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PARABOLIC EQUATION OF MATHEMATICAL PHYSICS WITH
RANDOM INITIAL CONDITIONS FROM ORLICZ SPACE

A new method is proposed in this paper to construct solutions of boundary-value problems for
parabolic equation with random initial conditions. We assume that the initial conditions are
stochastic processes belonging to the Orlicz space of random variables (in particular case, processes
with zero mean).

Â äàíié ðîáîòi çàïðîïîíîâàíî íîâèé ìåòîä äëÿ ïîáóäîâè ðîçâ'ÿçêiâ êðàéîâèõ çàäà÷ äëÿ ïàðà-
áîëi÷íèõ ðiâíÿíü ç âèïàäêîâèìè ïî÷àòêîâèìè óìîâàìè. Áóäåìî ââàæàòè, ùî ïî÷àòêîâi óìîâè
¹ âèïàäêîâèìè ïðîöåñàìè ç ïðîñòîðiâ Îðëi÷à (Eξ = 0).

In this paper construct solutions of boundary-value problems for parabolic equati-
on with random initial conditions. We assume that the initial conditions are sto-
chastic processes belonging to the Orlicz space of random variables (in particular,
Eξ = 0). Physical interpretation of which is: �nd the law of temperature change in a
homogeneous rod length l, with insulated lateral surface, when initial temperature of
the rod points ξ(x) � is a random process belonging to the Orlicz space LU(Ω), left
end of the rod is insulated, and the right is heat exchange with the environment of
zero temperature under the law Newton. Conditions for justi�cation of the Fourier
method for parabolic equations with random initial conditions from Orlicz spaces
of random variables are obtained. Bounds for the distribution of the supremum of
solutions of such equations are found. Similar problems for hyperbolic equations are
considered in [6], for parabolic equations when boundary conditions the simple are
considered in [5]. A survey of the corresponding results can be found in [1�4].

1. Stochastic processes belonging to an Orlicz space.

Definition 1. ( [2]) A continuous even convex function U (x) , x ∈ R is called
a C-function if U(x) is monotonically increasing function for x > 0 and U(0) = 0.

Let {Ω,ℑ, P} be a standard probability space.

Definition 2. ( [2]) We say that C-function U = {U (x) , x ∈ R} satisfies g-
condition if there exist constants z0 ≥ 0, K > 0 and A > 0 such that the inequality

U (x)U (y) ≤ AU (Kxy) .

holds for all x ≥ z0 and all y ≥ z0.

Definition 3. ( [4]) The space LU(Ω) of random variables ξ(ω) = ξ, ω ∈ Ω, is
called the Orlicz space generating by a C-function U(x) if, for any ξ ∈ LU(Ω), there
exist a constant rξ > 0 such that

EU
(

ξ
rξ

)
<∞.

The Orlicz space Lu (Ω) is a Banach space with respect to the norm

∥ξ∥Lu
= inf

{
r > 0 : Eu

(
ξ

rξ

)
≤ 1

}
.
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Definition 4. ( [1]) Let X = {X (t) , t ∈ T} be a stochastic process. We say
that X belongs to the Orlicz space Lu (Ω) if, for all t ∈ T , the random variable X (t)
belongs to the Lu (Ω).

Definition 5. ( [1]) Let U(x) be a C-function. A family ∆ of centered random
variables ξ, (Eξ = 0), ξ ∈ ∆ from the Orlicz space Lu (Ω) is called a strictly Orlicz
family if there exist a constant C∆ such that∥∥∥∥∥∑

i∈I

λiξi

∥∥∥∥∥
Lu

≤ C∆

E(∑
i∈I

λiξi

)2
1/2

.

for all finite collection of random variables ξi ∈ ∆, i ∈ I and for all λi ∈ R1.

Definition 6. ( [1]) A stochastic process X = {X (t) , t ∈ T}, (X ∈ Lu (Ω)),
is called a strictly Orlicz process if the collection of the random variables X =
{X (t) , t ∈ T} is a strictly Orlicz family. Two stochastic processes X = X(t), t ∈ T
and Y = Y (t), t ∈ T are called jointly strictly Orlicz processes if the collection of the
random variables {X (t) , Y (t) , t ∈ T} is a strictly Orlicz family.

Theorem 1. ( [4]) Let Xi = {Xi (t) , t ∈ T, i ∈ I} - a family of jointly strictly
Orlicz processes. If there exist the integral what converge on mean square

ξki =

∫
T

φk (t) xi (t) dµ (t) ,

then the family of random variables ∆ξ =
{
ξki, i ∈ I, k = 1,∞

}
is a strictly Orlicz

family.

Next theorem is a particular case of the theorem in [6].

Theorem 2. Let in R2:

d(t, s) = max
i=1,2

|ti − si| ,

T = {0 ≤ ti ≤ Ti, i = 1, 2}, Xn = {Xn(t), t ∈ T}, n = 1, 2, . . . - a sequance of
stochastic processes belonging to the Orlicz space, and the function U satisfies g-
condition. Let

1) Xn(t) - separable processes;

2) Xn(t) → X(t) when n→ ∞, t ∈ T in probability;

3) sup
d(t,s)≤h

sup
n=1,∞

∥Xn(t)−Xn(s)∥ ≤ σ(h), where σ = {σ(h), h > 0} continuous

increasing function, such that σ(h) → 0 as h→ 0;

4) for some ϵ > 0

ϵ∫
0

U (−1)
((

T1
2σ(−1)(u)

+ 1

)(
T2

2σ(−1)(u)
+ 1

))
du <∞,

where σ(−1)(u) - inverse function of σ(u).
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Then processes Xn(t) are converge in probability to X(t) in space C(T ).

Lemma 1. ( [5]) Let Yλ(u), λ > 0, u ∈ T, T ∈ (0,∞), such that

1) sup
u∈T

|Yλ(u)| ≤ B,

2) |Yλ(u)− Yλ(v)| ≤ Cλ |u− v| for all u, v ∈ T .

Let φ(λ), λ > 0 be a continuous increasing function, φ(λ) > 0 for all λ > 0, such
that function λ

φ(λ)
increasing for λ > v0, for some constant v0 ≥ 0. Then

|Yλ(u)− Yλ(v)| ≤ max(C, 2B)
φ (λ+ v0)

φ
(

1
|u−v| + v0

) .
for all λ ≥ 0 and v > 0

Theorem 3. [2] Let X = {X(t), t ∈ T} , T = [a, b] ,−∞ < a < b < +∞ —
separable stochastic processes belonging to the space Lp(Ω), p ≥ 1. Let there exist
a function σ = {σ(h), 0 ≤ h ≤ b− a}, such that σ(h) — continuous, monotonically
increasing, σ(0) = 0 and

sup
|t−s|≤h
t,s∈[a,b]

(E |X(t)−X(s)|p)
1
p ≤ σ(h).

Let for some 0 < ϵ < b− a converge integral

ϵ∫
0

(
σ(−1)(u)

)− 1
p du <∞.

Then for random variable sup
t∈[a,b]

|X(t)| ∈ Lp(Ω) there is inequality

∥∥∥∥∥ supt∈[a,b]
|X(t)|

∥∥∥∥∥
p

=

(
E

(
sup
t∈[a,b]

|X(t)|

)p) 1
p

≤

≤ (E |X(t0)|p)
1
p +

1

θ(1− θ)
·

ω0θ∫
0

(
b− a

2σ(−1)(u)
+ 1

) 1
p

du =

Dp(t0) ≤ (E |X(t0)|p)
1
p +

αp

θ(1− θ)
·

ω0θ∫
0

(
σ(−1)(u)

)− 1
p du = D̃p(t0),

where t0 — any point from [a, b]; 0 < θ < 1; ω0 = σ

(
sup
t∈[a,b]

|t− t0|

)
, αp =[

b−a
2

+ sup
t∈[a,b]

|t− t0|

]
.
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For any ϵ > 0

P

{
sup
t∈[a,b]

|X(t)| > ϵ

}
≤ [Dp(t0)]

p

ϵp
≤

[
D̃p(t0)

]p
ϵp

and process X(t) continuous with probability one.

Definition 7. ( [1]) We say that a C-function U is subordinate to a C-function
V and denote U ≺ V if there exist two numbers x0 ≥ 0 and c > 0 such that
U(x) ≤ V (cx) for all x such that |x| > x0. We say that two C-functons U(x) and
V (x) are equivalent if U(x) ≺ V (x) and V (x) ≺ U(x).

2. Main results. Consider a boundary value problem for a parabolic equation
with two independent variables 0 ≤ x ≤ l and t ≥ 0, physical interpretation of which
is: find the law of temperature change in a homogeneous rod length l, with insulated
lateral surface, when initial temperature of the rod points ξ(x) — is a random process
belonging to the Orlicz space LU(Ω), left end of the rod is insulated, and the right
is heat exchange with the environment of zero temperature under the law Newton.
Namely

Zt (t, x) = a2Zxx (t, x) , O < x < l, 0 < t < T, (1)

Z (0, x) = ξ (x) , O ≤ x ≤ l, (2)

Zx (t, 0) = 0, Zx (t, l) + Z (t, l) = 0, 0 ≤ t < T, (3)

Initial condition (ξ (x) , x ∈ [0, l]) is a strictly Orlicz random process. Using the
method of Fourier solution is sought in the form [7]:

Z (t, x) =
∞∑
k=1

Ake
−(aµk

l )
2
tXk (x) , (4)

where µk =
√
λkl, k ∈ N solution of equation ctg

√
λkl =

√
λk, namely eigenval-

ues which corresponds eigenfunctons X̂k (x) = −µk

l
sin µk

l
x+ cos µk

l
x, of the Sturm-

Liouville problem
X ′′ (x)− λX (x) = 0,

X ′ (0) = 0,

X ′ (l) +X (l) = 0.

Denote

Xk (x) =

√
2

l
X̂k (x) .

Then the coefficients

Ak =
2

l

l∫
0

ξ (x)Xk (x) dx.

Consider the series Sms (t, x) — when m = 0, then s = 0, 1, 2; then m = 1, then
s = 0 — derivative Z (t, x) once in t, once and twice in x (m-th derivative in t, s-th
in x), namely:

Sms (t, x) =
∞∑
k=1

Ake
−(aµk

l )
2
t
(aµk

l

)2m
X

(s)
k (x) (5)
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Moreover, the series Sms (t, x) strictly Orlicz processes (follows from [3]) in the
domain D = [0, T ]× [0, l]. Denote

SmsN (t, x) =
N∑
k=1

Ake
−(aµk

l )
2
t
(aµk

l

)2m
X

(s)
k (x) . (6)

Lemma 2. For ∀ϵ > 0 series Sms (t, x) converge with probability one uniformly
in the domain

Dϵ = [0 ≤ x ≤ l]× [ϵ; +∞) .

Proof. Have

X ′n(x) =

√
2

l

(
−µn

l
sin

µn

l
x+ cos

µn

l
x
)′

=

√
2

l

(
−
(µn

l

)2
cos

µn

l
x− µn

l
sin

µn

l
x

)
,

X ′′n(x)=

√
2

l

(
−
(µn

l

)2
cos

µn

l
x−µn

l
sin

µn

l
x

)
′=

√
2

l

((µn

l

)3
sin

µn

l
x−
(µn

l

)2
cos

µn

l
x

)
.

Hence

|X ′n(x)| ≤
√

2

l

µn

l

(µn

l
+ 1
)
,

|X ′′n(x)| ≤
√

2

l

(µn

l

)2 (µn

l
+ 1
)
.

So

sup
t>ϵ

0≤x≤l

Sms (t, x) ≤
∞∑
k=1

|Ak| sup
t>ϵ

e−(
aµk
l )

2
t
(aµk

l

)2m ∣∣∣X(s)
k (x)

∣∣∣ ≤
≤ c

∞∑
k=1

|Ak| e−(
aµk
l )

2
ϵ

√
2

l

µk

l

(µk

l
+ 1
)
,

where c = max
{

µk

l
, 1
}
.

Last series converge with probability one when converge series

∞∑
k=1

E |Ak| e−(
aµk
l )

2
ϵµk

l

(µk

l
+ 1
)
. (7)

Since
E |Ak| ≤

(
EA2

k

)1/2 ≤ a,

where a — positive constant. There

∞∑
k=1

E |Ak| e−(
aµk
l )

2
ϵµk

l

(µk

l
+ 1
)
≤ a

∞∑
k=1

e−(
aµk
l )

2
ϵµk

l

(µk

l
+ 1
)
. (8)

As for [7]: √
λn = dn+ o

(
1

n

)
,

then l
√
λn = µn = ldn+ o

(
1
n

)
(where d — positive constant).
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Herefrom follows, that for sufficiently large n:

µn ≤ ld1n, µn ≥ ld2n, 0 < d2 < d1.

Denote series
∞∑
k=1

e−a
2d22k

2

k(k + 1). (9)

As converge series (9), then converge (7), namely converges uniformly with proba-
bility one series Sms (t, x).

Lemma 3. For so as uniformly in probability in the domain D Z (t, x) converge
to the ξ (x) by t→ 0 enought so as for every 0 ≤ x ≤ l

E |Z (t, x)− ξ (x)| → 0, t→ 0,

ξ (x) continuous process at [0; l] with probability one and exist monotonically increa-
ment function σ = (σ (h) , 0 < h ≤ l) such that σ (h) → 0 when h→ 0 and

sup
0<t<t0

sup
|x−y|≤h
x,y∈[0;l]

(
E |Z (t, x)− Z (t, y)|2

)1/2 ≤ σ (h) , (10)

where 0 < t0 < T and for ∀ϵ > 0
ϵ∫

0

U (−1)
(

l

2σ(−1) (h)
+ 1

)
dh <∞. (11)

Proof. The validity of this theorem is follows from the fact that Z (t, x) strictly
Orlicz process, such that

∥Z (t, x)− Z (t, y)∥ ≤ C∆

(
E |Z (t, x)− Z (t, y)|2

)1/2
,

and Z (t, x) → ξ (x) in probability (follows from theorem 2).

Lemma 4. Considered problem (1)-(3). Let ξ = {ξ (x) , x ∈ [0; l]} from (2) be
a strictly Orlicz stochastic process belonging to the Orlicz space LU (Ω) of random
variables, where U (x) is a C-function, such that the function V (x) = x2 subor-
dinate to U (x), and for U (x) and condition g holds for U(x). Assume that the
stochastic process ξ- is separable and mean square continuous, Eξ (x) = 0. Let func-
tion φ = (φ (λ) , λ > 0) — continuous, monotonically increasing and Ψ(λ) = λ

φ(λ)

monotonocally increasing when λ ≥ v0, where v0 is a constant such that ∀ϵ > 0 and
c > 0:

sup
|x−y|≤h

(
E (ξ (x)− ξ (y))2

)1/2 ≤ c

φ
(
1
h
+ v0

) (12)

when
ϵ∫

0

U (−1)
(
l

2

(
φ(−1)

( c
v

)
− v0

)
+ 1

)
dv <∞, (13)

and converge sum
∞∑
i=1

∞∑
j=1

|EAiAj|φ
((aµi

l

)2
+ v0

)
φ

((aµj

l

)2
+ v0

)
. (14)

Then uniformly in probability Z (t, x) → ξ (x) in the domain D = [0; l] when t→ 0.
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Proof. In order to prove this lemma need to satisfies conditions from lemma 3.
From conditions of these lemma it follows that E |Z (t, x)− ξ (x)|2 → 0 when t→ 0.

Since ξ (x) =
∞∑
k=1

AkXk (x), have:

E |Z (t, x)− ξ (x)|2 = E

[
∞∑
k=1

Ake
−(aµk

l )
2
tXk (x)−

∞∑
k=1

AkXk (x)

]2
=

= E

[
∞∑
k=1

AkXk (x)
(
e−(

aµk
l )

2
t − 1

)]2
=

=
∞∑
i=1

∞∑
j=1

EAiAjXi (x)Xj (x)
(
e−(

aµi
l )

2
t − 1

)(
e−(

aµj
l )

2
t − 1

)
In lemma 1 put Yλ (t) = e−(

aµk
l )

2
t, B = 1, C = 1.

It obvious that |Xk (x)| ≤ 1.
Then

E |Z (t, x)− ξ (x)|2 ≤

≤
∞∑
i=1

∞∑
j=1

|EAiAjXi(x)Xj(x)|φ
((aµi

l

)2
+v0

)
φ

((aµj

l

)2
+v0

)
φ−2

(
1

t
+v0

)
≤ (15)

≤
∞∑
i=1

∞∑
j=1

|EAiAj|φ
((aµi

l

)2
+ v0

)
φ

((aµj

l

)2
+ v0

)
φ−2

(
1

t
+ v0

)
→ 0,

when t→ 0. We find a function σ (h), that is satisfies condition:

sup
0<t<t0

sup
|x−x1|≤h
x,x1∈[0;l]

(
E |Z (t, x)− Z (t, x1)|2

)1/2 ≤ σ (h) . (16)

It is obvious that

E (Z (t, x)− Z (t, x1))
2 = E

[
∞∑
k=1

(
AkXk (x) e

−(aµk
l )

2
t − AkXk (x1) e

−(aµk
l )

2
t
)]

=

= E

[
∞∑
k=1

Ake
−(aµk

l )
2
t (Xk (x)−Xk (x1))

]
=

=
∞∑
i=1

∞∑
j=1

e−(
aµi
l )

2
te−(

aµj
l )

2
tEAiAj (Xi (x)−Xi (x1)) (Xj (x)−Xj (x1)) ≤

≤
∞∑
i=1

∞∑
j=1

e−(
aµi
l )

2
te−(

aµj
l )

2
t |EAiAj| |Xi (x)−Xi (x1)| |Xj (x)−Xj (x1)| ≤

≤
∞∑
i=1

∞∑
j=1

|EAiAj| |Xi (x)−Xi (x1)| |Xj (x)−Xj (x1)| .
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Let estimate the absolute of difference eigenfunctions

|Xk (x)−Xk (x1)| =
√

2

l

∣∣∣−µk

l
sin

µk

l
x+ cos

µk

l
x+

µk

l
sin

µk

l
x1 − cos

µk

l
x1

∣∣∣ ≤
≤
√

2

l

µk

l

∣∣∣sin µk

l
x− sin

µk

l
x1

∣∣∣+√2

l

∣∣∣cos µk

l
x− cos

µk

l
x1

∣∣∣ =
=

√
2

l

2µk

l

∣∣∣sin µk

2l
(x−x1)cos

µk

2l
(x+x1)

∣∣∣+2

√
2

l

∣∣∣sin µk

2l
(x−x1)sin

µk

2l
(x+x1)

∣∣∣≤√
2

l

µ2
k

l2
|x− x1|+

√
2

l

µk

l
|x− x1| =

√
2

l
µk

(
µk

l2
+

1

l

)
|x− x1| .

We received that

|Xk (x)−Xk (x1)| ≤
√

2

l
µk

(
µk

l2
+

1

l

)
|x− x1| . (17)

Denote

D =

√
2

l

(µk

l
+ 1
)
. (18)

From used above conditions have

|Xk (x)−Xk (x1)| ≤

≤ max (2, D)φ

((aµk

l

)2
+ v0

)
φ−1

(
1

|x− x1|
+ v0

)
, (19)

that
E (Z (t, x)− Z (t, y))2 ≤

≤
∞∑
i=1

∞∑
j=1

|EAiAj| 4D2φ

((aµi

l

)2
+ v0

)
φ

((aµj

l

)2
+ v0

)
φ−2

(
1

|x− y|
+ v0

)
.

Therefore, have

σ (h) = C

(
φ

(
1

h
+ v0

))−1
,

and

σ(−1) (h) =
1

φ(−1)
(
c
h

)
− v0

because satisfies condition (11).

Example 1. Consider a concrete example for lemma 4. Let U(x) = |x|p , p ≥ 2.
Then in lemma 4 put φ(x) = |x|α , 0 < α ≤ 1, v0 = 0. Have

φ(−1)
( c
v

)
=
( c
v

) 1
α
.

And integral from (9) has the form

ϵ∫
0

(
l

2

( c
v

) 1
α

) 1
p

dv =

(
l

2

) 1
p

c
1
pα

ϵ∫
0

1

v
1
pα

dv.
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Last integral converge when 1
pα
< 1.

We obtain

α >
1

p
.

Theorem 4. Considered problem (1)-(3). Let ξ = {ξ (x) , x ∈ [0; l]} from (2) be
a strictly Orlicz stochastic process belonging to the Orlicz space LU (Ω) of random
variables, where U (x) is a C-function, such that the function V (x) = x2 subordi-
nate to U (x), and for U (x) holds g-condition. Assume that stochastic process ξ is
separable and mean square continuous, Eξ (x) = 0.

Let

Z (t, x) =
∞∑
k=1

Ake
−(aµk

l )
2
tXk (x) ,

where Xk (x) — eigenfunctions, µk — appropriate eigenvalues of the Sturm-Liouville
problem

X ′′ (x)− λX (x) = 0,

X ′ (0) = 0,

X ′ (l) +X (l) = 0.

Ak =
2

l

l∫
0

ξ (x)Xk (x) dx.

Let for ∀ϵ > 0 and c > 0 satisfies condition

sup
|x−y|≤h

(
E (ξ (x)− ξ (y))2

)1/2 ≤ c |h|α , (20)

where α > 1
p
, p ≥ 2 and converge series

∞∑
i=1

∞∑
j=1

|EAiAj|µ2α
i µ

2α
j , (21)

that for ∀ϑ > 0 uniformly in 0 ≤ x ≤ l, t ≥ ϑ (ϑ > 0) with probability one series
converge (5). In domain 0 ≤ x ≤ l, t ≥ ϑ (ϑ > 0) function Z (t, x) with probabil-
ity one satisfies condition (1) and condition (2). Besides, uniformly in probability
Z (t, x) → ξ (x) in domain x ∈ [0; l] when t→ 0. If for ∀ϵ > 0 and c > 0 series con-
verge (21), that Z (t, x) → ξ (x) uniformly in x ∈ [0; l] when t → 0 with probability
one.

Proof. Uniform convergence with probability one series (5) when 0 ≤ x ≤ l,
0 < t < ϵ proved in lemma 2. In lemma 4 proved that Z (t, x) → ξ (x) when t→ 0.
From lemma 4 and condition (21) follows that Z (t, x) → ξ (x) when t→ 0 uniformly
in 0 ≤ x ≤ l with probability one.

Lemma 5. Let for eigenfunctions Xk(x), x ∈ [0, l] from problem (1)-(3) satisfies
condition

|Xk(x)−Xk(s)| ≤ D
µk

l
|x− s| (22)
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(where D from (18)) and for N = 1 next series converge
∞∑

i=N

∞∑
j=N

|EAiAj|µβ
i µ

β
j = TN , (23)

where 2
p
< β ≤ 1, that for t1, t2 ∈ [0, T ] , x1, x2 ∈ [0, l] , h ∈ [0, l] there is an inequality

sup
max(|t1−t2|,|x1−x2|)≤h

(
E (ZN(t1, x1)− ZN(t2, x2))

2) 1
2 ≤ 2max(2, D)hβ

√
TN , (24)

where ZN (t, x) =
∞∑

k=N

Ake
−(aµk

l )
2
tXk (x).

Proof. The validity of the theorem follows from (19) if φ(u) = uβ.

Theorem 5. Let satisfies conditions of lemma 5, (ξ(x), x ∈ [0, l]) initial con-
dition from (2) — separable and strictly Orlicz stochastic process belonging to the
Lp(Ω), denote B = {x ∈ [0, l] , t ∈ [0, T ]}, T > 0, that for ∀ϵ > 0:

P

{
sup
x,t∈B

|ZN(t, x)| > ϵ

}
≤

∣∣∣B̂N(θ)
∣∣∣p

ϵp
, (25)

where

B̂N(θ) =
1

θ (1− θ)

ω0Nθ∫
0

(
l

2

(u
c

) 1
α
+ 1

)((
T

2

(u
c

) 1
α
+ 1

)) 1
p

du,

θ ∈ (0, 1), ω0N = RNh
β, RN = 2C∆

√
TN max(2, L), C∆ — constant from defini-

tion 5.

Proof. Proof of this theorem follows from theorem 3. Therefore in this theorem
σ(h) = chα, α > 1

p
, h ∈ [0, l] and for all ϵ > 0 converge integral

ϵ∫
0

(
σ(−1)(u)

)− 1
p du =

ϵ∫
0

c
1
αp

u
1
αp

du,

and that is condition (25) satisfies.
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