерізів реакцій 124 Te(χn)^{123m}Te, 128 Te(χn)^{127m}Te i

 130 Te(γn)^{129m}Te за допомогою програмного пакета TALYS-1.4 [15]. Ця програма є пакетом, в якому зібрано в одному коді більшість сучасних моделей, що описують протікання ядерних реакцій.

Під час розрахунку використовується наступна схема: на ядро-мішень з параметрами (Z_i , N_i) і спін-парністю (J_i , π_i) падає гамма-квант з енергією E_{γ} і формується компаунд-ядро з енергією $E_c(E_c=E_{\gamma})$ та спектром можливих значень спіну та парності (J_c , π_c).

Повний переріз фотопоглинання гамма-квантів ядром σ_{tot} визначається двома шляхами: якщо є в наявності для досліджуваних ядер експериментальні перерізи σ_{tot} , то використовуються такі величини з бази даних [16], якщо ж вони відсутні, то σ_{tot} оцінюється за допомогою напівемпіричних систематик (компіляцій).

Приймається, що розпад збудженого ядра з заселенням як ізомерного так і основного станів відбувається за рахунок двох механізмів: статистичного і напівпрямого. Основний вклад в переріз реакції (χn)^{m,g} дає статистичний механізм, оснований на теорії Хаузера-Фешбаха [17]. Менший вклад в повний переріз (γ ,n) реакції дає напівпрямий механізм, оснований на екситонній моделі.

Екситонна модель [18] допускає, що після поглинання фотона в ядрі утворюється частинково-диркова пара (1p–1h), яка трактується як екситон. Збуджений стан (1p–1h) може пройти через серію кроків (2p–2h), (3p–3h) аж до повністю рівноважної системи. На кожному з цих кроків може бути випромінений нейтрон. В програмі TALYS– 1.4 вважаються напівпрямими нейтронами ті, що випромінені на перших шести кроках.

Для ілюстрації для ізотопів телуру величини частки вкладу передрівноважних процесів в повний переріз (γ ,*n*) реакцій при енергіях збудження 12, 16 і 18 МеВ приведені в таблиці 1.4.

Після емісії нейтронів програмою розраховується перехід на конкретні збуджені рівні (зони) дочірнього ядра, при цьому використовуються коефіцієнти проникності T₁, розраховані по оптичній До енергії збудження моделі [19]. дочірнього ядра Е_у=3.0 МеВ бралися

конкретні дискретні рівні із бази даних RIPL – 3 [20]. При більш високих енергіях збуджених збудження спектр станів дочірнього ядра рахувався неперервним, описувався густиною рівнів ρ(Е.J.π) і розбивався на 40 енергетичних зон. Якщо ядро розпадається на зону неперервного спектру, то використовується ефективний коефіцієнт проникності $T_1^{e\phi}$. В програмі TALYS-1.4 для опису густин рівнів використовується п'ять різних моделей. В даній роботі для опису густини рівнів використовується модель фермі-газу із зміщенням енергії по [21].

Таблиця 3

Ізотоп	12 MeB	16 MeB	18 Мев
¹²⁴ Te	0,46%	5,7%	9,4%
¹²⁸ Te	0,99%	7,4%	11,3%
¹³⁰ Te	1,3%	8.5%	12.5%

D	•	•	•	$\langle \rangle$	••••	
Вклал і	перелрівноважних	пропесів і	в перерізи ((v.n)) реакний на ізотопа	х телуру
	p			(),/	, b	

Для порівняння експериментальних даних нами проведені теоретичні розрахунки перерізів реакції (*уn*)^m, які приведені темними трикутниками на рис. 3. Видно, що для всіх ядер, крім ¹³⁰Те, розраховані перерізи добре **V3ГОДЖУЮТЬСЯ** 3 експериментом. Використання нами для ядра ¹²⁹Те уточненої, порівняно з [9], схеми низьколежачих рівнів [6] привело до суттєво кращого узгодження теоретичних розрахунків з експериментом (світлі трикутники). Це узгодження для ізотопів телуру, напевно, вказує на домінування статистичного механізму в реакції (у, п) і адекватності використання в розрахунках формалізму Хаузера-Фешбаха [17]. Але така поведінка розрахункових перерізів для ¹²⁹Те мабуть вказує на чутливість результатів, які видає програма TALYS-1.4, до точності i адекватності спектрів низькозбуджених рівнів, які в цій програмі використовуються.

Аналіз результатів

В програмі TALYS–1.4 імовірності γ-переходів при заселенні основних та ізомерних станів були похідними із силових функцій γ-випромінювання. Для Е1-переходів була викорисатана узагальнена форма лоренціана Кореску and Uhl [22], тоді як для M1, E2 використовувалася формула Brink-Axel [23, 24]. (Тут треба відзначити, що в гамма-каскаді основна доля (~90%) припадає на Е1-переходи з невеликою домішкою E2, M1 переходів).

Інша ситуація при розгляді низькозбуджених станів (тобто там де можна провести мікроскопічні розрахунки). В роботах [3-10] детально вивчалася схема рівнів ізотопів телуру як експериментально за допомогою реакцій зриву і підхвату (d,p), (d,t) та (n, γ) , так і теоретично, аналізуючи природу цих рівнів в межах двох моделей: моделі бозон-ферміонної взаємодії (IBFM) і квазічастинкової фононної моделі (QPM).

Модель (IBFM), як розширення моделі взаємодіючих бозонів (IBM) [6] для ядер з непарною масою, побудована для опису низьколежачих колективних станів. Першим важливим наближенням є те, що тільки нуклони за межами замкнутих оболонок, які можуть бути частинками або дирками, приймаються відповідальними за низькоенергетичні збудження. По-друге, в парно-парних ядрах ці вакантні нуклони замінені системою N (N – половина валентних нейтронів) s- і d-бозонів; в непарних по масі А ядрах (непарний нуклон) зв'язаний з системою бозонів, що представляють парно-парний кор. Це наближення є достатньо хорошим для низькорозташованих ядерних збуджень, роблячи IB(F)М багатосторонньою моделлю для середніх і важких ядер. Хоча як відзначається в [6], коли порівняти передбачення цих моделей з експериментальними даними, які розтягнуті на декілька МеВ по енергії збудження, можна зробити висновок, що модель значно обмежена допущеннями про інертність кора, яка в дійсності порушується при збудженні 2-3 MeB, де спостерігається багато різноманітних збуджених рівнів.

В роботі [6] обчислення проведені з варіантами IBFM–1 моделі, в якій не зроблено розділення між нейтронами і протонами. Ця модель була використана для опису еволюції низькоенергетичних спектрів ізотопів телуру від ¹²³Те до ¹²⁹Те.

Детальний аналіз експериментальних схем низькорозташованих рівнів ядер ¹²³Те, ¹²⁵Те і ¹²⁹Те зроблено в роботах [3-6]. Відзначається значна подібність схем рівнів цих ядер і що у них відбувається розгалуження каскадів ү-переходів на сім'ю станів негативної парності зв'язаної з ізомерним станом і рівнями позитивної парності зв'язаними з основним станом. Ключем до розуміння аномально високого заселення ізомерних станів з $J^{\pi}=11/2^{-}$ в ізотопів телуру дають стани 5/2- при енергіях 862 кеВ для ¹²³Te, 1183 кеB – 127 Te i 1221 кеB – 129 Te. Ці рівні – "ловушки" ефективно збирають "статистичний дощ" гамма-каскадів великої кількості вище розташованих станів з низькими спінами 1/2⁻, 3/2⁻. У випадку ядер 123 Te біля 55% всієї у-інтенсивності акумульованої в ізомерному 11/2стані

проходить через вищезгаданий 5/2⁻ рівень [4]. Низькорозташовані 3/2⁻ стани є також важливими складовими, що заселяють ізомер. Вони розпадаються на низьколежачі 7/2⁻ стани через Е2–переходи.

Роль станів з $J^{\pi}=5/2^{-}$ при E=1221 кеВ в заселенні ізомера ¹²⁹Те трохи менша (біля 43%), але роль сусіднього рівня з $J^{\pi}=7/2^{-}$ при E=1162 кеВ збільшується (біля 26%) [4]. Треба відзначити, що багато вищерозташованих рівнів $1/2^{-}$ і $3/2^{-}$ визначених в роботі [4] мають значне розгалуження на основний стан. В цьому сенсі вони можуть розглядатися як невідомі раніше вхідні стани в резонансному процесі фотопоглинання в області низьких енергій E<3MeB.

Інформація зміст про хвильових функцій спостережених станів одержано в роботах [3, 4], із аналізу даних зриву і підхвату. Крім стану $J^{\pi}=11/2^{-}$, всі інші стани від'ємної парності 9/2-, 7/2- слабо заселяються в (*d*,*p*) реакціях. При цьому стани 5/2⁻ – зовсім відсутні. Вони не спостерігалися і в інших реакціях нуклонної передачі в сусідніх ядрах. Можна зробити висновок, що структура цих станів являється складною. Обі очікувані $2f_{7/2}$ і $2f_{5/2}$ одночастинкові компоненти є менш імовірними. Наступна група станів негативної парності заселена переходами з l=1, які перекривають енергію збудження 2–3 MeB, вказує на широку фрагментацію Зр_{3/2} і Зр_{1/2} одночастинкової сили.

3 метою більш детального розуміння природи і структури низькорозташованих станів були проведені розрахунки для ізотопів телуру в рамках моделі бозон-ферміонної взаємодії ІВFM-1. Крім енергії рівнів, були обчислені імовірності M1- і Е2-переходів [4]. Одержане з цих обчислень посилення Е2-переходів із 9/2⁻, 7/2⁻, 5/2⁻ і 3/2- станів є біля тієї самої величини як Е2переходи для частинки + кор мультиплетів. Також відтворено відношення розгалуження для цих станів, які добре відтворюються в експерименті. Розрахунковий стан з $J^{\pi} = 5/2^{-1}$ для ¹²³Те має основну конфігурацію[88% 41⁺⊗ h_{11/2}+6.7% 21⁺⊗ f_{7/2}], тоді як 3/2⁻ стан, зв'язаний з експериментальним станом при E=1345 кеВ. може бути також інтерпретований як член 1h_{11/2} сім'ї, що має

скоріше за все подібну структуру [87,5% $4_1^+ \otimes h_{11/2} + 6.3\% 2_1^+ \otimes f_{7/2}$]. Слід відзначити, що експеримент вказує на малу, але помітну р-хвильову компоненту в цих станах. Подібну конфігурацію було отримано і для станів 123 Te.

Таким чином, конфігурації найнижчих станів $3/2^-$ і $5/2^-$ є по більшій частині такими: h_{11/2} квазічастинковими, спін яких антипаралельний зі спіном 4⁺ стану кора.

Обчислення для ¹²⁷Те, ¹²⁹Те показують подібну ситуацію [5,6]. Ядро ¹²⁹Те опи-сується як складова ¹³⁰Те – кора, який зв'язаний з ферміоном (нейтронною диркою). В IBFM описі цей кор має три бозони: один протонний бозон і два нейтронні (диркового типу) бозони. Непарний ферміон займає орбіталі валентної оболонки 2d_{5/2}, 1g7/2, 2d3/2, 3s1/2 і 1h11/2 у відповідності з певними обмеженнями [6], або орбіталі 2f_{7/2}, 1h_{9/2}, 3p_{3/2}, 3p_{1/2} чи 1f_{7/2}, 1f_{5/2}, 2p_{3/2}, 2p_{1/2}. Треба відзначити, що ці обчислення аналогічні обчисленням для більш легких ізотопів телуру і що для всіх ізотопів з масами від 123 до 129 зберігаються параметри сили бозон-ферміонної взаємодії постійними (Г₀=0.2 і Л₀=0,95 МеВ, для квадрупольної і обмінної взаємодії).

Таким чином, специфічні моди розпаду розглядуваних станів можуть бути зрозумілими, якщо має місце взаємний обмін h_{11/2} і p_{3/2}, p_{1/2} початкових і кінцевих станів. Зв'язок нейтронних хвильових функцій з хвильовими функціями парнопарного кора дають деяку перевагу для незбуджених усередині станів негативної парності, що в свою чергу веде до підвищення заселення ізомерного стану.

Висновок

Аналізуючи одержані експериментальні результати, як було сказано вище, ми можемо зробити конклюзію, що основний вклад в перерізи заселення ізомерного стану ізотопів телуру дає статистичний ЛЛЯ механізм. Але та обставина, що починаючи з ядра¹²³Те і до¹²⁹Те із збільшенням маси ізотопів ізомерне відношення росте і переріз реакції $(\chi n)^m$ зростає майже в півтора рази, в рамках статистичного механізму не може знайти пояснення. Природньо допустити, зв'язаний з вкладом цей ріст шо напівпрямих процесів. Але розрахунки по програмі TALYS-1.4 показали (див. таблицю 3), що вклад передрівноважних процесів в перерізи (уп) відносно малий, щоб в свою чергу повністю пояснив цей ріст. Як свідчать дані про вивчення структури і природи низькорозташованих рівнів ізотопів телуру [4, 6] скоріше за все відбувається перерозподіл імовірності гамма-переходів між рівнями зв'язаними між собою мікроскопічною природою (члени h_{11/2} ciм'ї) в сторону більшого заселення ізомерного стану.

СПИСОК ВИКОРИСТАНОЇ ЛІТЕРАТУРИ

- Белов А.Б., Гангрский Ю.П., Тончев А.П. и др. Возбуждение ізомерных состояний 1h_{11/2} в реакциях (γ,n) // ЯФ. – 1996. – Т. 59. – С. 585–591.
- Thiep T.D., An T.T., Guong P.V. et al. The isomeric ratios in photonuclear reactions of natural tellurium induced by bremsstrahlung with endpoint energies in the giant dipole resonance region // J. Radioanal. Nucl. Chem. – 2011. – vol. 289. – P. 637-641.
- Bondarenko V., Honzatko J., Tomandl I. et al. Origin of the anomalous population of long-lived isomers in odd-A Te isotopes // Phys Rev.C. – 1996. – V. 60. – 027302.
- 4. Bondarenko V., Honzatko J., Tomandl I.

Antialigned members of the h11/2 family in $^{123,125}\text{Te}$ // Z.Phys. – 1996. – A354. – C. 235–236.

- 5. Honzatko J., Bondarenko V., Tomandl et al. Nuclear structure of ¹²⁷Te studied with (n,γ) and (d,p) reactions // Nucl. Phys. A 2005. 756. P. 249–307.
- 6. Wirth H.F., von Egidy T., Tomandl I. et al. Nucl.structure of ¹²⁹Te studied with (n,γ) , (d,p) and (d,t) reactions // Nucl. Phys. A 2003. 716. P. 3–54.
- Мазур В.М., Симочко Д.М., Деречкей П.С., Біган З.М. Переріз збудження ізомерного стану ядра ¹²⁷Те в реакції (γ,n) в інтервалі енергій 9-20 МеВ // Укр. Фіз. Журнал 2013. Т.58 С. 5-9.

- 8. Ohga S. Adopted levels, gammas for 123 Te // Nucl. Data Sheets. 2004. V. 102. P. 547.
- 9. Tendow Y. Level Schemes for ¹²⁹Te // Nucl. Data Sheets. – 1996. – 77. – P. 631.
- Hashizume A. Adopted levels, gammas for ¹²⁷Te // Nucl. Data Sheets. – 2011. – 112. – P. 1647.
- Browne E., Firestone R.T. Tables of Radioactive Isotopes // New York. J. Wiley and Sons. – 1986.
- Vanska R., Rieppo R. The experimental isomeric cross-section ratio in the nuclear activation technique // Nucl. Instr. and Methods. – 1981. –V. 179. – P. 525–532.
- A.Lepretre et.al. A study of the giant dipole resonance in double even tellurium and cerium isotopes // Nucl. Phys. – 1974. – A218. – P. 350–364.
- Богданкевич О.В., Николаев Ф.А. Работа с пучком тормозного излучения. М.: Атомиздат. – 1964. – 248 с.
- Koning A.J., Hilaire S. and Duijvestijn M.C. TALYS-1.0: Comprehensive nuclear reaction modeling // Proceedings of the International Conference on Nuclear Data for Science and Technology -ND2007(Nice, France, April 22–27, 2007) Eds. O.Bersilon, F.Gunsing, E.Banga, R.Jacgmin, S.Levay. – EDP Sciences. – 2008. – P. 211–214.
- 16. Varlamov A.V., Varlamov V.V., Rudenko D.S., Stepanov M.E. Atlas of Giant

Стаття надійшла до редакції 21.03.2014

Dipole Resonances., INDS (NDS)-394, IAEA. – Vienna. – 1999.

- Hauser W., Feshbach H. The inelastic scattering of neutrons // Phys. Rev. – 1952. – V. 87. – P. 366–373.
- Gadioli E., Hodgson P.E. Pre-equilibrium Nuclear Reaction // Oxford University Press. – 1992.
- Марчук Г.М., Колесов В.Е. Применение численных методов для расчета нейтронных сечений. – М.: Атомиздат. – 1986. – 304 с.
- 20. Capote P., Herman M., Oblozinsky P., Adopted levels, gammas // Nucl. Data Sheets. – 2009. –110. – P. 3107.
- Dilg W., Schantl W., Vonach H. and Uhl M. Level density parameters for backshifted Fermi gas model in the mass range 40<A<250 // Nucl. Phys. – 1973. – Vol. A217. – P. 269–298.
- Kopecky J. and Uhl M. Test of gamma-ray strength functions in nuclear reaction model calculations // Phys.Rev.C. – 1990. – V.41. – P. 1941–1955.
- Brink D.M. Individual particle and collective aspects of the nuclear photoeffect // Nucl. Phys. 1957. V.4. P.215–220.
- 24. Axel P. Electric Dipole Ground-State Transition Width Strength Function and 7-Mev Photon Interactions// Phys. Rev. – 1962. – V.126. – P. 671–683.

V.M. Mazur, D.M. Symochko, Z.M. Bigan, P.S. Derechkey Institute of electron physics of the NAS of Ukraine, 88017, Uzhhorod, Universitetska Str., 21

STUDY OF EXCITATION MECHANISMS OF TELLURIUM HEAVY ISOTOPE METASTABLE STATES IN (χn) REACTIONS IN THE 10-20 MEV REGION

Excitation cross sections are presented for the tellurium heavy isotope isomeric states of 123m Te, 127m Te and 129m Te in (γn) reactions in the 10-20 MeV energy interval. The role of the statistical and semi-direct mechanisms in (γn)^m reactions is shown. The influence of the nature and structure of low excited states on the redistribution of gamma transition probabilities between levels of negative parity – members of the h_{11/2} family, in the direction of larger isomeric state populations, is analysed.

Keywords: photoneutron reactions, statistical mechanism, cross section, giant dipole resonance, semidirect processes.

В.М. Мазур, Д.М. Симочко, З.М. Биган, П.С. Деречкей Институт электронной физики НАН Украины, 88017, Ужгород, ул. Университетская, 21

ИССЛЕДОВАНИЕ МЕХАНИЗМОВ ВОЗБУЖДЕНИЯ МЕТАСТАБИЛЬНЫХ СОСТОЯНИЙ ТЯЖЕЛЫХ ИЗОТОПОВ ТЕЛУРУ В РЕАКЦИИ (уn) В ОБЛАСТИ 10-20 МЭВ

Приведены сечения возбуждения изомерных состояний тяжелых изотопов теллура 123m Te, 127m Te и 129m Te в реакциях $(\chi n)^m$ в интервале энергий 10-20 МэВ. Показано роль статистического и полупрямого механизмов в реакціях $(\chi n)^m$. Для исследуемых ядер проанализировано влияние природы и структуры низковозбуждённых состояний на перераспределение вероятности гамма-переходов между уровнями отрицательной четности – членами $h_{11/2}$ семьи в сторону большего заселения изомерных состояний.

Ключевые слова: фотонейтронные реакции, статистический механизм, сечение, гигантский дипольный резонанс, полупрямые процессы.