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ON COHOMOLOGIES OF THE KLEIN FOUR-GROUP

A free resolution of the trivial G-module Z, where G is the Klein four-group, is constructed.
Its relation with the standard resolution is established. Also H2(G,M) for some modules M is
calculated.

Ìè áóäó¹ìî âiëüíó ðåçîëüâåíòó òðèâiàëüíîãî G-ìîäóëÿ Z, äå G � ÷åòâåðíà ãðóïà Êëåéíà,
âñòàíîâëþ¹ìî çâ'ÿçîê iç ñòàíäàðòíîþ ðåçîëüâåíòîþ òà îá÷èñëþ¹ìî H2(G,M) äëÿ äåÿêèõ
ìîäóëiâ M .

Theory of group cohomology is widely used in the theory of representations and the
theory of groups, in particular, for the description of special classes of groups. Thus
group cohomology plays an important role in the study of group extensions, for
instance, in the study of Chernikov groups [1]. In the last case the corresponding
G-modules are just dual to integral representations. The usual way to calculate
cohomologies is by the standard resolution [2, 3]. Nevertheless, sometimes it is
convenient to simplify this resolution. We propose a simplified resolution for the
Klein four-group and use it to calculate cohomologies for duals of indecomposable
integral representations with at most 3 irreducible components.

Let G = ⟨a, b | a2 = b2 = (ab)2 = 1⟩ be the Klein four-group. We construct a free
resolution of the trivial ZG-module Z, which can be used to calculate cohomologies
of this group.

A resolution of Z for the cyclic group C2 = ⟨a⟩ is well-known:

PA : . . .
a−1−−→ ZC2

a+1−→ ZC2
a−1−→ ZC2 −→ . . .

From the Künneth formulas [3] it follows that a resolution for G ∼= ⟨a⟩ × ⟨b⟩ can be
constructed as P = PA ⊗Z PB, where PA is a resolution for the first factor and PB
is a resolution for the second factor. We write the resolution PA for the first factor
C2 as

. . . −→ Rx3 −→ Rx2 −→ Rx −→ R

with the differential dxk = (a + (−1)k)xk−1, and the resolution PB for the second
factor as

. . . −→ Ry3 −→ Ry2 −→ Ry −→ R

with the differential dyk = (b+ (−1)k)yk−1. Then the n-th component

Pn =
⊕
i+j=n

PA,i ⊗ PB,j

can be considered as the module of homogeneous polynomials of degree n from
R[x, y], where R = ZG and

d(xiyj) = (a+ (−1)i)xi−1yj + (−1)i(b+ (−1)j)xiyj−1.

Íàóê. âiñíèê Óæãîðîä óí-òó, 2017, âèï. �1 (30)



96 A. I. PLAKOSH, I. V. SHAPOCHKA

So we can write the matrix defining this differential as
a+ 1 1− b 0 0 . . .
0 a− 1 b+ 1 0 . . .
0 0 a+ 1 1− b . . .
...

...
...

...
. . .


if n is even and as 

a− 1 −(b+ 1) 0 0 . . .
0 a+ 1 b− 1 0 . . .
0 0 a− 1 −(b+ 1) . . .
...

...
...

...
. . .


if n is odd. Note that for n = 2 this results was obtained in [4].

Recall that in the standard resolution

F : . . . −→ F2 −→ F1 −→ F0 −→ Z −→ 0,

the ZG-module Fn has a basis [g1|g2| . . . |gn], where gi ∈ G\{1} (we also set
[g1|g2| . . . |gn] = 0 if some gi = 1) and

d[g1|g2| . . . |gn] = g1[g2| . . . |gn] +
n−1∑
i=1

(−1)i[g1|g2| . . . |gigi+1| . . . |gn] +

+(−1)n[g1|g2| . . . |gn].

There is a map σ : F −→ P, which defines a homotopy equivalence of these resolu-
tions such that

σ1[a] = x, σ1[b] = y, σ2[a|a] = x2,

σ2[b|b] = y2, σ2[a|b] = 0, σ2[b|a] = −xy,

σ2[ab|ab] = bx2 − xy + y2, σ2[ab|b] = ay2, σ2[ab|a] = bx2 + xy,

σ2[a|ab] = x2, σ2[b|ab] = −xy + ay2.

(1)

We calculate H2(G,M), for G-modules M such that M as an abelian group is
mQ, where Q is the quasicyclic p-group (or the group of type p∞). Then the action
of G on M is given by an integral p-adic representation of G [1]. We consider the
cases when M is indecomposable and not faithful as ZpG-module.

If m = 1, there are 4 such representations Mα,β (α, β ∈ {1, −1}) which map
a 7→ α, b 7→ β. Evidently M+− (M−+) can be obtained from M−− if we replace a
by ab (resp. b by ab). So we only have to calculate cohomology for M++ and M−−.

For M++ that’s why a = b = 1, a+ 1 = b+ 1 = 2, a− 1 = b− 1 = 0 we have

∂γ(x3) = (a− 1)γ(x2) = 0,

∂γ(y3) = (b− 1)γ(y2) = 0,

∂γ(x2y) = (a+ 1)γ(xy) + (b− 1)γ(x2) = 2γ(xy),
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as well as ∂γ(xy2) = 2γ(xy).
We can replace γ by ∂ξ for some ξ : P1 →M++. Note that

∂ξ(x2) = (a+ 1)ξ(x) = 2ξ(x),

∂ξ(y2) = (b+ 1)ξ(y) = 2ξ(y),

∂ξ(xy) = (a− 1)ξ(y)− (b− 1)ξ(x) = 0.

As M is a divisible group, choosing appropriate ξ(x) and ξ(y), we can make
γ(x2) = γ(y2) = 0. Therefore, H2(G,M++) ≃ Z/2Z and the non-zero element γ of
this group can be chosen as γ(x2) = γ(y2) = 0, γ(xy) = ε, where ε is the unique
element of Q of order 2.

Just in the same way we obtain thatH2(G,M−−) ≃ (Z/2Z)2 and its elements are
the classes of cocycles γ such that γ(x2) and γ(y2) are from {0, ε}, while γ(xy) = 0.

If m = 2, there is an exact sequence

0 −→Mα,β −→M −→Mα′,β′ −→ 0. (2)

Moreover, if M is indecomposable, (α, β) ̸= (α′, β′) and M is defined by (α, β) and
(α′, β′). Note that if there is a sequence (2), there is also an exact sequence

0 −→Mα′,β′ −→M −→Mα,β −→ 0.

As before, applying an automorphism of G, we can suppose that (α, β) = (1, 1) and
(α′, β′) = (−1,−1) or (α, β) = (−1, 1) and (α′, β′) = (1,−1).

Let 0 −→ M−+ −→ M −→ M+− −→ 0 be exact. Then M corresponds to the
representation of G such that

a→
(

−1 1
0 1

)
, b→

(
1 −1
0 −1

)
.

Thus

a− 1 =

(
−2 1
0 0

)
, b− 1 =

(
0 −1
0 −2

)
,

a+ 1 =

(
0 1
0 2

)
, b+ 1 =

(
2 −1
0 0

)
.

Let

γ(x2) =

(
u1
v1

)
, γ(y2) =

(
u2
v2

)
, γ(xy) =

(
u3
v3

)
.

Then

∂γ(x3) = (a− 1)

(
u1
v1

)
=

(
−2u1 + v1

0

)
= 0,

∂γ(y3) = (b− 1)

(
u2
v2

)
=

(
−v2
−2v2

)
= 0,

∂γ(x2y) = (a+ 1)

(
u3
v3

)
+ (b− 1)

(
u1
v1

)
=

(
v3 − v1
2v3 − 2v1

)
= 0,
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∂γ(xy2) = (a− 1)

(
u2
v2

)
− (b+ 1)

(
u3
v3

)
=

(
−2u2 + v2 − 2u3 + v3

0

)
= 0.

So, we have v1 = v3 = 2u1 = 2u2 + 2u3, v2 = 0.
Let

ξ(x) =

(
c1
d1

)
, ξ(y) =

(
c2
d2

)
.

Then

∂ξ(x2) = (a+ 1)

(
c1
d1

)
=

(
d1
2d1

)
,

∂ξ(y2) = (b+ 1)

(
c2
d2

)
=

(
2c2 − d2

0

)
,

∂ξ(xy) = (a− 1)

(
c2
d2

)
− (b− 1)

(
c1
d1

)
=

(
−2c2 + d2 + d1

2d1

)
,

Therefore, changing γ by γ+∂ξ, we can make u1 = u2 = 0, whence also v1 = v3 = 0,
2u3 = 0. Thus H2(G,M) ≃ Z/2Z and the non-zero elements γ of this group is the
class of the cycle γ such that

γ(x2) = γ(y2) =

(
0
0

)
, γ(xy) =

(
ε
0

)
.

Let now 0 −→M−− −→M −→M++ −→ 0 is exact, i.e.

a→
(

−1 1
0 1

)
, b→

(
−1 1
0 1

)
,

a− 1 = b− 1 =

(
−2 1
0 0

)
, a+ 1 = b+ 1 =

(
0 1
0 2

)
.

Let

γ(x2) =

(
u1
v1

)
, γ(y2) =

(
u2
v2

)
, γ(xy) =

(
u3
v3

)
.

Then

∂γ(x3) = (a− 1)

(
u1
v1

)
=

(
−2u1 + v1

0

)
= 0,

∂γ(y3) = (b− 1)

(
u2
v2

)
=

(
−2u2 + v2

0

)
= 0,

∂γ(x2y) = (a+ 1)

(
u3
v3

)
+ (b− 1)

(
u1
v1

)
=

(
v3 − 2u1 + v1

2v3

)
= 0,

∂γ(xy2) = (a− 1)

(
u2
v2

)
− (b+ 1)

(
u3
v3

)
=

(
−2u2 + v2 − v3

−2v3

)
= 0.

So, we have v3 = 0, 2u1 = v1, 2u2 = v2.
Let

ξ(x) =

(
c1
d1

)
, ξ(y) =

(
c2
d2

)
.
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Then

∂ξ(x2) = (a+ 1)

(
c1
d1

)
=

(
d1
2d1

)
,

∂ξ(y2) = (b+ 1)

(
c2
d2

)
=

(
d2
2d2

)
,

∂ξ(xy) = (a− 1)

(
c2
d2

)
− (b− 1)

(
c1
d1

)
=

(
−2c2 + d2 − 2c1 + d1

0

)
.

Hence, changing γ by γ + ∂ξ, we can make u1 = u2 = 0 as well as u3 = 0 (as M is
divisible). Therefore, H2(G,M) = 0.

Let m = 3. If M is indecomposable, there is a chain of submodules

M =M0 ⊃M1 ⊃M2 ⊃M3 = 0

such that all quotients Li =Mi−1/Mi are of the formMαi,βi and allMαi,βi are differ-
ent. Moreover, we can change the ordering of Li arbitrarily. Up to an automorphism
of G, there are four cases:

1) M1 is cyclic (α1, β1) = (1, 1), (α2, β2) = (1,−1), (α3, β3) = (−1, 1);

2) M2 is cyclic (α1, β1) = (−1,−1), (α2, β2) = (−1, 1), (α3, β3) = (1,−1);

3) M3 is not cyclic (α1, β1) = (−1, 1), (α2, β2) = (1,−1), (α3, β3) = (1, 1);

4) M4 is not cyclic (α1, β1) = (−1,−1), (α2, β2) = (−1, 1), (α3, β3) = (1,−1).

Case 1. Here

a→

 −1 0 1
0 1 0
0 0 1

 , b→

 1 0 0
0 −1 1
0 0 1

 ,

a− 1 =

 −2 0 1
0 0 0
0 0 0

 , b− 1 =

 0 0 0
0 −2 1
0 0 0

 ,

a+ 1 =

 0 0 1
0 2 0
0 0 2

 , b+ 1 =

 2 0 0
0 0 1
0 0 2

 .

Let

γ(x2) =

 u1
v1
w1

 , γ(y2) =

 u2
v2
w2

 , γ(xy) =

 u3
v3
w3

 .

Then

∂γ(x3) = (a− 1)

 u1
v1
w1

 =

 −2u1 + w1

0
0

 = 0,

∂γ(y3) = (b− 1)

 u2
v2
w2

 =

 0
−2v2 + w2

0

 = 0,
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∂γ(x2y) = (a+ 1)

 u3
v3
w3

+ (b− 1)

 u1
v1
w1

 =

 w3

2v3 − 2v1 + w1

2w3

 = 0,

∂γ(xy2) = (a− 1)

 u2
v2
w2

− (b+ 1)

 u3
v3
w3

 =

 −2u2 + w2 − 2u3
−w3

−2w3

 = 0.

So, we have w3 = 0, w1 = 2u1, w2 = 2v2.
Let

ξ(x) =

 c1
d1
f1

 , ξ(y) =

 c2
d2
f2

 .

Then

∂ξ(x2) = (a+ 1)

 c1
d1
f1

 =

 f1
2d1
2f1

 ,

∂ξ(y2) = (b+ 1)

 c2
d2
f2

 =

 2c2
f2
2f2

 ,

∂ξ(xy) = (a− 1)

 c2
d2
f2

− (b− 1)

 c1
d1
f1

 =

 −2c2 + f2
2d1 − f2

0

 .

So we can make u1 = u2 = v1 = v2 = 0, which gives H2(M) = (Z/2Z)2, consisting
of the classes of cocycles γ such that

γ(x2) = γ(y2) =

0
0
0

 , γ(xy) =

uv
0

 ,

where u, v ∈ {0, ε}.
The calculations in other cases are quite similar, so we only present the results,

with some comments in Case 3.

Case 2.

a→

 1 0 1
0 −1 0
0 0 −1

 , b→

 −1 0 0
0 1 1
0 0 −1

 .

Here we have H2(G,M) = Z/2Z and the nonzero element of this group is the class
of the cocycle γ with γ(x2) = γ(y2) = 0, while

γ(xy) =

ε0
0

 .

Case 3.

a→

 1 0 1
0 1 0
0 0 −1

 , b→

 1 1 0
0 −1 0
0 0 1

 .

Íàóê. âiñíèê Óæãîðîä óí-òó, 2017, âèï. �1 (30)



ON COHOMOLOGIES OF THE KLEIN FOUR-GROUP 101

For γ : G→M such that

γ(x) =

c1d1
f1

 , γ(y) =

c2d2
f2

 ,

we obtain

∂γ(x2) =

2c1 + f1
2d1
0

 , ∂γ(y2) =

2c2 + d2
0
2f2

 , ∂γ(xy) =

f2 − d1
2d1
−2f2

 .

Therefore, changing ξ by ξ + ∂γ, we can make

ξ(x2) =

0
0
w

 , ξ(y2) =

0
v
0

 , ξ(xy) =

u3v3
w3

 .

The condition ∂ξ = 0 implies that w = v = 0, v3 = w3 = 2u3 and 2v3 = 0. Hence
v3 ∈ {0, ε}, whence H2(G,M) = Z/2Z with the non-zero element being the class of
the cocycle ξ such that ξ(x2) = ξ(y2) = 0,

ξ(xy) =

ε′ε
ε

 ,

where ε′ is an element of order 4 (any of two such elements can be chosen).

Case 4.

a→

 1 1 1
0 −1 0
0 0 −1

 , b→

 −1 −1 0
0 1 0
0 0 −1

 .

Here H2(G,M) ≃ (Z/2Z)2 consists of the classes of cocycles ξ such that

ξ(x2) =

0
v
v

 , ξ(y2) =

0
0
w

 , ξ(xy) =

 0
v

v + w

 ,

where v, w ∈ {0, ε}.
Note that, using formula (1), we can find the cocycles in the “standard” form.

For instance, in Case 4 above, we obtain:

γ(a, a) = γ(a, ab) =

0
v
v

 , γ(a, b) =

0
0
0

 , γ(b, b) = γ(ab, b) =

0
0
w

 ,
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γ(b, a) =

 0
v

v + w

 , γ(b, ab) =

 w
v

v + w

 ,

γ(ab, a) =

 v
0

v + w

 , γ(ab, ab) =

v0
w

 .
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