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PARABOLIC EQUATION OF MATHEMATICAL PHYSICS WITH
RANDOM INITIAL CONDITIONS FROM ORLICZ SPACE

A new method is proposed in this paper to construct solutions of boundary-value problems for
parabolic equation with random initial conditions. We assume that the initial conditions are
stochastic processes belonging to the Orlicz space of random variables (in particular case, processes
with zero mean).

B naniit poboTi 3arrpononoBaHO HOBUE METO /it MOOYIOBY PO3B I3KiB KPAHOBUX 3334 s TTapa-
OOMYHUX PiBHSIHD 3 BUIMAIKOBUMHU MOYATKOBAMH YMOBaMHU. ByneMo BBaXKaTH, 10 MOYATKOBI YMOBH
€ BUIAJKOBUMHU Ipoliecamu 3 npocropis Opaiva (E€ = 0).

In this paper construct solutions of boundary-value problems for parabolic equati-
on with random initial conditions. We assume that the initial conditions are sto-
chastic processes belonging to the Orlicz space of random variables (in particular,
E¢ = 0). Physical interpretation of which is: find the law of temperature change in a
homogeneous rod length [, with insulated lateral surface, when initial temperature of
the rod points £(x) — is a random process belonging to the Orlicz space Ly (€2), left
end of the rod is insulated, and the right is heat exchange with the environment of
zero temperature under the law Newton. Conditions for justification of the Fourier
method for parabolic equations with random initial conditions from Orlicz spaces
of random variables are obtained. Bounds for the distribution of the supremum of
solutions of such equations are found. Similar problems for hyperbolic equations are
considered in [6], for parabolic equations when boundary conditions the simple are
considered in [5]. A survey of the corresponding results can be found in [1-4].

1. Stochastic processes belonging to an Orlicz space.

Definition 1. ( [2]) A continuous even convex function U (x),xz € R is called
a C-function if U(x) is monotonically increasing function for x >0 and U(0) = 0.

Let {Q2, 3, P} be a standard probability space.
Definition 2. ( [2]) We say that C-function U = {U (x),z € R} satisfies g-
condition if there exist constants zo > 0, K > 0 and A > 0 such that the inequality
U(x)U (y) < AU (Kzy) .

holds for all x > zy and all y > z,.

Definition 3. ( [4]) The space Ly () of random variables &(w) = &, w € Q, is
called the Orlicz space generating by a C-function U(z) if, for any & € Ly (S2), there
exist a constant r¢ > 0 such that

EU (%) < .

The Orlicz space L, () is a Banach space with respect to the norm

1€ll,, =inf {r >0: Fu (é) < 1},
Te
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104 L. V. MARINA

Definition 4. ( [1]) Let X = {X (t),t € T'} be a stochastic process. We say
that X belongs to the Orlicz space L, () if, for allt € T, the random variable X (t)
belongs to the L, ().

Definition 5. ( [1]) Let U(x) be a C-function. A family A of centered random
variables £, (E€ =0), £ € A from the Orlicz space L, () is called a strictly Orlicz
famaly if there exist a constant Ca such that

2
<Cal|E (Z A@)

iel

1/2

ZA@

el

for all finite collection of random variables & € A, i € I and for all \; € R
Definition 6. ( [1]) A stochastic process X = {X (t),t € T}, (X € L, (),

1s called a strictly Orlicz process if the collection of the random variables X =
{X (t),t € T} is a strictly Orlicz family. Two stochastic processes X = X (t),t € T
andY =Y (t),t € T are called jointly strictly Orlicz processes if the collection of the
random variables {X (t),Y (t).,t € T} is a strictly Orlicz family.

Theorem 1. ([}]) Let X; = {X;(t),t € T,i € I} - a family of jointly strictly
Orlicz processes. If there exist the integral what converge on mean square

» /sok() () dpa (2),

then the family of random variables A¢ = {{ki,z’ el,k=1, oo} 1s a strictly Orlicz
family.

Next theorem is a particular case of the theorem in [6].

Theorem 2. Let in R%:
d(t, S) = ?21%}2( ‘tz — Si| y
={0<t;<T;,i=1,2}, X, = {X,(t),t€T}, n = 1,2,... - a sequance of

stochastic processes belonging to the Orlicz space, and the function U satisfies g-
condition. Let

1) X, (t) - separable processes;

2) X, (t) — X(t) when n — oo, t € T in probability,

3) sup sup [|X,(t) — X,.(s)|| < o(h), where 0 = {o(h),h >0} continuous
d(t S)<hn 1.00 ,00

increasing function, such that o(h) — 0 as h — 0;

4) for some e >0

o (st +1) (ot 1) o<

where oV (u) - inverse function of o(u).
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Then processes X,,(t) are converge in probability to X (t) in space C(T).
Lemma 1. ( [5]) Let Y\(u),A > 0,u € T, T € (0,00), such that

1) sup |[Yx(u)| < B,

ueT
2) |Ya(u) = Ya(v)| < CX|u—v| for all u,v eT.

Let (X), A > 0 be a continuous increasing function, p(\) > 0 for all A > 0, such
that function ﬁ increasing for A > vg, for some constant vy > 0. Then

A
V3 (1) — Ya(v)] < max(C,2B)—2 A0
o (o + )
for all X >0 and v >0

Theorem 3. [2] Let X = {X(t),t €T}, T = [a,b],—00 < a < b < 400 —
separable stochastic processes belonging to the space L,(2),p > 1. Let there exist
a function o = {o(h),0 < h <b—a}, such that o(h) — continuous, monotonically
increasing, o(0) =0 and

sup (E|X(t) - X(s)]")7 < o(h).
|t—s|<h
t,s€a,b]

Let for some 0 < € < b — a converge integral

€

/ (0(71)(u))_% du < 0.

0

Then for random variable sup | X (t)| € L,(2) there is inequality

te(a,b]
~
sup [X(0)]| = (E (sup |X<t>|) ) <
t€la,b] » tela,b]
T C
1 —a P
< (E|X(t())|p)p + m : / (20(—1)(’&) + 1) du =
0
wob

«

Dylta) < (BIX ()} + 52 [ (070w) ™ du= By (o),

where ty — any point from [a,b]; 0 < 6 < 1; wy = o (sup |t—t0|>, a, =
tela,b]

te(a,b]

b= 4 sup |t—t0|].
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For any e > 0

p{ s > o] < 1240 By

te(a,b]

and process X (t) continuous with probability one.

Definition 7. ( [1]) We say that a C-function U is subordinate to a C-function
V' and denote U <V if there exist two numbers xq > 0 and ¢ > 0 such that
U(z) < Vex) for all x such that |x| > xy. We say that two C-functons U(z) and
V(z) are equivalent if U(z) < V(z) and V(z) < U(x).

2. Main results. Consider a boundary value problem for a parabolic equation
with two independent variables 0 < x < [ and ¢ > 0, physical interpretation of which
is: find the law of temperature change in a homogeneous rod length [, with insulated
lateral surface, when initial temperature of the rod points &(z) — is a random process
belonging to the Orlicz space Ly (), left end of the rod is insulated, and the right
is heat exchange with the environment of zero temperature under the law Newton.
Namely

Zy(t,7) = a*Zp (t,2) , O <2 < 1,0 <t < T, (1)
Z(0,2) =&(x),0 <x <, (2)
Z,(1,0) = 0,2, (1,1) + Z (t,1) =0,0 <t < T, 3)

Initial condition (¢ (x),x € [0,1]) is a strictly Orlicz random process. Using the
method of Fourier solution is sought in the form [7]:

1) =3 A )X (@), (4)
k=1

where = v/ Agl, k € N solution of equation Ctg VAl = VA k, namely eigenval-
ues which corresponds eigenfunctons X (z) = —£¢ sin & + cos 2, of the Sturm-

Liouville problem
X" (z) — XX (z) =0,

X' (0) =0,
X' (1) + X (1) = 0.

r) = \/ng (2)
= [ewx

Consider the series S (t,2) — when m = 0, then s = 0,1, 2; then m = 1, then

s = 0 — derivative Z (¢, x) once in t, once and twice in = (m-th derivative in ¢, s-th
in ), namely:

Denote

Then the coefficients

NI[\D

S (£.27) = ZAke ) (%) X (2) (5)
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Moreover, the series Sy, (, ) strictly Orlicz processes (follows from [3]) in the
domain D = [0,7] x [0,!]. Denote

Lemma 2. For Ve > 0 series Sms (t,x) converge with probability one uniformly
in the domain
D.=[0<z <] x[e+00).

Proof. Have
2 ! 2
Xy (x) = 7(—%sin%x+cos%x> = 7(— (’%) cos%x—%sm#x),
2 n 2 n n . n 2 n 3 . n n 2 "
Xy (z)= 7(—<T> cosMTx—MTsm'uTx)’— 7((7) sm%x—(T) cos%a;).
Hence
2
X)) < /T (B 1)
L1 \1
2 (1 \? [ Hn
x5 (F) (F+)
X <5 (B) (G-
So
e ap 2m
sup S (1,0) < D [Aglsupe” (F) (L) (0 () <
t>€ t>e¢ l
0<z<l k=1
S ()2 |2 e k
<7 A e ’“)6\/j_ (B +1)
C;‘ e [l \1 ’

where ¢ = max{%, 1} .
Last series converge with probability one when converge series

ZE[Ak]e ) el (%H). (7)

Since
E A < (BA2)'? <

Y

where a — positive constant. There

ZE|Ak|e (“)? ( ) io: (%) </le+1). 8)

As for [7]:
1
VA, =dn+o (—) ,
n
then Iv/A, = p, = ldn+ 0 (%) (where d — positive constant).
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Herefrom follows, that for sufficiently large n:
o, < ldim, pin, > ldan, 0 < dy < d;.

Denote series
o

> e ER k(R + 1), (9)
k=1
As converge series (9), then converge (7), namely converges uniformly with proba-
bility one series S,,s (¢, ).

Lemma 3. For so as uniformly in probability in the domain D Z (t,z) converge
to the & (z) by t — 0 enought so as for every 0 <z <

El|Z (t,x) — & (z)| = 0,t = 0,

€ (z) continuous process at [0;1] with probability one and exist monotonically increa-
ment function o = (o (h),0 < h <) such that o (h) — 0 when h — 0 and

sup sup (E|Z(tx)—Z(ty))"* <o(h), (10)
0<t<ito |z—y|<h
z,y€(05]]

where 0 < tog < T and for Ye > 0

/ l
-H({_-
/U (20(1) ) + 1) dh < oo. (11)
0

Proof. The validity of this theorem is follows from the fact that Z (¢, x) strictly
Orlicz process, such that

12 (t,2) = Z (t,9)]| < Ca (E|Z (t,2) — Z (t,p)]") ",

and Z (t,z) — £ (z) in probability (follows from theorem 2).

Lemma 4. Considered problem (1)-(3). Let & = {&(x),x € [0;1]} from (2) be
a strictly Orlicz stochastic process belonging to the Orlicz space Ly (2) of random
variables, where U (x) is a C-function, such that the function V (z) = x* subor-
dinate to U (), and for U (z) and condition g holds for U(x). Assume that the
stochastic process &- is separable and mean square continuous, EE (x) = 0. Let func-
tion o = (@ (A),A>0) — continuous, monotonically increasing and V¥ (\) = ﬁ
monotonocally increasing when A\ > vy, where vy is a constant such that Ve > 0 and
o sup (B(€() — €)Y < —1°
e uh VS

[ (4 () =) +1) < 19

(12)

when

and converge sum

ii [EAA; | @ ((%)2 + vo> @ <(%)2 +v0) . (14)

i=1 j=1

Then uniformly in probability Z (t,x) — & (x) in the domain D = [0;1] when t — 0.
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Proof. In order to prove this lemma need to satisfies conditions from lemma 3.
From conditions of these lemma it follows that E |Z (¢, z) — & (z)|° = 0 when ¢ — 0.

Since ¢ (z) = i A Xy (z), have:
k=1

Z Ake_(wTk)Qth (1’) — Z Aka (ZL‘)] =

B|Z () —¢ @) = E

n S o (e )]
E ;A X ( )( 1)]

In lemma 1 put Y, (¢) = e (
It obvious that | X} (z)| < 1.

Then
E|Z(t,x) =& ()] <

gii[EAiAin(x)Xj(:c)] o ((“’l“‘i)2+vo>gp <(%)2+v0) o7 G+v0) < (15)

i=1 j=1

<SS madle () 4o (%) +) o7 (5 +u) o

i=1 j=1

when ¢t — 0. We find a function o (h), that is satisfies condition:

sup  sup (E|Z(t,z)— Z(t, x1)|2)1/2 <o(h). (16)
0<t<to |z—z1|<h
z,x1€[0;!]

It is obvious that

E(Z(t,2) - Z(t,a1)? = E f: (A (2) () _ A, X (1) e Wﬁ)] —
_ B i/lke (“55)° (X, () — Xs (xl))] _
_ f; ]f; ()1~ B AA (X, (2) — Xo (20) (X, (2) — X, (11)) <
< ii<><) BAA X () = X (00)] 1% (2) = X, (1)] <
< SO S IBAA X ) - X ()] 1 (2) — X ()]

i=1 j=1
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Let estimate the absolute of difference eigenfunctions

<

| Xk () — Xy (21) |—\/7‘——sin—x+cos%x+ﬂ sm%xl—cos&xl
H
sin —x — sin —:cl

l l l
< \/§'uk \/>‘COS By — cos Bra,
L1 [ l
22
:\/;% ‘sin Z—]Z(x xl)cos— T+

+2\/7’sm — (r—z)sin %(IL‘—I—ZEI)‘ <

2 M 1
llQ |£C—:C1‘—|—\/; xl‘:\/;:uk(lz 7>’$€—£L‘1|

We received that

X (&) — X (a1)] < \/% (’;L " %) P (17)

Denote

From used above conditions have

[ Xk (2) — X (21)] <

< max(2,D) ¢ ((%)2 +ug ) o ( ! +Uo> : (19)

that
E(Z(ta) - Z (ty) <

< ZZ |EAA;|4D% ((#)2 + U0> @ ((%)2 +v0) o2 (ﬁ + vo) .

i=1 j=1

Therefore, have

and

because satisfies condition (11).

Example 1. Consider a concrete example for lemma 4. Let U(z) = |x|’,p > 2.
Then in lemma 4 put o(z) = |z|*,0 < a < 1,09 = 0. Have

)= @)

And integral from (9) has the form

[GOY o= () [
0 0 vre
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Last integral converge when z% < 1.

We obtain )
o> —.
p
Theorem 4. Considered problem (1)-(3). Let & = {¢ (z),x € [0;1]} from (2) be
a strictly Orlicz stochastic process belonging to the Orlicz space Ly (2) of random
variables, where U (z) is a C-function, such that the function V (z) = x? subordi-
nate to U (x), and for U (x) holds g-condition. Assume that stochastic process & is
separable and mean square continuous, E¢ (x) = 0.
Let

apg 2

Z(t,) :iAke_( ™)Xy (),

where Xy, () — eigenfunctions, py, — appropriate eigenvalues of the Sturm-Liouville
problem

X" (2) — AX (z) = 0,
X' (0) =0,
X' () + X (1) =0.

Ay =

~| N

/Zf () Xg (x) dz.

Let for Ve > 0 and ¢ > 0 satisfies condition

sup (E (& (2) =€ ())'"”

|z—y|<h

<clh|", (20)

where a > Il], p > 2 and converge series

SN IEBAA;| g, (21)

i=1 j=1

that for Y9 > 0 uniformly in 0 < x < [,t > 9 (¢ > 0) with probability one series
converge (5). In domain 0 < z < I,t > 9 (¥ > 0) function Z (t,x) with probabil-
ity one satisfies condition (1) and condition (2). Besides, uniformly in probability
Z (t,x) — & (x) in domain x € [0;1] whent — 0. If for Ve > 0 and ¢ > 0 series con-
verge (21), that Z (t,x) — & (x) uniformly in x € [0;1] when t — 0 with probability
one.

Proof. Uniform convergence with probability one series (5) when 0 < z < [,
0 <t < € proved in lemma 2. In lemma 4 proved that Z (t,z) — £ (x) when t — 0.
From lemma 4 and condition (21) follows that Z (t,z) — £ (x) when ¢t — 0 uniformly
in 0 < z <[ with probability one.

Lemma 5. Let for eigenfunctions Xy (z),z € [0,1] from problem (1)-(3) satisfies
condition I
[Xi() = Xi(s)| < D |z — 5| (22)
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(where D from (18)) and for N =1 next series converge
DD IBAA up =Ty, (23)
i=N j=N
where% < B <1, that forty,ty € [0,T], x1,22 € [0,1], h € [0,1] there is an inequality
sup (E(Zn(ty, 31) — Zn(ta, 2))°)? < 2max(2, D)P/Ty,  (24)
max(\tl—t2|,\ml—m2|)§h
where Zy (t,z) = > Are VT ) "Xy (2).
k=N
Proof. The validity of the theorem follows from (19) if p(u) = u”.

Theorem 5. Let satisfies conditions of lemma 5, (£(z),z € [0,1]) initial con-

dition from (2) — separable and strictly Orlicz stochastic process belonging to the
L,(Q), denote B ={z € [0,{],t € [0,T]}, T >0, that for Ve > 0:
. p
NG
P{sup 2zt > cp < 2L (25)

z,teB €pP

where

b=y | (537 +1) (G +0) o

0 € (0,1), won = Ryh®, Ry = 2Ca/Ty max(2, L), Ca — constant from defini-
tion 5.

Proof. Proof of this theorem follows from theorem 3. Therefore in this theorem
o(h) =ch*, a > %, h € [0,] and for all € > 0 converge integral

€ € 1

/(a(_l)(u))_; du:/cilpdu,
uer
0

0
and that is condition (25) satisfies.
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