РОЗДІЛ І Експериментальна фізика

УДК 621. 315. 592

Іван Кітик Сергій Данильчук Галина Мирончук Марія Мозолюк Володимир Божко Андрій Кримусь

Отримання та фотоелектричні властивості твердих розчинів $Tl_{1-x}In_{1-x}Sn_xSe_2$ (x = 0-0,25)

Розроблено технологічні умови вирощування монокристалів твердих розчинів Tl_{1-x}In_{1-x}Sn_xSe₂ (x = 0-0,25). Рентгенівським методом порошку розшифровано кристалічну структуру сплавів й запропоновано механізм утворення твердого розчину. Досліджено спектральний розподіл фотопровідності отриманих кристалів при T = 300 K та термостимульовану провідність. Показано вплив катіонного заміщення In³⁺ на Sn⁴⁺ у твердих розчинах Tl_{1-x}In_{1-x}Sn_xSe₂ (x = 0-0,25) на їх кристалографічні та фотоелектричні властивості.

Ключові слова: термостимульована провідність, фотопровідність, твердий розчин, кристалічна структура.

Постановка наукової проблеми та її значення. Дослідження закономірностей, які відбуваються у гетерогенних системах під дією різноманітних зовнішніх факторів, представляє значний інтерес для фізики і хімії твердого тіла.

Переходячи від елементарних добре вивчених напівпровідників до потрійних, ускладнюється кристалічна структура, що призводить до виникнення нових фізичних властивостей. Дослідження багатокомпонентних сполук дає змогу розширити можливості їх використання у сучасній техніці [6; 9; 23].

Можливості отримання нових матеріалів істотно розширюються, використовуючи тверді розчини.

Перспективними матеріалами, які широко використовуються у техніці, є кристали групи $A^{II}B^{III}C_2^{VI}$ (A – Tl; B – In, Ga; C – S, Se, Te). До напівпровідникових матеріалів цієї групи належить і потрійна сполука TlInSe₂. Дослідження цих кристалів і твердих розчинів на їх основі в літературі представлено великою кількістю публікацій.

У [11; 12; 18, 20–22] оптичними методами визначено ширину забороненої зони кристалів. У [20–22] установлено, що зі збільшенням вмісту SnSe₂, SiSe₂, GeSe₂ ширина забороненої зони зростає, що пов'язано з механізмом утворення твердого розчину.

У процесах перенесення заряду в твердих розчинах на основі TlInSe₂ спостерігається температурна залежність електропровідності $\sigma(T)$, яку можна екстраполювати в системі координат $\ln(\sigma) - 1/T$ декількома прямими з різними енергіями активації (*E*_A), що відповідає різним механізмам переносу [1; 7; 8; 19].

Вплив заміщення \ln^{3+} на \ln^{3+} на \ln^{3+} на Ce^{4+} на електричні властивості твердих розчинів досліджувались у [8; 19].

Сполуки TlInSe₂ і їх тверді розчини є фоточутливими матеріалами [2; 10]. У [10] дослідження спектрального розподілу фотопровідності показали, що максимум припадає на ділянки власних оптичних переходів і зі збільшенням температури зміщується в ділянку менших енергій. При ізовалентному заміщенні атомів In атомами Pr ширина забороненої зони зменшується, а ділянка спектральної чутливості зміщується у IЧ-ділянку [2]. У роботі [14] досліджено спектри термостимульованої про-

[©] Кітик І., Данильчук С., Мирончук Г., Мозолюк М., Божко В., Кримусь А., 2014

відності TlInSe₂, визначено енергії залягання рівнів прилипання, площу захоплення, концентрацію пасток.

Мета роботи – отримати і дослідити кристалічну структуру однофазних твердих розчинів на основі селено-індату талію $TI_{1-x}In_{1-x}Sn_xSe_2$ (x = 0-0,25), а також вивчити вплив дефектів структури на їх фотоелектричні властивості.

Методика отримання та дослідження монокристалів. Для синтезу зразків твердих розчинів TlInSe₂–SnSe₂ використовувались елементи Tl, In, Sn, Se (чистотою не менше 99,99 ваг. %). Підготовлені компоненти завантажували у кварцові контейнери. Завантажені ампули були вакуумовані до тиску $1,33 \cdot 10^{-2}$ Па і герметизовані за допомогою киснево-газового пальника.

Зразки системи TIInSe₂–SnSe₂ нагрівали до температури 1220 К, при якій витримували упродовж 5-ти год. Витримавши, розплави охолоджували зі швидкістю 10-20 К/год. до температури гомогенізувального відпалу (670 К), який становив 500 год, після чого ампули гартувалися у холодній воді.

Рентгенівським методом порошку встановлено структуру сплавів у ділянці існування твердого розчину. Результати уточнення кристалічної структури представлено в табл. 1.

•	-	-	•		• •	- -	Табл	тиця 1
Резул	ьтати ут	очнення кри	сталічної струг	стур	и твеј	одого розчину	$Tl_{1-x}In_{1-x}Sn_xSe_2 (x = 0-0,25)$	

	10 01	• • •	•			
x	0	0,1	0,2	0,25		
Просторова група	I4/mcm					
а, нм	0,80711(2)	0,80870(7)	0,80906(4)	0,80906(4)		
С, НМ	0,68372(1)	0,67997(7)	0,67604(1)	0,67438(4)		
V, нм ³	0,4453(3)	0,447(1)	0,4430(2)	0,44143(7)		
Випромінювання; довжина хвилі, нм	Cu K _a ; 0,154185					
Дифрактометр	ДРОН 4-13					
Спосіб обрахунку	Повнопрофільний					
Кількість атомних позицій	3					
Кількість вільних параметрів	6					
Розрахункова густина D _x , <i>г/см³</i>	7,116(4)	6,826(2)	6,552(2)	6,4242(9)		
Коефіцієнт абсорбції µ, 1/см	1314,23	1247,88	1093,62	1130,68		
$2\theta i \sin\theta/\lambda_{(Makc)}$	99,59 i 0,495	99,46 i 0,495	99,59 i 0,495	99,55 i 0,495		
Вісь текстури і параметр	[3 1 0] i 0,73(6)	[2 1 0] i 0,283(9)	[1 0 0] i 0,48(2)	[0 0 1] i 1,64(2)		
R _I i R _P	0,0551 i 0,1124	0,0552 i 0,1116	0,0500 i 0,1267	0,0551 i 0,1044		

Сплав зі складом 25 мол. % $SnSe_2$ близький до граничного. Як модель для розрахунку кристалічної структури використано структуру з'єднання $TlInSe_2$ [17]. Атоми статистичної суміші In + Sn займають, як представлено на рис. 1, тетраедричне оточення із атомів Se, тоді як атоми Tl перебувають у тетрагонально антипризматичному оточенні із атомів Se. Атоми Se перебувають у тригонально-призматичному оточенні із атомів катіонів.

Рис. 1. Розташування та координаційні поліедри атомів у структурі твердого розчину Tl_{1-x}In_{1-x}Sn_xSe₂

Координати атомів і параметри теплового коливання атомів для $Tl_{1-x}In_{1-x}Sn_xSe_2$ (x = 0-0,25) наведено у табл. 2.

Таблиця 2		
-----------	--	--

Атом	ПСТ	X	У	Z	КЗП	B_{i30} ·10 ² , HM^2	
			$Tl_{1-x}In_{1-x}Sn_{1-x}$	$s_x \operatorname{Se}_2(x=0)$			
T1	4a	0	0,5	0,25	1	1,68(9)	
In	4b	0	0	0,25	1	1,14(13)	
Se	8h	0,1721(9)	x + 0,5	0	1	0,85(14)	
			$Tl_{1-x}In_{1-x}Sn_x$	$Se_2(x=0,1)$			
T1	4a	0	0,5	0,25	0,9T1	4,14(8)	
M1	4b	0	0	0,25	0,9In + 0,1Sn	1,63(8)	
Se	8h	0,1730(3)	x + 0,5	0	1	1,43(9)	
$Tl_{1-x}In_{1-x}Sn_xSe_2 (x = 0,2)$							
T1	4a	0	0,5	0,25	0,8T1	3,74(11)	
M2	4 <i>b</i>	0	0	0,25	0,8In + 0,2Sn	1,47(9)	
Se	8h	0,1727(3)	x + 0,5	0	1	1,01(9)	
$Tl_{1-x}In_{1-x}Sn_xSe_2 \ (x=0,25)$							
T1	4a	0	0,5	0,25	0,75Tl	3,77(6)	
M3	4b	0	0	0,25	0,75In + 0,25Sn	0,87(4)	
Se	8h	0,1717(2)	x + 0,5	0	1	0,78(5)	

Координати та ізотропні параметри теплового коливання атомів у структурі твердого розчину Tl_{1.}, In_{1.}, Sn_xSe₂ (x = 0–0,25)

M1 = 0.9In + 0.1Sn; M2 = 0.8In + 0.2Sn; M3 = 0.75In + 0.25Sn.

У межах існування твердого розчину $Tl_{1-x}In_{1-x}Sn_xSe_2$ (x = 0-0,25) відбувається монотонне зменшення об'єму елементарної комірки за рахунок віднімання атомів Tl у положенні 4*a*, яке явно не може компенсуватися за рахунок заміщення атомів In на атоми Sn. Завищені значення теплових параметрів B_{iso} для атомів Tl можна пояснити, виходячи із відстаней між ними порівняно із сумою їх іонних радіусів (r(Tl⁺) = 0,173 нм) [15].

Монокристали твердих розчинів вирощували методом напрямленої кристалізації Бріджмена-Стокбаргера.

Попередньо приготовлені ростові контейнери поміщали у верхню зону ростової печі до повного розплавлення шихти. Після розплавлення ампулу опускали в зону кристалізації і витримували 24 години, щоб закристалізувати 3–4 мм. Після цього опускали зі швидкістю 5 мм/добу спеціальним механізмом, який складається із електричного двигуна й редуктора.

Після повної кристалізації піч охолоджували зі швидкістю 100 К/добу до кімнатної температури. Отримані монокристали твердого розчину були завдовжки 30 мм і діаметром 9 мм (рис. 2).

Рис. 2. Вигляд монокристалів Tl_{0,9}In_{0,9}Sn_{0,1}Se₂ та їхніх сколів

Щоб виготовлити досліджувані зразки, отримані кристали сколювали в середній частині монокристалічного злитка уздовж площини спайності (001). Поверхні кристалів були дзеркально гладкими (рис. 2), що дало змогу використовувати їх для дослідження без будь-якої додаткової обробки.

Для проведення фотоелектричних досліджень з плоскопаралельних сколів вирізали зразки у формі паралелепіпедів. Омічні контакти наносили плавленням індію до протилежних поверхонь пластин.

Виклад основного матеріалу й обґрунтування отриманих результатів дослідження. Фотоелектричні властивості. Монокристали твердого розчину $Tl_{1-x}In_{1-x}Sn_xSe_2$ (x = 0-0,25) є фоточутливими матеріалами. Кратність фотовідклику до інтегрального світла освітленістю $L = 10^4$ Лк (σ_c / σ_T , де σ_c – провідність при освітленні, σ_T – провідність у темряві) представлена в табл. 3.

Таблиця З

Зразок	x = 0	x = 0,10	x = 0,20	x = 0,25
$\sigma_{_C}$ / $\sigma_{_T}$	1,02	1,1	1,3	1,9

Кратність фотовідклику твердого розчину $Tl_{1-x}In_{1-x}Sn_xSe_2$ при T = 300 К

На рис. 3 представлено спектральний розподіл фотопровідності (ФП) монокристалів $Tl_{1-x}In_{1-x}Sn_xSe_2$ (x = 0, 1-0, 25) при T = 300 К.

Puc. 3. Спектральний розподіл фотопровідності кристалів твердого розчину Tl_{1-x}In_{1-x}Sn_xSe₂ (x = 0,1 – 0,25) при *T* = 300 К

З рисунка видно, що при 300 К максимуми фотопровідності лежать в ділянці 660, 690, 745 нм для *x* = 0,25; 0,20; 0,10 відповідно. Із аналізу оптичних досліджень у ділянці фундаментальних переходів [22] встановлено, що ці максимуми відповідають за власну провідність.

Зміщення максимумів фотопровідності від λ_m = 745 нм (при x = 0,1) до $\lambda_m = 660$ нм (при x = 0,25) обумовлено зміною ширини забороненої зони [22].

Водночас, зі збільшенням х фоточутливість досліджуваних кристалів збільшується (рис. 3, табл. 3).

Можна припустити, що зростання фоточутливості при збільшенні x, тобто збільшенні ширини забороненої зони (рис. 3), відбувається внаслідок перерозподілу рекомбінаційного потоку дірок із *s*-центрів швидкої рекомбінації на *r*-центри повільної рекомбінації. Роль *s*-центрів, як правило, виконують різні структурні дефекти [5], *r*-центрів, катіонні вакансії (V_{Tl}). Разом зі зростанням E_g розчину може змінюватися відстань між рівнем Фермі та рівнями *r*- і *s*-центрів, що впливатиме на їх заповнення носіями і, відповідно, на рекомбінаційні потоки через ці центри.

На основі наших досліджень можна запропонувати модель перезарядки центрів, яка пояснює спостережувані явища і не суперечить експериментальним результатам (рис. 4).

Рис. 4. Схематична модель розподілу центрів рекомбінації й прилипання в зразках твердого розчину

Припустимо, що центри t зв'язані з валентною зоною, тобто не змінюють свого положення щодо валентної зони. Подібні центри часто трапляються у напівпровідниках [3]. Так, при зростанні E_g зростає енергетичне положення t-центрів (E_T) щодо зони провідності.

Роль і центрів прилипання, і центрів рекомбінації можуть виконувати *t*-центри (залежно від E_T і температури) для електронів. Якщо темп термозбудження електронів, захоплених *t*-центрами, назад в зону провідності вищий, ніж темп їх рекомбінації з дірками валентної зони, то *t*-центри будуть виконувати роль пасток [4]:

$$n_t v S_n N_C e^{-\frac{L_t}{kT}} > n_t v S_p p, \tag{1}$$

де n_t – концентрація захоплених *t*-центрами електронів, v – швидкість вільних носіїв заряду в зонах, S_n – переріз захоплення електрона центром *t* із зони провідності, S_t – переріз захоплення дірки *t*-центром, p – концентрація дірок у валентній зоні, N_c – щільність електронних станів на дні зони провідності.

Якщо темп рекомбінації дірок із електронами, які захопили *t*-центри, більший за темп їх збудження у зону провідності, то *t*-центри відіграють роль центрів рекомбінації, й у рівнянні (1) слід змінити знак на протилежний:

$$n_t v S_n N_C e^{-\frac{E_t}{kT}} < n_t v S_p p.$$
⁽²⁾

Для сполук з малим значенням E_t захоплення збуджених у зону провідності електронів центрами прилипання незначне і всі вони рекомбінуватимуть із нерівноважними дірками через r- і s-центри. При цьому заповнення електронами r- і s-центрів буде максимальним, а час життя дірок τ_p у валентній зоні мінімальним:

$$\tau_p = \frac{1}{v S_p n_c},\tag{3}$$

де S_p – переріз захоплення дірки центром із валентної зони, n_c – концентрація електронів на центрах рекомбінації (*r*- і *s*-центрах).

Фоточутливість пропорційна рухливості дірок (µ), яку вважатимемо однаковою для розчинів різного кількісного складу та часу їх життя у валентній зоні:

$$\Delta \sigma \sim \mu \tau$$

При збільшенні E_T , що спостерігаємо при зростанні x і відповідно E_g твердого розчину, збільшується ефективність центрів прилипання (формула (1)), що проявляється в більшому заповненні t-центрів електронами і зменшення їх концентрації в зоні провідності, а також на центрах рекомбінації. Це зумовлюватиме зростання τ_p (формула (3)) і фоточутливості зразка.

Термостимульована провідність. Для одержання значень енергетичного спектра рівнів прилипання носіїв заряду монокристалів твердого розчину $Tl_{1-x}In_{1-x}Sn_xSe_2$ в діапазоні температур 77–300 К було досліджено спектри термостимульованої провідності. Для цього попередньо охолоджені до T = 77 К зразки упродовж 30 хв опромінювали світлом з $\lambda = 660$ нм, водночас відбувалось заповнення пасток електронами. Тоді лазер вимикався і починався нагрів кристала до кімнатної температури із швидкістю 0,025 К/с. В результаті чого на кривих термостимульованої провідності (ТСП) спостерігались максимуми, які відповідають за звільнення електронів із пасток (рис. 5)

Рис. 5. Спектри ТСП монокристалів Tl_{1-x}In_{1-x}Sn_xSe₂ (швидкість нагрівання 0,025 К/с)

На рис. 5 представлено криві термостимульованої провідності твердого розчину різних кількісних складів.

Загалом форма кривих ТСП досить складна, в літературі аналізується початок наростання струму, його максимум, спад, ширина тощо.

На початковому етапі іонізації пастки експериментальна залежність $\sigma(T)$ має екпоненційний характер. Для оцінки енергії залягання рівня прилипання використали формулу, яка не залежить від типу рівня прилипання [13]:

$$\sigma = const \exp\left(-\frac{E_t}{kT}\right)$$

де σ відповідає початку максимуму ТСП.

За нахилом $ln(\sigma)=f(1/T)$ оцінюємо енергію E_t . Недоліком цього методу є те, що початкова ділянка максимуму ТСП часто спотворюється іншими (що близько лежать) рівнями прилипання.

Щоб точніше визначити параметри рівнів прилипання, потрібно знати тип рівнів прилипання. Аналіз форми піків ТСП показує [16], що для всіх спостережуваних піків виконується умова:

$$\delta > e^{-1} \left(1 + \frac{2kT_m}{E_t} \right),$$

де величина δ , знаходиться з умови за формулою:

$$\delta = \frac{T_m - T_1}{T_2 - T_1},$$

де T_m – температура, при якій ТСП досягає свого максимального значення, T_1 , T_2 – температура, яка відповідає половині максимуму ТСП зі сторони низької і високої температури.

Виконання цієї умови вказує на наявність у кристалі швидких центрів прилипання.

Енергія залягання пастки визначається формулою:

$$E_t = \frac{k \cdot T_m^2}{T_m - T_1}$$

Результати обрахунків представлено у табл. 4.

Таблиця 4

Глибина залягання рівнів прилипання монокристалів Tl_{1-x}In_{1-x}Sn_xSe₂

Зразок	<i>x</i> = 0,10	<i>x</i> = 0,20	<i>x</i> = 0,25
E_t , eB	0,08	0,12	0,22

Значення енергії іонізації рівнів прилипання добре узгоджується з результатом авторів роботи [19].

Висновки та перспективи подальшого дослідження. На основі отриманих у роботі результатів розроблено оптимальні умови синтезу і вирощування монокристалів твердого розчину. За результатами рентгенофазового і рентгеноструктурного аналізу встановлено кристалічну структуру. Показано, що зі збільшенням вмісту $SnSe_2$ у твердому розчині зростає концентрація V_{77} , ширина забороненої зони і фоточутливість отриманих кристалів. Методом термічно стимульованої провідності встановлено тип рівнів прилипання й оцінено енергію залягання цих рівнів.

Роботу виконано за підтримки Міністерства освіти та науки України (Договір М/106-2014 від 23.06.2014 h/).

Джерела та література

- 1. Влияние ионизирующего излучения на механизм токопрохождения в монокристаллах *TlInSe*₂/ [P. C. Maдатов, А. И. Наджафов и др.] // Физика твердого тела. – 2011. – Т. 53, № 11. – С. 2097–2101.
- Годжаев Э. М. Фотоэлектрические свойства монокристаллов TlIn_{1-x}Pr_xSe₂ (0 ≤ x ≤ 0,04) / Э. М. Годжаев, Г. С. Джафаров // Неорганические материалы. – 2009. – Т. 45, № 11. – С. 1317–1319.
- Гурвич А. М. Введение в физическую химию кристаллофосфоров / А. М. Гурвич. М. : Высш. шк. 1982. – 376 с.
- 4. Давидюк Г. Є. Нерівноважні процеси в напівпровідниках : навч. посіб. / Г. Є. Давидюк. Луцьк : РВВ «Вежа» Волин. держ. ун-ту ім. Лесі Українки, 2000. 151 с.
- 5. Лашкарев В. Е. Неравновесные процессы в фотопроводниках / В. Е. Лашкарев, А. В. Любченко, М. К. Шейнкман. Киев : Наук. думка, 1981. 263 с.

- Особенности низкотемпературной электро- и фотопроводимости твердых растворов CuInSe₂−ZnIn₂Se₄ / [В. В. Божко, А. В. Новосад и др.] // ФТП. 2014. Т. 48, вып. 6. С. 747–752
- 7. Суперионная проводимость, эффект переключения и памяти в крысталлах *TllnSe*₂ и *TllnTe*₂/ [P. M. Сардарлы, О. А. Самедов и др.] // Физика и техника полупроводников. 2011. Т. 45, № 11. С. 1441–1445.
- Электрические и оптические свойства монокристаллов Tl_{1-x}Ce_xSe₂ (0 ≤ x ≤ 0,04) / [Э. М. Годжаев, С. И. Сафарова, Н. З. Джалилов, А. А. Абдурагимов] // Неорганические материалы. – 2007. – Т. 43, № 43. – С. 670–672.
- Ag₂CdSnS₄ single crystals as promising materials for optoelectronic / [G. E. Davydyuk, G. L. Myronchuk and o.] // Optical Materials. – 2011. – Vol. 33 – P. 1302–1306.
- 10. Badr A. M. Spectral photoelectronic features of TlInSe₂ single crystals / A. M. Badr, I. M. Ashraf // Phys. Scr. 2012. Vol. 86. 7 p.
- 11. Bakhyshov A. E. Electrical and Optical Properties of TlInSe₂ Single Crystals / A. E. Bakhyshov, M. F. Agaeva, A. M. Darvish // Phys. Stat. Sol. (b). 1979. Vol. 91. P. 31–34.
- 12. Fan H. Y. Infra-red absorption in semiconductors / H. Y. Fan // Rep. Progr. Phys. 1956. Vol. 19. P. 107-153.
- Garlic G. F. T. The Electron Trap Mechanism of Luminescence in Sulphide and Silicate Phosphors / G. F. T. Garlic, A. F. Gibson // Phys. Soc. A. – 1948. – Vol. 60. – P. 574–590.
- 14. Gasanly N. M. Thermally Stimulated Current Study of Shallow Traps in As-Grown TlInSe₂ Chain Crystals / N. M. Gasanly, T. Yildirim // Acta physica polonica (a). 2011. Vol. 119. P. 437–441.
- 15. Holleman A. F. Lehrbuch der Anorganischen Chemie / A. F. Holleman, E. Wiberg. Berlin : Walter de Gruyter, 1995. 2150 p.
- 16. Litovchenko P. G. Актуальные вопросы физики полупроводниковых приборов / P. G. Litovchenko, V. I. Ustianov. Wilnius : Mokslas, 1960. С. 153.
- 17. Muller D. Zur structur ternarer chalcogenide des Talliums mit Aliminium, Galium und Indium / D. Muller, F Poltmann, H. Hahn // Z. Naturforsch. B. 1974. Vol. 29, № 1–2. P. 117–118.
- 18. On the non-linear properties of TIInX₂ (X = S, Se, Te) ternary compounds / [M. Hanias, A. N. Anagnosto-poulos, K. Kambas, J. Spyridelis] // Physica B. 1989. Vol. 160. P. 154–160.
- Photoelectrical properties and the electronic structure of Tl_{1-x}In_{1-x}Sn_xSe₂ (x = 0, 0.1, 0.2, 0.25) single crystalline alloys / [G. E. Davydyuk, O. Y. Khyzhun and o.] // Phys. Chem. Chem. Phys. 2013. Vol. 15. P. 6965–6972.
- 20. Structural and optical features of novel Tl_{1-x}In_{1-x}Ge_xSe₂ chalcogenide crystals / [O. V. Zamurueva, G. L. My-ronchuk and o.] // Optical Materials. 2014. Vol. 37. P. 614–620.
- 21. Structural and optical properties of novel optoelectronic Tl_{1-x}In_{1-x}Si_xSe₂ single crystals / [G. L. Myronchuk, O. V. Zamurueva and o.] // J. Mater. Sci: Mater. Electr. – 2014. – Vol. 25. – P. 3226–3232.
- 22. $Tl_{1-x}In_{1-x}Sn_xSe_2$ (x = 0, 0.1, 0.2, 0.25) single-crystalline alloys as promising non-linear optical materials / [G. L. Myronchuk, G. E. Davydyuk and o.] // J. Mater. Sci: Mater. Electr. 2013. Vol. 24, No 9. P. 3555–3563.
- 23. «Triggering» effect of second harmonic generation in centrosymmetric α-BaB₂O₄ crystals / [V. T. Adamiv, J. Ebothe and o.] // Optical Materials. 2008. Vol. 31, I. 4. P. 685–687.

Китык Иван, Данильчук Сергей, Мирончук Галина, Мозолюк Мария, Божко Владимир, Крымусь Андрей. Получение и фотоэлектрические свойства твердых растворов $Tl_{1-x}In_{1-x}Sn_xSe_2$ (x = 0-0,25). Разработаны технологические условия выращивания монокристаллов твердых растворов $Tl_{1-x}In_{1-x}Sn_xSe_2$ (x = 0-0,25). Рентгеновским методом порошка расшифрована кристаллическая структура сплавов и предложен механизм образования твердого раствора. Исследованы: спектральное распределение фотопроводимости полученных кристаллов при T = 300 K, термостимулированная проводимость. Показано влияние катионного замещения In^{3+} на Sn^{4+} в твердых растворах $Tl_{1-x}In_{1-x}Sn_xSe_2$ (x = 0-0,25) на их кристаллографические и фотоэлектрические свойства.

Ключевые слова: термостимулированная проводимость, фотопроводимость, твердый раствор, кристаллическая структура.

Kityk Ivan, Danylchuk Sergiy, Myronchuk Galyna, Mozolyuk Mariya, Bojko Volodymyr, Krymus' Andriy. Preparation and photoelectric properties of solid solutions $Tl_{1-x}In_{1-x}Sn_xSe_2$ (x = 0-0,25). The technological conditions for growth of solid solutions $Tl_{1-x}In_{1-x}Sn_xSe_2$ (x = 0-0,25) single crystals have been developed. The crystal structure of the alloy has been solved by X ray diffraction powder method, the mechanism of the solid solution formation is proposed. Spectral distribution of photoconductivity for obtained crystals at T=300 K and thermoinduced conductivity have been studied. The effect of In^{3+} for Sn^{4+} cationic substitution in solid solutions $Tl_{1-x}In_{1-x}Sn_xSe_2$ (x = 0-0,25) on their crystallographic and photovoltaic properties is shown.

Key words: thermoinduced conductivity, photoconductivity, solid solution crystal structure.

Стаття надійшла до редколегії 02.06.2014 р.