УДК 548.3 PACS 61.66.Fn DOI: 10.24144/2415-8038.2017.42.47-53 I.I. Небола, А.Я. Штейфан, А.Ф. Катаниця, І.П. Студеняк Ужгородський національний університет, 88000, Ужгород, вул. Волошина, 54 e-mail: ivan.nebola@uzhnu.edu.ua

ФОНОННІ СПЕКТРИ СІМЕЙСТВА АРГІРОДИТІВ

На прикладі Cu₆PS₅Br розглянута кристалічна структура сімейства аргіродитів. В концепції надпросторової симетрії описана кристалічна структура, представлено повний (3+3)-мірний базис, сукупність векторів модуляції та масових модуляційних функцій. Проведено розрахунок дисперсії фононного спектру, наведено дисперсійні залежності фононного спектру у високосиметричних напрямках ($\Gamma - X - M - R - \Gamma - M$) зони Бриллюена даного кристалу

Ключові слова: аргіродити, кристалічна структура, надгратка, над просторова симетрія, фононний спектр, Maple.

Вступ

В останні десятиріччя іоніка твердого тіла розвинулася в широку міжгалузеву охоплює фізику. науку, шо хімію. матеріалознавство та приладобудування. Так, суперіонні провідники (СІП) знайшли широке застосування як акумуляторні батареї, паливні комірки, газові сенсори та інші електрохімічні пристрої [1-3]. Крім того, СШ успішно використовуються для розробки іонно-селективних електродів [4], високотемпературних нагрівних елементів [2], інтеграторів, генераторів з автоматичною розгорткою і т.д. [5]. Одним з найбільш яскравих представників СІП є представник сімейства аргіродитів кристал сполуки Cu₆PS₅Br, дослідження й моделювання властивостей якого лягли в основу цієї нашої роботи.

Кристалічна структура сполуки Си₆PS₅Br Дослідження кристалічної структури

високотемпературної фази сполуки Си₆PS₅Br було розпочато у роботах [6-10], де наведено параметри ґратки, координати атомів. температурні коефіцієнти зміни параметрів, заселеність, кути i відстані. ЩО характеризують розміщення атомів у кристалічній гратці.

Аналіз кристалічної структури сімейства аргіродиту вказує на значну зміну заселеності ряду кристалографічних позицій.

Для розрахунку методом ab initio значень фононних частот в точці Γ для кристалу Cu₆PS₅Br в роботі [11] була вибрана модель кристалічної структури з координатами атомів і їх заселеністю, які представлені в табл.1 Це дало можливість для модельних розрахунків дисперсійних залежностей фононного спектру по зоні Бриллюена в даній роботі вибрати структуру з позиціями атомів, наведених в табл.1.

Атом	Координати згідно [10]	Засе- леність згідно [10]	Координати згідно [11]	Засе- леність згідно [11]	Координати згідно нашої роботи	Засе- леність згідно нашої роботи
Cu(1)	(0.02362,0.25,0.25)	0.624	(0.01747, 0.25, 0.25)	1.0	(0.0,1/4,1/4)	1.0
Cu(2)	(0.01914,0.30918,0.30918)	0.376		0.0		0.0

Таблиця 1. Кристалографічні позиції атомів модельних кристалічних структур

Науковий вісник Ужгородського університету. Серія Фізика. Випуск 42. – 2017

Br	(0,0,0)	0.989	(0,0,0)	1.0	(0,0,0)	1.0
S(1)	(0.25, 0.25, 0.25)	0.989	(0.25,0.25,0.25)	1.0	(1/4,1/4,1/4)	1.0
S(2)	(0.62183, 0.62183, 0.62183)	1.0	(0.62183,0.62183,0.62183)	1.0	(5/8,5/8,5/8)	1.0
Р	(0.5,0.5,0.5)	1,0	(0.5,0.5,0.5)	1.0	(1/2,1/2,1/2)	1.0

Така кристалічна структура, слідуючи за [12, 13], може біти описана, як окупаційно-модульована гранецентрована кубічна (ГЦУ) надгратка ((4а,4а,0), (4a,0,4a), (0,4a,4a)). Для цього використаємо (3+3) мірний простір з базисами прямого і оберненого простору в метриці об'ємноцентрованої гратки (ОЦК) ((-a,a.a), (a,-a,a), (a,a,-a)):

 $\begin{array}{ll} a_{1}=(-a,\ a,a,{}_{1/4}b,{}_{-1/4}b,{}_{-1/4}b); & a_{1}^{*}=(0,\pi/a,\pi/a,0,0,0); \\ a_{2}=(a,-a,a,-{}_{1/4}b,{}_{1/4}b,{}_{-1/4}b); & a_{2}^{*}=(\pi/a,0,\pi/a,0,0,0); \\ a_{3}=(a,\ a,-a,-{}_{1/4}b,{}_{-1/4}b,{}_{1/4}b); & a_{3}^{*}=(\pi/a,\pi/a,0,0,0,0); \\ a_{4}=(0,0,0,0,b,b); & a_{4}^{*}=(-{}_{1/4}\pi/a,{}_{1/4}\pi/a,{}_{-\pi/b},\pi/b,\pi/b); \\ a_{5}=(0,0,0,b,0,b); & a_{5}^{*}=(1/4\pi/a,{}_{-1/4}\pi/a,{}_{-1/4}\pi/a,{}_{-\pi/b},\pi/b,\pi/b); \\ a_{6}=(0,0,0,b,b,0). & a_{6}^{*}=({}_{1/4}\pi/a,{}_{-1/4}\pi/a,{}_{-\pi/b},\pi/b,{}_{-\pi/b},\pi/b). \end{array}$

Використовуючи базиси (1), були з генеровані сукупності позицій надгратки та векторів модуляції **q**_i (Таблиця 2.).

Повна сукупність 32-ох можливих позицій атомів охоплює 10 орбіт, а множина 32-х векторів модуляції розбивається на 10 зірок.

Це дозволяє записати систему рівнянь для визначення амплітуд функції масової модуляції $\rho_i(q_i, b^*)$.

 $\begin{array}{l} 32 \rho_1 = \! M_1 \! + \! M_2 \! + \! M_3 \! + \! M_4 \! + \! 6 M_5 \! + \! 6 M_6 \! + \! 4 M_7 \! + \! 4 M_8 \! + \! 4 M_9 \! + \! 4 M_{10}; \\ 32 \ \rho_2 = \ M_1 \! + \ M_2 \! + \ M_3 \! + \ M_4 \! + \! 6 M_5 \! + \! 6 M_6 \! + \! 4 M_7 \! - \! 4 M_8 \! - \! 4 M_9 \! - \! 4 M_{10}; \\ 32 \ \rho_3 = \ M_1 \! + \ M_2 \! - \ M_3 \! - \ M_4 \! - \! 6 M_5 \! + \! 6 M_6 \! + \! 4 i M_7 \! - \! 4 i M_8 \! - \! 4 i M_9 \! + \! 4 i M_{10}; \\ 32 \ \rho_3 = \ M_1 \! + \ M_2 \! - \ M_3 \! - \ M_4 \! - \! 6 M_5 \! + \! 6 M_6 \! + \! 4 i M_7 \! - \! 4 i M_8 \! + \! 4 i M_9 \! + \! 4 i M_{10}; \\ 32 \ \rho_5 = \ M_1 \! + \ M_2 \! - \ M_3 \! - \ M_4 \! - \! 2 M_5 \! - \! 2 M_6 \\ 32 \ \rho_6 \! = \ M_1 \! + \ M_2 \! - \ M_3 \! + \ M_4 \! - \! 2 M_5 \! - \! 2 M_6; \\ 32 \ \rho_7 \! = \ M_1 \! - \ M_2 \! - \ M_3 \! + \! i M_4 \! + \ \sqrt{-2}(1 \! + \! i) M_7 \! + \! \sqrt{-2}(1 \! - \! i) M_8 \! - \! \sqrt{-2}(1 \! - \! i) M_9 \! - \! \sqrt{-2}(1 \! - \! i) M_{10}; \end{array}$

Наведений розв'язок задає бездефектну узагальнену структуру з хімічною формулою VHEFC₆D₆A₄B₄K₄M₄, а XY₂O₄ буде окремим випадком при V=E=X; H=F=C=D=A=0; D=K=O; M=Y. Для того, щоб отримати амплітуди

$$\begin{split} \rho_1 &= 1/32 (M_{Br} + M_P + M_{S(1)} + 6M_{Cu} + 4M_{S(2)}); \\ \rho_2 &= 1/32 (M_{Br} + M_P + M_{S(1)} + 6M_{Cu} - 4M_{S(2)}); \\ \rho_3 &= 1/32 (M_{Br} - M_P - M_{S(1)} + 6M_{Cu} + 4iM_{S(2)}); \\ \rho_4 &= 1/32 (M_{Br} - M_P - M_{S(1)} + 6M_{Cu} - 4iM_{S(2)}); \\ \rho_5 &= 1/32 (M_{Br} - M_P - M_{S(1)} - 2M_{Cu}); \end{split}$$

Для тривимірної проекції структури:

$$M(n,0) = \sum_{l=1}^{10} \rho_l(\mathbf{q}_l,0) \sum_{m=1}^{no \text{ sipul}} e^{i(\mathbf{q}_{l_m}n)} (2)$$

де M (n, 0) – маса атома в позиції n, ($\Delta n = 0$), l - задає номер зірки, а m – номер вектора зірки.

Розв'язавши її отримаємо $\rho_i(q_i, 0^*)$:

 $\begin{array}{l} 32 \ \rho_8 = M_{1^-} \ M_2 + \ M_3 - i M_4 + \ \sqrt{-2}(1 - i) M_7 + \ \sqrt{-2}(1 + i) M_8 - \\ \sqrt{-2}(1 + i) M_9 - \ \sqrt{-2}(1 - i) M_{10}; \\ 32 \ \rho_9 = \ M_{1^-} \ M_2 - \ M_3 + i M_4 - \ \sqrt{-2}(1 - i) M_7 - \\ \sqrt{-2}(1 + i) M_8 + \ \sqrt{-2}(1 + i) M_9 + \ \sqrt{-2}(1 - i) M_{10}; \\ 32 \ \rho_{10} = \ M_1 - M_2 + M_3 - i M_4 - \ \sqrt{-2}(1 + i) M_7 - \ \sqrt{-2}(1 - i) \\ M_8 + \ \sqrt{-2}(1 - i) M_9 + \ \sqrt{-2}(1 + i) M_{10}. \end{array}$

модуляційних функцій суперіоніка Cu_6PS_5Br підставимо $M_1=M_{Br}$; $M_3=M_P$; $M_4=M_{S(1)}$; $M_6=M_{Cu(1)}$; $M_{10}=M_{S(2)}$; $M_2=M_5=M_7=M_8=M_9=0$. Тоді для нашого випадку матимемо:

$$\begin{split} \rho_6 &= 1/32 (M_{Br} + M_P + M_{S(1)} - 2M_{Cu}); \\ \rho_7 &= 1/32 (M_{Br} - iM_P + iM_{S(1)} - \sqrt{-2}(1+i)M_{S(2)}); \\ \rho_8 &= 1/32 (M_{Br} + iM_{P^-} iM_{S(1)} - \sqrt{-2}(1-i)M_{S(2)}); \\ \rho_9 &= 1/32 (M_{Br} - iM_P + iM_{S(1)} + \sqrt{-2}(1-i)M_{S(2)}); \\ \rho_{10} &= 1/32 (M_{Br} + iM_{P^-} iM_{S(1)} + \sqrt{-2}(1+i)M_{S(2)}). \end{split}$$

Uzhhorod University Scientific Herald. Series Physics. Issue 42. – 2017

Атоми	№ орбіти (позиції)	Позиції атомів, об'єднані в орбіти	№ зірки (модуля- ційного вектора)	Модуляційні вектори, об'єднані в зірки
Br	1 (1)	[0, 0, 0]	1 (1)	[0, 0, 0]
Р	2 (2)	[4a, 0, 0]	2 (2)	$[\pi/a, 0, 0]$
S (1)	3 (3)	[2 <i>a</i> , 2 <i>a</i> , 2 <i>a</i>]	3 (3)	$[\pi/2a, \pi/2a, \pi/2a]$
	4 (4)	[-2a, -2a, -2a]	4 (4)	$[-\pi/2a, -\pi/2a, -\pi/2a,]$
	5 (5-10)	[2 <i>a</i> , 0, 0]; [0, 2 <i>a</i> , 0]; [0, 0, 2 <i>a</i>];[-2 <i>a</i> , 0, 0]; [0, -2 <i>a</i> , 0]; [0, 0, -2 <i>a</i>];	5 (5-10)	$[\pi/2a, 0, 0]; [0, \pi/2a, 0];$ $[0, 0, \pi/2a]; [-\pi/2a, 0, 0];$ $[0, -\pi/2a, 0]; [0, 0, -\pi/2a]$
Cu(1)	6 (11-16)	[2a, 2a, 0]; [0, 2a, 2a]; [2a, 0, 2a]; [-2a, 2a, 0]; [0, 2a, -2a]; [-2a, 0, 2a]	6 (11-16)	$[\pi/2a, \pi/2a, 0]; [0, \pi/2a, \pi/2a]; [\pi/2a, 0, \pi/2a]; [-\pi/2a, \pi/2a, 0]; [0, \pi/2a, -\pi/2a]; [-\pi/2a, 0, \pi/2a]$
	7 (17-20)	[<i>a</i> , <i>a</i> , <i>a</i>]; [- <i>a</i> ,- <i>a</i> , <i>a</i>]; [- <i>a</i> , <i>a</i> ,- <i>a</i>]; [<i>a</i> ,- <i>a</i> ,- <i>a</i>]	7 (17-20)	$[\pi/4a, \pi/4a, \pi/4a]; [-\pi/4a, -\pi/4a, \pi/4a]; [-\pi/4a, \pi/4a, -\pi/4a]; [\pi/4a, -\pi/4a, -\pi/4a]$
	8 (21-24)	[-a, -a, -a]; [-a, a, a]; [a, a, -a]; [a, -a, a]	8 (21-24)	$[-\pi/4a, -\pi/4a, -\pi/4a]; [-\pi/4a, \pi/4a, \pi/4a]; [\pi/4a, \pi/4a, -\pi/4a]; [\pi/4a, -\pi/4a, \pi/4a]; [\pi/4a, -\pi/4a, \pi/4a]$
	9 (25-28)	[3a, 3a, 3a]; [-3a, -3a, 3a]; [-3a, 3a, -3a]; [3a, -3a, -3a]	9 (25-28)	$[3\pi/4a, 3\pi/4a, 3\pi/4a];$ [-3\pi/4a, -3\pi/4a, 3\pi/4a]; [-3\pi/4a, 3\pi/4a, -3\pi/4a]; [3\pi/4a, -3\pi/4a, -3\pi/4a]
S(2)	10(29-32)	[-3 <i>a</i> , -3 <i>a</i> , -3 <i>a</i>]; [-3 <i>a</i> , 3 <i>a</i> , 3 <i>a</i>]; [3 <i>a</i> , 3 <i>a</i> , -3 <i>a</i>]; [3 <i>a</i> , -3 <i>a</i> , 3 <i>a</i>]	10(29-32)	$\begin{bmatrix} -3\pi/4a, -3\pi/4a, -3\pi/4a]; \\ [-3\pi/4a, 3\pi/4a, 3\pi/4a]; \\ [3\pi/4a, 3\pi/4a, -3\pi/4a]; \\ [3\pi/4a, -3\pi/4a, 3\pi/4a] \end{bmatrix}$

Таблиця 2.Сукупності позицій об'єднаних в орбіти та модуляційних векторів у – зірки.

Дисперсійні криві фононних спектрів складних кристалів визначаються як розв'язки матричного рівняння при умові рівності нулю визначника [14-16]:

$$\left| D_{\alpha\beta}(\mathbf{k} + \mathbf{q}_i) - \omega^2 \delta_{\alpha\beta} \delta_{ij} - \omega^2 \rho_{(i-j)} \delta_{\alpha\beta} \right| = 0$$
(5)

де α , β – х, у, z, k – хвильовий вектор, q_i – вектори модуляції, ρ_i (q_i , b^*) амплітуди функції масової модуляції задані для модуляційних векторів $q_i - q_j$ а $D_{\alpha\beta}(k+q_i)$ – динамічні матриці одноатомного ОЦК кристалу, визначені у $k+q_i$ точці зони Бриллюена (i = 1, 2, ..., 32) згідно [17] :

$$D_{\alpha\beta}(\mathbf{k}+\mathbf{q}_i) = \sum_{(n\neq0)} \alpha_n \frac{n_\alpha n_\beta}{n^2} (1-e^{i(\mathbf{k}+\mathbf{q}_i)\mathbf{n}}) (6)$$

де α_n силова постійна між 0 і n сусідом, n_{α} , n_{β} – проекції вектора **n** на осі α , β .

Розрахунок фононних спектрів проводився в програмному середовищі Марle. Розраховані графічні залежності дисперсії фононних віток кристалу Cu_6PS_5Br вздовж ліній $\Gamma - X - M - R - \Gamma - M$ приведені на (Рис.1.). Отримані результати для точки Γ і їх порівняння з літературними даними представлено у Таблиці 3.

Науковий вісник Ужгородського університету. Серія Фізика. Випуск 42. – 2017

Рис.1. Фононні спектри кристалу Cu₆PS₅Br

Таблиця 3. Довгохвильові частоти коливань	(B CM ⁻¹)) в кубічній	фазі крі	исталу Cu ₆ PS ₅ Br
---	-----------------------	--------------	----------	---

Симетрія	Теорія [11]	Експеримент [11]	Експеримент (наші дані)
F_2	72.3i (TO); 59i (LO)		
F_1	51.7i (TO); 20i (LO)		
F_2	74.2	74	78.3
F_1	80.8	78	79.3
F_2	109.2		121.1
E	147.6	156	118.2
А	206.0	234	177.5
F_2	211.0	245	126.8
F_1	317.5		293.7
F_2	320.0	316	375.4
E	347.0		369.6
F ₂	348.9		400.5
A	415.4	427	393.6
F_2	511.3i (TO); 521i (LO)	547 (TO); 558 (LO)	505.7

Висновки

Порівняння	pos	врахова	ани	1X	нами
дисперсних кривих	x (Рис. 1.)	3	даними
комбінаційного	p	озсіюв	ан	ня	та

першопринципних розрахунків [11] кристалів Cu₆PS₅Br (Табл. 3) показало, що результати добре узгоджуються між собою.

СПИСОК ВИКОРИСТАНОЇ ЛІТЕРАТУРИ

- Julien C. Technological application of solid state ionics // Mater. Sci. Eng.: B. – 1990. – V.6, No.1. – P.9-28.
- Yugami H., Ishigame M. Fundamental Physics and Promising Applications of Superionic Conductors // Jpn. J. Appl.

Phys. – 1993. – V.32., Pt.1., No.2. – P.853-859.

 Linford R.G., Hackwood S. Physical techniques for the study of solid electrolytes // Chem Rev. – 1981. – V.81, No.4. – P.327-364.

- Huggins R.A. Some non-battery applications of solid electrolytes and mixed conductors // Solid State Ionics. - 1981. - V.5. - P. 15-20.
- Укше Е.А., Вершинин Н.Н., Малов Ю.И. Функциональные элементы твердотельной электроники на суперионных проводниках // Зарубежная радиоэлектроника. – 1982. – №7. – С.53-67.
- Aizu K. Possible Species of Ferromagnetic, Ferroelectric and Ferroelastic Crystals // Phys. Review B. – 1970. – V.2, No.3. – P. 754-772.
- Aizu K. Group-Theoretical Interpretation of Faintness Index for Ferroelectricity or Ferroelasticity. II. Faintness Index of a Ferroic Phase // J. Phys. Soc. Jpn. – 1974. – V. 36, No.5. – P.1273-1279.
- 8. Aizu K. Considerations of Partially Ferroelastic and Partially Antiferroelastic Crystals and Partially Ferroelectric and Partially Antiferroelectric Crystals // J. Phys. Soc. Jpn. – 1970. – V.28, N.3. – P.717-722.
- 9. Aizu K. Determination of the State Parameters and Formulation of the Spontaneous Strain for Ferroelastics // J. Phys. Soc. Jpn. – 1970. – V.28, N.3. – P.706-716.
- Haznar A., Pietraszko A., Studenyak I.P., X-ray Study of the Superionic Phase Transition in Cu₆PS₅Br // Solid State Ionics – 1999. – V.119, No.1-4. – P.31-36.

- Studenyak I.P., Rushchanskii K.Z., Buchuk R.Yu., Stephanovich V.O. Phonon spectra of Cu₆PS₅Br superionic ferroelastic: experimental and theoretical studies // Condensed Matter Physics – 2007. – V.10. – No.1(49). – P.11-16.
- 12. De Wolf P.M. Symmetry operations for displacively modulated structures. // Acta Crystallogr. (A). – 1977. – V.33, No.3. – P.493-497.
- 13. Janssen J. On the lattice dynamics of incommensurate crystal // J. Phys. C: Solid State Phys. 1979. V.12., No.24. P.5381-5392.
- 14. Небола И.И., Хархалис Н.Р., Копцик А.В. Дисперсия фононного спектра сложных кристаллов типа NaCl в коцепции сверхпространственной симметрии // ФТТ. 1987. Т.29, № 11. С. 3223–3232.
- Небола И.И, Хархалис Н.Р., Копцик А.В. Динамика решетки алмазоподобных полупроводников в концепции сверхпространственной симметрии // ФТТ. – 1990. – Т.32, №4. – С.972-979.
- 16. Небола И.И, Иваняс А.Ф., Киндрат В.Я. Генезис структуры и колебательных спектров кристаллов с (Sa×Sa×Sa) сверхрешеткой // ФТТ. – 1993. – Т.35, №7. – С.1852-1866.
- Ансельм А.И., Введение в теорию полупроводников, Изд. 2-е. – М.: Наука, 1978. – 616 с.

Стаття надійшла до редакції 3.12.2017.

И.И. Небола, А.Я. Штейфан, А.Ф. Катаница, И.П. Студеняк Ужгородский национальный университет, 88000, Ужгород, ул. Волошина, 54

ФОНОННЫЕ СПЕКТРЫ СЕМЕЙСТВА АРГИРОДИТОВ

На примере Cu₆PS₅Br рассмотрена кристаллическая структура семейства аргиродитов. В концепции сверхпространственной симметрии описана кристаллическая структура, представлены (3+3)-мерный базис, совокупность векторов модуляции и массовых модуляционных функций. Проведен расчет дисперсии фононного спектра, приведены дисперсионные зависимости

фононного спектра в высокосимметрических направлениях ($\Gamma - X - M - R - \Gamma - M$) зоны Бриллюэна данного кристалла. Ключевые слова: аргиродиты, кристаллическая структура, сверхрешетка, сверхпространственная симметрия, фононный спектр, Maple.

PACS 61.66.Fn DOI: 10.24144/2415-8038.2017.42.47-53 I.I. Nebola, A.Ya. Shteyfan, A.F. Katanytsia, I.P. Studenyak Uzhhorod National University, 88000, Uzhhorod, Voloshin Str., 54

PHONON SPECTRA OF ARGYRODITES FAMILY

Introduction: The compound Cu₆PS₅Br belongs to the large family of complex chalcohalides crystallizing in the argyrodite structures. At ambient temperature, the crystals under investigation are characterized by high symmetry: cubic syngony, space group F–43m, lattice parameter a = 9.708 Å. The main peculiarity of the copper-containing argyrodites is high solid-state ionic conductivity of the Cu⁺ ions, which makes it possible to use these argyrodite crystals as functional electronic materials.

Purpose: The main goal of the present work was to develop (within the superspace symmetry concept) the program suitable for theoretical calculation of the phonon spectra for the Cu_6PS_5Br argyrodites and to conduct the relevant calculations.

Methods: In the present study, the crystal structure of the Cu_6PS_5Br argyrodites have been analyzed and described by using the superspace symmetry concept.

Results: The program operating under the Maple environment and suitable for theoretically calculating the phonon spectra of the Cu₆PS₅Br argyrodite crystals has been developed. Zone structures have been calculated and presented for a series of model Cu₆PS₅Br phases. The eigenvalues of the generalized dynamic matrix have been found, and the dispersion dependencies have been built for the directions $\Gamma - X - M - R - \Gamma - M$ of the Brillouin zone.

Keywords: argyrodites, crystal structure, protocrystal, phonon spectrum, Maple.

REFERENCES

- 1. Julien, C. (1990), "Technological application of solid state ionics", *Mater. Sci. Eng.: B.*, vol.6, no.1, pp.9-28.
- Yugami, H. and Ishigame, M. (1993), "Fundamental Physics and Promising Applications of Superionic Conductors", *Jpn. J. Appl. Phys.*, vol.32., pt.1., no.2, pp.853-859.
- Linford, R.G. and Hackwood, S. (1981), "Physical techniques for the study of solid electrolytes", *Chem Rev.* vol.81, no.4, pp.327-364.
- 4. Huggins, R.A. (1981), "Some non-battery applications of solid electrolytes and mixed conductors", *Solid State Ionics*, vol.5, pp.15-20.
- 5. Ukshe, E.A., Vershinin, N.N. and Malov, Yu.I. (1982), "Functional elements of solid-state electronics on superionic

conductors", *Zarubezhnaya radioelektronika*, no.7., pp.53-67.

- 6. Aizu, K. (1970), "Possible Species of Ferromagnetic, Ferroelectric and Ferroelastic Crystals", *Phys. Review B*, vol.2, no.3., pp. 754-772.
- Aizu, K. (1974), "Group-Theoretical Interpretation of Faintness Index for Ferroelectricity or Ferroelasticity. II. Faintness Index of a Ferroic Phase", J. Phys. Soc. Jpn. vol.36, no.5, pp.1273-1279.
- Aizu, K. (1970), "Considerations of Partially Ferroelastic and Partially Antiferroelastic Crystals and Partially Ferroelectric and Partially Antiferroelectric Crystals", J. Phys. Soc. Jpn., vol.28, no.3, pp.717-722.
- 9. Aizu, K. (1970), "Determination of the State Parameters and Formulation of the

Spontaneous Strain for Ferroelastics", J. Phys. Soc. Jpn., vol.28, no.3, pp.706-716.

- Haznar, A., Pietraszko, A. and Studenyak, I.P. (1999), "X-ray Study of the Superionic Phase Transition in Cu₆PS₅Br", *Solid State Ionics*, vol.119, no.1-4, pp.31-36.
- Studenyak, I.P., Rushchanskii, K.Z., Buchuk, R.Yu., Stephanovich, V.O. (2007), "Phonon spectra of Cu₆PS₅Br superionic ferroelastic: experimental and theoretical studies", *Condensed Matter Physics*, vol.10, no.1(49), pp.11-16.
- 12. De Wolf, P. M. (1977), "Symmetry operations for displacively modulated structures", *Acta Crystallogr.* (*A*), vol.33, no.3., pp.493-497.
- 13. Janssen, J. (1979), "On the lattice dynamics of incommensurate crystal", J. *Phys. C: Solid State Phys.*, vol.12., no.24., pp.5381-5392.
- 14. Nebola, I.I., Kharkhalis, N.R. and Koptsik, A.V. (1987), "The dispersion of the phonon spectrum of the complex NaCl-type crystals in the superspace symmetry concept" ["Dispersiya fononnogo spektra slozhnikh kristallov

tipa NaCl v kontseptsii sverkhprostranstvennoy simmetrii"], *Solid State Physics [Fiz. Tv. Tel.*], vol.29, no.11, pp.3223-3232.

- Kharkhalis, 15. Nebola, I.I., N.R. and Koptsik, A.V. (1990), "Lattice dynamics of the diamond-like semiconductors in the superspace symmetry concept" ["Dinamika reshetki almazopodobnykh poluprovodnikov kontseptsii v sverhprostranstvennoy simmetrii"], Solid State Physics [Fiz. Tv. Tel.], vol.32, no.4, pp. 972-979.
- 16. Nebola, I.I., Ivanyas, O.F. and Kindrat, V.Y. (1993), "The genesis of the structure and vibrational spectra of crystals with the (Sa×Sa×Sa) superlattice" ["Genesis struktury i kolebatel'nikh spektrov kristallov s (Sa×Sa×Sa) sverkhreshetkoy"], Solid State Physics [Fiz. Tv. Tel.], vol.35, no.7, pp.1852-1866.
- Anselm, A.I. (1978), Introduction to the theory of semiconductors, 2nd ed. [Vvedenie v teoriyu poluprovodnikov, Izd. 2-e.], Nauka, Moscow, USSR.

© Ужгородський національний університет